librw/src/gl/gl3render.cpp

355 lines
7.2 KiB
C++
Raw Normal View History

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "../rwbase.h"
#include "../rwerror.h"
#include "../rwplg.h"
#include "../rwpipeline.h"
#include "../rwobjects.h"
#include "../rwengine.h"
#include "../rwplugins.h"
#ifdef RW_OPENGL
#include <GL/glew.h>
#include "rwgl3.h"
#include "rwgl3shader.h"
namespace rw {
namespace gl3 {
struct UniformScene
{
float32 proj[16];
float32 view[16];
};
struct UniformLight
{
V3d position;
float32 w;
V3d direction;
int32 pad1;
RGBAf color;
float32 radius;
float32 minusCosAngle;
int32 pad2[2];
};
#define MAX_LIGHTS 8
struct UniformObject
{
Matrix world;
RGBAf ambLight;
int32 numLights;
int32 pad[3];
UniformLight lights[MAX_LIGHTS];
};
GLuint vao;
GLuint ubo_scene, ubo_object;
GLuint whitetex;
UniformScene uniformScene;
UniformObject uniformObject;
void
beginUpdate(Camera *cam)
{
float view[16], proj[16];
// View Matrix
Matrix inv;
Matrix::invert(&inv, cam->getFrame()->getLTM());
// Since we're looking into positive Z,
// flip X to ge a left handed view space.
view[0] = -inv.right.x;
view[1] = inv.right.y;
view[2] = inv.right.z;
view[3] = 0.0f;
view[4] = -inv.up.x;
view[5] = inv.up.y;
view[6] = inv.up.z;
view[7] = 0.0f;
view[8] = -inv.at.x;
view[9] = inv.at.y;
view[10] = inv.at.z;
view[11] = 0.0f;
view[12] = -inv.pos.x;
view[13] = inv.pos.y;
view[14] = inv.pos.z;
view[15] = 1.0f;
setViewMatrix(view);
// Projection Matrix
float32 invwx = 1.0f/cam->viewWindow.x;
float32 invwy = 1.0f/cam->viewWindow.y;
float32 invz = 1.0f/(cam->farPlane-cam->nearPlane);
proj[0] = invwx;
proj[1] = 0.0f;
proj[2] = 0.0f;
proj[3] = 0.0f;
proj[4] = 0.0f;
proj[5] = invwy;
proj[6] = 0.0f;
proj[7] = 0.0f;
if(cam->projection == Camera::PERSPECTIVE){
proj[8] = cam->viewOffset.x*invwx;
proj[9] = cam->viewOffset.y*invwy;
proj[10] = (cam->farPlane+cam->nearPlane)*invz;
proj[11] = 1.0f;
proj[12] = 0.0f;
proj[13] = 0.0f;
proj[14] = -2.0f*cam->nearPlane*cam->farPlane*invz;
proj[15] = 0.0f;
}else{
// TODO
}
setProjectionMatrix(proj);
}
void
initializeRender(void)
{
driver[PLATFORM_GL3].beginUpdate = beginUpdate;
glClearColor(0.25, 0.25, 0.25, 1.0);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glGenBuffers(1, &ubo_scene);
glBindBuffer(GL_UNIFORM_BUFFER, ubo_scene);
glBindBufferBase(GL_UNIFORM_BUFFER, gl3::findBlock("Scene"), ubo_scene);
glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformScene), &uniformScene,
GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glGenBuffers(1, &ubo_object);
glBindBuffer(GL_UNIFORM_BUFFER, ubo_object);
glBindBufferBase(GL_UNIFORM_BUFFER, gl3::findBlock("Object"), ubo_object);
glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformObject), &uniformObject,
GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
byte whitepixel[4] = {0xFF, 0xFF, 0xFF, 0xFF};
glGenTextures(1, &whitetex);
glBindTexture(GL_TEXTURE_2D, whitetex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1,
0, GL_RGBA, GL_UNSIGNED_BYTE, &whitepixel);
}
void
setAttribPointers(InstanceDataHeader *header)
{
AttribDesc *a;
for(a = header->attribDesc;
a != &header->attribDesc[header->numAttribs];
a++){
glEnableVertexAttribArray(a->index);
glVertexAttribPointer(a->index, a->size, a->type, a->normalized,
a->stride, (void*)(uint64)a->offset);
}
}
static bool32 sceneDirty = 1;
static bool32 objectDirty = 1;
void
setWorldMatrix(Matrix *mat)
{
