#include #include #include "rwbase.h" #include "rwerror.h" #include "rwplg.h" #include "rwpipeline.h" #include "rwobjects.h" #include "rwengine.h" #define PLUGIN_ID 0 namespace rw { void defaultBeginUpdateCB(Camera *cam) { engine->currentCamera = cam; Frame::syncDirty(); engine->beginUpdate(cam); } void defaultEndUpdateCB(Camera *cam) { engine->endUpdate(cam); } static void cameraSync(ObjectWithFrame *obj) { /* * RW projection matrix looks like this: * (cf. Camera View Matrix white paper) * w = viewWindow width * h = viewWindow height * o = view offset * * perspective: * 1/2w 0 ox/2w + 1/2 -ox/2w * 0 -1/2h -oy/2h + 1/2 oy/2h * 0 0 1 0 * 0 0 1 0 * * parallel: * 1/2w 0 ox/2w -ox/2w + 1/2 * 0 -1/2h -oy/2h oy/2h + 1/2 * 0 0 1 0 * 0 0 0 1 * * The view matrix transforms from world to clip space, it is however * not used for OpenGL or D3D since transformation to camera space * and to clip space are handled by separate matrices there. * On these platforms the two matrices are built in the platform's * beginUpdate function. * On the PS2 the 1/2 translation/shear is removed again on the VU1. * * RW builds this matrix directly without using explicit * inversion and matrix multiplication. */ Camera *cam = (Camera*)obj; Matrix inv, proj; Matrix::invertOrthonormal(&inv, cam->getFrame()->getLTM()); float32 xscl = 2.0f/cam->viewWindow.x; float32 yscl = 2.0f/cam->viewWindow.y; proj.right.x = xscl; proj.right.y = 0.0f; proj.right.z = 0.0f; proj.rightw = 0.0f; proj.up.x = 0.0f; proj.up.y = -yscl; proj.up.z = 0.0f; proj.upw = 0.0f; if(cam->projection == Camera::PERSPECTIVE){ proj.pos.x = -cam->viewOffset.x*xscl; proj.pos.y = cam->viewOffset.y*yscl; proj.pos.z = 0.0f; proj.posw = 0.0f; proj.at.x = -proj.pos.x + 0.5f; proj.at.y = -proj.pos.y + 0.5f; proj.at.z = 1.0f; proj.atw = 1.0f; }else{ proj.at.x = cam->viewOffset.x*xscl; proj.at.y = -cam->viewOffset.y*yscl; proj.at.z = 1.0f; proj.atw = 0.0f; proj.pos.x = -proj.at.x + 0.5f; proj.pos.y = -proj.at.y + 0.5f; proj.pos.z = 0.0f; proj.posw = 1.0f; } Matrix::mult(&cam->viewMatrix, &proj, &inv); } void worldBeginUpdateCB(Camera *cam) { engine->currentWorld = cam->world; cam->originalBeginUpdate(cam); } void worldEndUpdateCB(Camera *cam) { cam->originalEndUpdate(cam); } static void worldCameraSync(ObjectWithFrame *obj) { Camera *camera = (Camera*)obj; camera->originalSync(obj); } Camera* Camera::create(void) { Camera *cam = (Camera*)malloc(s_plglist.size); if(cam == nil){ RWERROR((ERR_ALLOC, s_plglist.size)); return nil; } cam->object.object.init(Camera::ID, 0); cam->object.syncCB = cameraSync; cam->beginUpdateCB = defaultBeginUpdateCB; cam->endUpdateCB = defaultEndUpdateCB; cam->viewWindow.set(1.0f, 1.0f); cam->viewOffset.set(0.0f, 0.0f); cam->nearPlane = 0.05f; cam->farPlane = 10.0f; cam->fogPlane = 5.0f; cam->projection = Camera::PERSPECTIVE; // clump extension cam->clump = nil; cam->inClump.init(); // world extension cam->world = nil; cam->originalSync = cam->object.syncCB; cam->originalBeginUpdate = cam->beginUpdateCB; cam->originalEndUpdate = cam->endUpdateCB; cam->object.syncCB = worldCameraSync; cam->beginUpdateCB = worldBeginUpdateCB; cam->endUpdateCB = worldEndUpdateCB; s_plglist.construct(cam); return cam; } Camera* Camera::clone(void) { Camera *cam = Camera::create(); if(cam == nil) return nil; cam->object.object.copy(&this->object.object); cam->setFrame(this->getFrame()); cam->viewWindow = this->viewWindow; cam->viewOffset = this->viewOffset; cam->nearPlane = this->nearPlane; cam->farPlane = this->farPlane; cam->fogPlane = this->fogPlane; cam->projection = this->projection; s_plglist.copy(cam, this); return cam; } void Camera::destroy(void) { s_plglist.destruct(this); if(this->clump) this->inClump.remove(); free(this); } void Camera::clear(RGBA *col, uint32 mode) { engine->clearCamera(this, col, mode); } void calczShiftScale(Camera *cam) { float32 n = cam->nearPlane; float32 f = cam->farPlane; float32 N = engine->zNear; float32 F = engine->zFar; if(cam->projection == Camera::PERSPECTIVE){ cam->zScale = (N - F)*n*f/(f - n); cam->zShift = (F*f - N*n)/(f - n); }else{ cam->zScale = (F - N)/(f -n); cam->zShift = (N*f - F*n)/(f - n); } } void Camera::setNearPlane(float32 near) { this->nearPlane = near; calczShiftScale(this); } void Camera::setFarPlane(float32 far) { this->farPlane = far; calczShiftScale(this); } struct CameraChunkData { V2d viewWindow; V2d viewOffset; float32 nearPlane, farPlane; float32 fogPlane; int32 projection; }; Camera* Camera::streamRead(Stream *stream) { CameraChunkData buf; if(!findChunk(stream, ID_STRUCT, nil, nil)){ RWERROR((ERR_CHUNK, "STRUCT")); return nil; } stream->read(&buf, sizeof(CameraChunkData)); Camera *cam = Camera::create(); cam->viewWindow = buf.viewWindow; cam->viewOffset = buf.viewOffset; cam->nearPlane = buf.nearPlane; cam->farPlane = buf.farPlane; cam->fogPlane = buf.fogPlane; cam->projection = buf.projection; if(s_plglist.streamRead(stream, cam)) return cam; cam->destroy(); return nil; } bool Camera::streamWrite(Stream *stream) { CameraChunkData buf; writeChunkHeader(stream, ID_CAMERA, this->streamGetSize()); writeChunkHeader(stream, ID_STRUCT, sizeof(CameraChunkData)); buf.viewWindow = this->viewWindow; buf.viewOffset = this->viewOffset; buf.nearPlane = this->nearPlane; buf.farPlane = this->farPlane; buf.fogPlane = this->fogPlane; buf.projection = this->projection; stream->write(&buf, sizeof(CameraChunkData)); s_plglist.streamWrite(stream, this); return true; } uint32 Camera::streamGetSize(void) { return 12 + sizeof(CameraChunkData) + 12 + s_plglist.streamGetSize(this); } void Camera::setFOV(float32 fov, float32 ratio) { float32 a = tan(fov*3.14159f/360.0f); this->viewWindow.x = a; this->viewWindow.y = a/ratio; this->viewOffset.set(0.0f, 0.0f); } }