librw/src/camera.cpp

516 lines
12 KiB
C++
Raw Normal View History

#include <cstdio>
#include <cstdlib>
#include "rwbase.h"
#include "rwerror.h"
#include "rwplg.h"
#include "rwpipeline.h"
#include "rwobjects.h"
#include "rwengine.h"
2017-08-24 15:10:34 +02:00
#define PLUGIN_ID ID_CAMERA
namespace rw {
PluginList Camera::s_plglist = { sizeof(Camera), sizeof(Camera), nil, nil };
void
defaultBeginUpdateCB(Camera *cam)
{
engine->currentCamera = cam;
Frame::syncDirty();
2017-08-09 10:57:32 +02:00
engine->device.beginUpdate(cam);
}
void
defaultEndUpdateCB(Camera *cam)
{
2017-08-09 10:57:32 +02:00
engine->device.endUpdate(cam);
}
static void
buildPlanes(Camera *cam)
{
V3d *c = cam->frustumCorners;
FrustumPlane *p = cam->frustumPlanes;
V3d v51 = sub(c[1], c[5]);
V3d v73 = sub(c[3], c[7]);
/* Far plane */
p[0].plane.normal = cam->getFrame()->getLTM()->at;
p[0].plane.distance = dot(p[0].plane.normal, c[4]);
p[0].closestX = p[0].plane.normal.x < 0.0f ? 0 : 1;
p[0].closestY = p[0].plane.normal.y < 0.0f ? 0 : 1;
p[0].closestZ = p[0].plane.normal.z < 0.0f ? 0 : 1;
/* Near plane */
p[1].plane.normal = neg(p[0].plane.normal);
p[1].plane.distance = dot(p[1].plane.normal, c[0]);
p[1].closestX = p[1].plane.normal.x < 0.0f ? 0 : 1;
p[1].closestY = p[1].plane.normal.y < 0.0f ? 0 : 1;
p[1].closestZ = p[1].plane.normal.z < 0.0f ? 0 : 1;
/* Right plane */
p[2].plane.normal = normalize(cross(v51,
sub(c[6], c[5])));
p[2].plane.distance = dot(p[2].plane.normal, c[1]);
p[2].closestX = p[2].plane.normal.x < 0.0f ? 0 : 1;
p[2].closestY = p[2].plane.normal.y < 0.0f ? 0 : 1;
p[2].closestZ = p[2].plane.normal.z < 0.0f ? 0 : 1;
/* Top plane */
p[3].plane.normal = normalize(cross(sub(c[4], c[5]),
v51));
p[3].plane.distance = dot(p[3].plane.normal, c[1]);
p[3].closestX = p[3].plane.normal.x < 0.0f ? 0 : 1;
p[3].closestY = p[3].plane.normal.y < 0.0f ? 0 : 1;
p[3].closestZ = p[3].plane.normal.z < 0.0f ? 0 : 1;
/* Left plane */
p[4].plane.normal = normalize(cross(v73,
sub(c[4], c[7])));
p[4].plane.distance = dot(p[4].plane.normal, c[3]);
p[4].closestX = p[4].plane.normal.x < 0.0f ? 0 : 1;
p[4].closestY = p[4].plane.normal.y < 0.0f ? 0 : 1;
p[4].closestZ = p[4].plane.normal.z < 0.0f ? 0 : 1;
/* Bottom plane */
p[5].plane.normal = normalize(cross(sub(c[6], c[7]),
v73));
p[5].plane.distance = dot(p[5].plane.normal, c[3]);
p[5].closestX = p[5].plane.normal.x < 0.0f ? 0 : 1;
p[5].closestY = p[5].plane.normal.y < 0.0f ? 0 : 1;
p[5].closestZ = p[5].plane.normal.z < 0.0f ? 0 : 1;
}
static void
buildClipPersp(Camera *cam)
{
Matrix *ltm = cam->getFrame()->getLTM();
/* First we calculate the 4 points on the view window. */
V3d up = scale(ltm->up, cam->viewWindow.y);
V3d left = scale(ltm->right, cam->viewWindow.x);
V3d *c = cam->frustumCorners;
c[0] = add(add(ltm->at, up), left); // top left
c[1] = sub(add(ltm->at, up), left); // top right
c[2] = sub(sub(ltm->at, up), left); // bottom right