uniformObject.world = *mat;
objectDirty = 1;
}
void
setAmbientLight(RGBAf *amb)
{
uniformObject.ambLight = *amb;
objectDirty = 1;
}
void
setNumLights(int32 n)
{
uniformObject.numLights = n;
objectDirty = 1;
}
void
setLight(int32 n, Light *light)
{
UniformLight *l;
Frame *f;
Matrix *m;
l = &uniformObject.lights[n];
f = light->getFrame();
if(f){
m = f->getLTM();
l->position = m->pos;
l->direction = m->at;
}
// light has position
l->w = light->getType() >= Light::POINT ? 1.0f : 0.0;
l->color = light->color;
l->radius = light->radius;
l->minusCosAngle = light->minusCosAngle;
objectDirty = 1;
}
void
setProjectionMatrix(float32 *mat)
{
memcpy(&uniformScene.proj, mat, 64);
sceneDirty = 1;
}
void
setViewMatrix(float32 *mat)
{
memcpy(&uniformScene.view, mat, 64);
sceneDirty = 1;
}
static bool32 vertexAlpha;
static bool32 textureAlpha;
void
setTexture(int32 n, Texture *tex)
{
bool32 alpha;
glActiveTexture(GL_TEXTURE0+n);
if(tex == nil){
glBindTexture(GL_TEXTURE_2D, whitetex);
alpha = 0;
}else{
Gl3Raster *natras = PLUGINOFFSET(Gl3Raster, tex->raster,
nativeRasterOffset);
glBindTexture(GL_TEXTURE_2D, natras->texid);
alpha = natras->hasAlpha;
}
if(textureAlpha == alpha)
return;
if(alpha)
/*printf("enable\n"),*/ glEnable(GL_BLEND);
else if(!vertexAlpha)
/*printf("disable\n"),*/ glDisable(GL_BLEND);
textureAlpha = alpha;
}
void
setVertexAlpha(bool32 alpha)
{
if(vertexAlpha == alpha)
return;
if(alpha)
/*printf("enable\n"),*/ glEnable(GL_BLEND);
else if(!textureAlpha)
/*printf("disable\n"),*/ glDisable(GL_BLEND);
vertexAlpha = alpha;
}
void
flushCache(void)
{
if(objectDirty){
glBindBuffer(GL_UNIFORM_BUFFER, ubo_object);
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(UniformObject),
&uniformObject);
objectDirty = 0;
}
if(sceneDirty){
glBindBuffer(GL_UNIFORM_BUFFER, ubo_scene);
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(UniformScene),
&uniformScene);
sceneDirty = 0;
}
}
void
lightingCB(void)
{
World *world;
RGBAf ambLight = (RGBAf){0.0, 0.0, 0.0, 1.0};
int n = 0;
world = (World*)engine->currentWorld;
// only unpositioned lights right now
FORLIST(lnk, world->directionalLights){
Light *l = Light::fromWorld(lnk);
if(l->getType() == Light::DIRECTIONAL){
if(n >= MAX_LIGHTS)
continue;
setLight(n++, l);
}else if(l->getType() == Light::AMBIENT){
ambLight.red += l->color.red;
ambLight.green += l->color.green;
ambLight.blue += l->color.blue;
}
}
setNumLights(n);
setAmbientLight(&ambLight);
}
void
defaultRenderCB(Atomic *atomic, InstanceDataHeader *header)
{
setWorldMatrix(atomic->getFrame()->getLTM());
lightingCB();
glBindBuffer(GL_ARRAY_BUFFER, header->vbo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, header->ibo);
setAttribPointers(header);
Material *m;
RGBAf col;
GLfloat surfProps[4];
int id;
InstanceData *inst = header->inst;
int32 n = header->numMeshes;
while(n--){
m = inst->material;
#define U(s) currentShader->uniformLocations[findUniform(s)]
convColor(&col, &m->color);
glUniform4fv(U("u_matColor"), 1, (GLfloat*)&col);
surfProps[0] = m->surfaceProps.ambient;
surfProps[1] = m->surfaceProps.specular;
surfProps[2] = m->surfaceProps.diffuse;
surfProps[3] = 0.0f;
glUniform4fv(U("u_surfaceProps"), 1, surfProps);
setTexture(0, m->texture);
setVertexAlpha(inst->vertexAlpha || m->color.alpha != 0xFF);
flushCache();
glDrawElements(header->primType, inst->numIndex,
GL_UNSIGNED_SHORT, (void*)(uintptr)inst->offset);
inst++;
}
}
}
}
#endif