librw/tools/ps2/math.cpp
2015-08-27 16:45:54 +02:00

240 lines
4.2 KiB
C++
Executable File

#include <stdio.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include "math.h"
//Matrix mathModelViewMat;
//Matrix mathNormalMat;
//Matrix mathProjectionMat;
void
matDump(Matrix m)
{
int i, j;
#define M(i,j) m[i*4+j]
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
printf("%f ", M(j,i));
printf("\n");
}
#undef M
printf("\n");
}
void
matMakeIdentity(Matrix m)
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
m[i*4+j] = (i == j) ? 1.0f : 0.0f;
}
void
matCopy(Matrix m1, Matrix m2)
{
int i;
for (i = 0; i < 16; i++)
m1[i] = m2[i];
}
void
matMult(Matrix m1, Matrix m2)
{
int i, j;
Matrix newmat;
#define M1(i,j) m1[i*4+j]
#define M2(i,j) m2[i*4+j]
#define NEW(i,j) newmat[i*4+j]
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
NEW(i,j) = M1(0,j)*M2(i,0)
+ M1(1,j)*M2(i,1)
+ M1(2,j)*M2(i,2)
+ M1(3,j)*M2(i,3);
#undef M1
#undef M2
#undef NEW
matCopy(m1, newmat);
}
void
matMultVec(Matrix m, Vector4f v)
{
int i;
Vector4f newmat;
#define M(i,j) m[i*4+j]
for (i = 0; i < 4; i++)
newmat[i] = M(0,i)*v[0]
+ M(1,i)*v[1]
+ M(2,i)*v[2]
+ M(3,i)*v[3];
#undef M
vec4fCopy(v, newmat);
}
void
matInverse(Matrix m1, Matrix m2)
{
float det;
#define N(i,j) m1[i*4+j]
#define M(i,j) m2[i*4+j]
det = M(0,0)*(M(2,2)*M(1,1) - M(1,2)*M(2,1))
- M(0,1)*(M(2,2)*M(1,0) - M(1,2)*M(2,0))
+ M(0,2)*(M(2,1)*M(1,0) - M(1,1)*M(2,0));
matMakeIdentity(m1);
N(0,0) = (M(2,2)*M(1,1) - M(1,2)*M(2,1))/det;
N(0,1) = (M(1,2)*M(2,0) - M(2,2)*M(1,0))/det;
N(0,2) = (M(2,1)*M(1,0) - M(1,1)*M(2,0))/det;
N(1,0) = (M(0,2)*M(2,1) - M(2,2)*M(0,1))/det;
N(1,1) = (M(2,2)*M(0,0) - M(0,2)*M(2,0))/det;
N(1,2) = (M(0,1)*M(2,0) - M(2,1)*M(0,0))/det;
N(2,0) = (M(1,2)*M(0,1) - M(0,2)*M(1,1))/det;
N(2,1) = (M(0,2)*M(1,0) - M(1,2)*M(0,0))/det;
N(2,2) = (M(1,1)*M(0,0) - M(0,1)*M(1,0))/det;
#undef M
#undef N
}
void
vec4fCopy(Vector4f v1, Vector4f v2)
{
v1[0] = v2[0];
v1[1] = v2[1];
v1[2] = v2[2];
v1[3] = v2[3];
}
float
vec3fDot(Vector3f v1, Vector3f v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void
vec3fNormalize(Vector3f v)
{
float d;
d = sqrtf(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
v[0] /= d;
v[1] /= d;
v[2] /= d;
}
void
matRotateX(Matrix m, float ang)
{
Matrix rot;
matMakeIdentity(rot);
#define M(i,j) rot[i*4+j]
M(1,1) = cosf(ang);
M(1,2) = sinf(ang);
M(2,1) = -sinf(ang);
M(2,2) = cosf(ang);
#undef M
matMult(m, rot);
}
void
matRotateY(Matrix m, float ang)
{
Matrix rot;
matMakeIdentity(rot);
#define M(i,j) rot[i*4+j]
M(0,0) = cosf(ang);
M(2,0) = sinf(ang);
M(0,2) = -sinf(ang);
M(2,2) = cosf(ang);
#undef M
matMult(m, rot);
}
void
matRotateZ(Matrix m, float ang)
{
Matrix rot;
matMakeIdentity(rot);
#define M(i,j) rot[i*4+j]
M(0,0) = cosf(ang);
M(0,1) = sinf(ang);
M(1,0) = -sinf(ang);
M(1,1) = cosf(ang);
#undef M
matMult(m, rot);
}
void
matTranslate(Matrix m, float x, float y, float z)
{
Matrix trans;
matMakeIdentity(trans);
#define M(i,j) trans[i*4+j]
M(3,0) = x;
M(3,1) = y;
M(3,2) = z;
#undef M
matMult(m, trans);
}
void
matFrustum2(Matrix m, float l, float r, float xl, float xr,
float b, float t, float yb, float yt,
float n, float f, float zn, float zf)
{
matMakeIdentity(m);
#define M(i,j) m[i*4+j]
M(0,0) = ((xr-xl)*n)/(r-l);
M(1,1) = ((yt-yb)*n)/(t-b);
M(2,0) = (l*xr-r*xl)/(r-l);
M(2,1) = (b*yt-t*yb)/(t-b);
M(2,2) = -(f*zf+n*zn)/(f-n);
M(2,3) = -1.0f;
M(3,2) = (zn-zf)*f*n/(f-n);
M(3,3) = 0.0f;
#undef M
}
void
matFrustum(Matrix m, float l, float r, float b, float t,
float n, float f)
{
matMakeIdentity(m);
#define M(i,j) m[i*4+j]
M(0,0) = (2.0f*n)/(r-l);
M(1,1) = (2.0f*n)/(t-b);
M(2,0) = (r+l)/(r-l);
M(2,1) = (t+b)/(t-b);
M(2,2) = -(f+n)/(f-n);
M(2,3) = -1.0f;
M(3,2) = -2.0f*f*n/(f-n);
M(3,3) = 0.0f;
#undef M
}
void
matPerspective2(Matrix m, float fov, float ratio, float width, float height,
float n, float f, float znear, float zfar)
{
float r, t;
r = n*tanf(fov*M_PI/360.0f);
t = r/ratio;
matFrustum2(m, -r, r, 0, width,
-t, t, height, 0,
n, f, znear, zfar);
}
void
matPerspective(Matrix m, float fov, float ratio, float n, float f)
{
float r, t;
r = n*tanf(fov*M_PI/360.0f);
t = r/ratio;
matFrustum(m, -r, r, -t, t, n, f);
}