c[3] = add(sub(ltm->at, up), left); // bottom left
/* Now Calculate near and far corners. */
V3d off = sub(scale(ltm->up, cam->viewOffset.y),
scale(ltm->right, cam->viewOffset.x));
for(int32 i = 0; i < 4; i++){
V3d corner = sub(cam->frustumCorners[i], off);
V3d pos = add(ltm->pos, off);
c[i] = add(scale(corner, cam->nearPlane), pos);
c[i+4] = add(scale(corner, cam->farPlane), pos);
}
buildPlanes(cam);
}
static void
buildClipParallel(Camera *cam)
{
Matrix *ltm = cam->getFrame()->getLTM();
float32 nearoffx = -(1.0f - cam->nearPlane)*cam->viewOffset.x;
float32 nearoffy = (1.0f - cam->nearPlane)*cam->viewOffset.y;
float32 faroffx = -(1.0f - cam->farPlane)*cam->viewOffset.x;
float32 faroffy = (1.0f - cam->farPlane)*cam->viewOffset.y;
V3d *c = cam->frustumCorners;
c[0].x = nearoffx + cam->viewWindow.x;
c[0].y = nearoffy + cam->viewWindow.y;
c[0].z = cam->nearPlane;
c[1].x = nearoffx - cam->viewWindow.x;
c[1].y = nearoffy + cam->viewWindow.y;
c[1].z = cam->nearPlane;
c[2].x = nearoffx - cam->viewWindow.x;
c[2].y = nearoffy - cam->viewWindow.y;
c[2].z = cam->nearPlane;
c[3].x = nearoffx + cam->viewWindow.x;
c[3].y = nearoffy - cam->viewWindow.y;
c[3].z = cam->nearPlane;
c[4].x = faroffx + cam->viewWindow.x;
c[4].y = faroffy + cam->viewWindow.y;
c[4].z = cam->farPlane;
c[5].x = faroffx - cam->viewWindow.x;
c[5].y = faroffy + cam->viewWindow.y;
c[5].z = cam->farPlane;
c[6].x = faroffx - cam->viewWindow.x;
c[6].y = faroffy - cam->viewWindow.y;
c[6].z = cam->farPlane;
c[7].x = faroffx + cam->viewWindow.x;
c[7].y = faroffy - cam->viewWindow.y;
c[7].z = cam->farPlane;
2017-08-04 19:54:03 +02:00
V3d::transformPoints(c, c, 8, ltm);
buildPlanes(cam);
}
static void
2016-07-06 11:44:59 +02:00
cameraSync(ObjectWithFrame *obj)
{
2016-07-06 11:44:59 +02:00
/*
* RW projection matrix looks like this:
* (cf. Camera View Matrix white paper)
* w = viewWindow width
* h = viewWindow height
* o = view offset
*
* perspective:
* 1/2w 0 ox/2w + 1/2 -ox/2w
* 0 -1/2h -oy/2h + 1/2 oy/2h
* 0 0 1 0
* 0 0 1 0
*
* parallel:
* 1/2w 0 ox/2w -ox/2w + 1/2
* 0 -1/2h -oy/2h oy/2h + 1/2
* 0 0 1 0
* 0 0 0 1
*
* The view matrix transforms from world to clip space, it is however
* not used for OpenGL or D3D since transformation to camera space
* and to clip space are handled by separate matrices there.
* On these platforms the two matrices are built in the platform's
* beginUpdate function.
2017-08-12 10:25:25 +02:00
* On the PS2 the z- and w-rows are the same and the
* 1/2 translation/shear is removed again on the VU1 by
* subtracting the w-row/2 from the x- and y-rows.
*
* perspective:
* 1/2w 0 ox/2w -ox/2w
* 0 -1/2h -oy/2h oy/2h
* 0 0 1 0
* 0 0 1 0
*
* parallel:
* 1/2w 0 ox/2w -ox/2w
* 0 -1/2h -oy/2h oy/2h
* 0 0 1 0
* 0 0 0 1
2016-07-06 11:44:59 +02:00
*
* RW builds this matrix directly without using explicit
* inversion and matrix multiplication.
*/
Camera *cam = (Camera*)obj;
Matrix inv, proj;
Matrix::invertOrthonormal(&inv, cam->getFrame()->getLTM());
2018-06-14 23:17:55 +02:00
inv.right.x = -inv.right.x;
inv.up.x = -inv.up.x;
inv.at.x = -inv.at.x;
inv.pos.x = -inv.pos.x;
2017-08-12 10:25:25 +02:00
float32 xscl = 1.0f/(2.0f*cam->viewWindow.x);
float32 yscl = 1.0f/(2.0f*cam->viewWindow.y);
2016-07-06 11:44:59 +02:00
2017-08-04 19:54:03 +02:00
proj.flags = 0;
2016-07-06 11:44:59 +02:00
proj.right.x = xscl;
proj.right.y = 0.0f;
proj.right.z = 0.0f;
proj.up.x = 0.0f;
proj.up.y = -yscl;
proj.up.z = 0.0f;
if(cam->projection == Camera::PERSPECTIVE){
proj.pos.x = -cam->viewOffset.x*xscl;
proj.pos.y = cam->viewOffset.y*yscl;
proj.pos.z = 0.0f;
proj.at.x = -proj.pos.x + 0.5f;
proj.at.y = -proj.pos.y + 0.5f;
proj.at.z = 1.0f;
2017-08-04 19:54:03 +02:00
proj.optimize();
Matrix::mult(&cam->viewMatrix, &inv, &proj);
buildClipPersp(cam);
2016-07-06 11:44:59 +02:00
}else{
proj.at.x = cam->viewOffset.x*xscl;
proj.at.y = -cam->viewOffset.y*yscl;
proj.at.z = 1.0f;
proj.pos.x = -proj.at.x + 0.5f;
proj.pos.y = -proj.at.y + 0.5f;
proj.pos.z = 0.0f;
2017-08-04 19:54:03 +02:00
proj.optimize();
Matrix::mult(&cam->viewMatrix, &inv, &proj);
buildClipParallel(cam);
2016-07-06 11:44:59 +02:00
}
cam->frustumBoundBox.calculate(cam->frustumCorners, 8);
}
2016-06-23 16:39:34 +02:00
void
worldBeginUpdateCB(Camera *cam)
{
engine->currentWorld = cam->world;
2016-06-23 16:39:34 +02:00
cam->originalBeginUpdate(cam);
}
void
worldEndUpdateCB(Camera *cam)
{
cam->originalEndUpdate(cam);
}
static void
worldCameraSync(ObjectWithFrame *obj)
{
Camera *camera = (Camera*)obj;
camera->originalSync(obj);
}
Camera*
Camera::create(void)
{
2017-08-24 15:10:34 +02:00
Camera *cam = (Camera*)rwMalloc(s_plglist.size, MEMDUR_EVENT | ID_CAMERA);
2016-06-17 13:29:49 +02:00
if(cam == nil){
RWERROR((ERR_ALLOC, s_plglist.size));
2016-06-17 13:29:49 +02:00
return nil;
}
cam->object.object.init(Camera::ID, 0);
cam->object.syncCB = cameraSync;
2016-06-23 16:39:34 +02:00
cam->beginUpdateCB = defaultBeginUpdateCB;
cam->endUpdateCB = defaultEndUpdateCB;
cam->viewWindow.set(1.0f, 1.0f);
cam->viewOffset.set(0.0f, 0.0f);
cam->nearPlane = 0.05f;
cam->farPlane = 10.0f;
cam->fogPlane = 5.0f;
cam->projection = Camera::PERSPECTIVE;
2016-06-23 16:39:34 +02:00
cam->frameBuffer = nil;
cam->zBuffer = nil;
2016-06-23 16:39:34 +02:00
// clump extension
2016-06-17 13:29:49 +02:00
cam->clump = nil;
cam->inClump.init();
2016-06-23 16:39:34 +02:00
// world extension
cam->world = nil;
cam->originalSync = cam->object.syncCB;
cam->originalBeginUpdate = cam->beginUpdateCB;
cam->originalEndUpdate = cam->endUpdateCB;
cam->object.syncCB = worldCameraSync;
cam->beginUpdateCB = worldBeginUpdateCB;
cam->endUpdateCB = worldEndUpdateCB;
s_plglist.construct(cam);
return cam;
}
Camera*
Camera::clone(void)
{
Camera *cam = Camera::create();
2016-06-17 13:29:49 +02:00
if(cam == nil)
return nil;
cam->object.object.copy(&this->object.object);
cam->setFrame(this->getFrame());
cam->viewWindow = this->viewWindow;
cam->viewOffset = this->viewOffset;
cam->nearPlane = this->nearPlane;
cam->farPlane = this->farPlane;
cam->fogPlane = this->fogPlane;
cam->projection = this->projection;
cam->frameBuffer = this->frameBuffer;
cam->zBuffer = this->zBuffer;
s_plglist.copy(cam, this);
return cam;
}
void
Camera::destroy(void)
{
s_plglist.destruct(this);
if(this->clump)
this->inClump.remove();
2017-08-24 15:10:34 +02:00
rwFree(this);
}
2016-07-05 18:22:22 +02:00
void
Camera::clear(RGBA *col, uint32 mode)
{
2017-08-09 10:57:32 +02:00
engine->device.clearCamera(this, col, mode);
}
void
Camera::showRaster(void)
{
engine->device.showRaster(this->frameBuffer);
2016-07-06 11:44:59 +02:00
}
void
calczShiftScale(Camera *cam)
{
float32 n = cam->nearPlane;
float32 f = cam->farPlane;
2017-08-09 10:57:32 +02:00
float32 N = engine->device.zNear;
float32 F = engine->device.zFar;
2016-07-09 12:24:26 +02:00
// RW does this
N += (F - N)/10000.0f;
F -= (F - N)/10000.0f;
2016-07-06 11:44:59 +02:00
if(cam->projection == Camera::PERSPECTIVE){
cam->zScale = (N - F)*n*f/(f - n);
cam->zShift = (F*f - N*n)/(f - n);
}else{
cam->zScale = (F - N)/(f -n);
cam->zShift = (N*f - F*n)/(f - n);
}
}
void
Camera::setNearPlane(float32 near)
{
this->nearPlane = near;
calczShiftScale(this);
2017-08-12 10:25:25 +02:00
if(this->getFrame())
this->getFrame()->updateObjects();
2016-07-06 11:44:59 +02:00
}
void
Camera::setFarPlane(float32 far)
{
this->farPlane = far;
calczShiftScale(this);
2017-08-12 10:25:25 +02:00
if(this->getFrame())
this->getFrame()->updateObjects();
}
void
Camera::setViewWindow(const V2d *window)
{
this->viewWindow = *window;
if(this->getFrame())
this->getFrame()->updateObjects();
}
void
Camera::setViewOffset(const V2d *offset)
{
this->viewOffset = *offset;
if(this->getFrame())
this->getFrame()->updateObjects();
}
void
Camera::setProjection(int32 proj)
{
this->projection = proj;
if(this->getFrame())
this->getFrame()->updateObjects();
2016-07-05 18:22:22 +02:00
}
2017-07-11 08:18:15 +02:00
int32
Camera::frustumTestSphere(Sphere *s)
{
int32 res = SPHEREINSIDE;
FrustumPlane *p = this->frustumPlanes;
for(int32 i = 0; i < 6; i++){
float32 dist = dot(p->plane.normal, s->center) - p->plane.distance;
if(s->radius < dist)
return SPHEREOUTSIDE;
if(s->radius > -dist)
res = SPHEREBOUNDARY;
p++;
2017-07-11 08:18:15 +02:00
}
return res;
}
struct CameraChunkData
{
V2d viewWindow;
V2d viewOffset;
float32 nearPlane, farPlane;
float32 fogPlane;
int32 projection;
};
Camera*
Camera::streamRead(Stream *stream)
{
CameraChunkData buf;
2016-06-17 13:29:49 +02:00
if(!findChunk(stream, ID_STRUCT, nil, nil)){
RWERROR((ERR_CHUNK, "STRUCT"));
2016-06-17 13:29:49 +02:00
return nil;
}
stream->read(&buf, sizeof(CameraChunkData));
Camera *cam = Camera::create();
cam->viewWindow = buf.viewWindow;
cam->viewOffset = buf.viewOffset;
cam->nearPlane = buf.nearPlane;
cam->farPlane = buf.farPlane;
cam->fogPlane = buf.fogPlane;
cam->projection = buf.projection;
if(s_plglist.streamRead(stream, cam))
2016-06-17 13:29:49 +02:00
return cam;
cam->destroy();
return nil;
}
bool
Camera::streamWrite(Stream *stream)
{
CameraChunkData buf;
writeChunkHeader(stream, ID_CAMERA, this->streamGetSize());
writeChunkHeader(stream, ID_STRUCT, sizeof(CameraChunkData));
buf.viewWindow = this->viewWindow;
buf.viewOffset = this->viewOffset;
buf.nearPlane = this->nearPlane;
buf.farPlane = this->farPlane;
buf.fogPlane = this->fogPlane;
buf.projection = this->projection;
stream->write(&buf, sizeof(CameraChunkData));
s_plglist.streamWrite(stream, this);
return true;
}
uint32
Camera::streamGetSize(void)
{
return 12 + sizeof(CameraChunkData) + 12 +
s_plglist.streamGetSize(this);
}
2017-12-30 11:43:17 +01:00
// Assumes horizontal FOV for 4:3, but we convert to vertical FOV
void
2017-12-30 11:43:17 +01:00
Camera::setFOV(float32 hfov, float32 ratio)
{
2017-08-12 10:25:25 +02:00
V2d v;
2017-12-30 11:43:17 +01:00
float w, h;
w = this->frameBuffer->width;
h = this->frameBuffer->height;
if(w < 1 || h < 1){
w = 1;
h = 1;
}
2017-12-31 10:50:49 +01:00
hfov = hfov*3.14159f/360.0f; // deg to rad and halved
2017-12-30 11:43:17 +01:00
float ar1 = 4.0/3.0;
float ar2 = w/h;
float vfov = atan(tan(hfov/2) / ar1) *2;
hfov = atan(tan(vfov/2) * ar2) *2;
float32 a = tan(hfov);
2017-08-12 10:25:25 +02:00
v.set(a, a/ratio);
this->setViewWindow(&v);
v.set(0.0f, 0.0f);
this->setViewOffset(&v);
}
}