Samuel Holland a74bc5a9ae sunxi: psci: Implement H3 DRAM DVFS
Signed-off-by: Samuel Holland <samuel@sholland.org>
2023-10-31 03:55:43 -05:00

585 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016 Chen-Yu Tsai <wens@csie.org>
* Copyright (C) 2018-2021 Samuel Holland <samuel@sholland.org>
*/
#include <common.h>
#include <asm/arch/cpu.h>
#include <asm/arch/cpucfg.h>
#include <asm/armv7.h>
#include <asm/gic.h>
#include <asm/io.h>
#include <asm/psci.h>
#include <asm/secure.h>
#include <asm/system.h>
#define GICD_BASE (SUNXI_GIC400_BASE + GIC_DIST_OFFSET)
#define GICC_BASE (SUNXI_GIC400_BASE + GIC_CPU_OFFSET_A15)
#define HW_ON 0
#define HW_OFF 1
#define HW_STANDBY 2
#define MPIDR_AFFLVL0(mpidr) (mpidr & 0xf)
#define MPIDR_AFFLVL1(mpidr) (mpidr >> 8 & 0xf)
#if defined(CONFIG_MACH_SUN8I_H3)
#define SCPI_SHMEM_BASE 0x0004be00
#else
#define SCPI_SHMEM_BASE 0x00053e00
#endif
#define SCPI_SHMEM ((struct scpi_shmem *)SCPI_SHMEM_BASE)
#define SCPI_RX_CHANNEL 1
#define SCPI_TX_CHANNEL 0
#define SCPI_VIRTUAL_CHANNEL BIT(0)
#define SCPI_MESSAGE_SIZE 0x100
#define SCPI_PAYLOAD_SIZE (SCPI_MESSAGE_SIZE - sizeof(struct scpi_header))
#define SUNXI_MSGBOX_BASE 0x01c17000
#define REMOTE_IRQ_STAT_REG (SUNXI_MSGBOX_BASE + 0x0050)
#define LOCAL_IRQ_STAT_REG (SUNXI_MSGBOX_BASE + 0x0070)
#define MSG_STAT_REG(n) (SUNXI_MSGBOX_BASE + 0x0140 + 0x4 * (n))
#define MSG_DATA_REG(n) (SUNXI_MSGBOX_BASE + 0x0180 + 0x4 * (n))
#define RX_IRQ(n) BIT(0 + 2 * (n))
#define TX_IRQ(n) BIT(1 + 2 * (n))
enum {
CORE_POWER_LEVEL = 0,
CLUSTER_POWER_LEVEL = 1,
CSS_POWER_LEVEL = 2,
};
enum {
SCPI_CMD_SCP_READY = 0x01,
SCPI_CMD_SET_CSS_POWER_STATE = 0x03,
SCPI_CMD_GET_CSS_POWER_STATE = 0x04,
SCPI_CMD_SET_SYS_POWER_STATE = 0x05,
};
enum {
SCPI_E_OK = 0,
SCPI_E_PARAM = 1,
SCPI_E_ALIGN = 2,
SCPI_E_SIZE = 3,
SCPI_E_HANDLER = 4,
SCPI_E_ACCESS = 5,
SCPI_E_RANGE = 6,
SCPI_E_TIMEOUT = 7,
SCPI_E_NOMEM = 8,
SCPI_E_PWRSTATE = 9,
SCPI_E_SUPPORT = 10,
SCPI_E_DEVICE = 11,
SCPI_E_BUSY = 12,
SCPI_E_OS = 13,
SCPI_E_DATA = 14,
SCPI_E_STATE = 15,
};
enum {
SCPI_POWER_ON = 0x00,
SCPI_POWER_RETENTION = 0x01,
SCPI_POWER_OFF = 0x03,
};
enum {
SCPI_SYSTEM_SHUTDOWN = 0x00,
SCPI_SYSTEM_REBOOT = 0x01,
SCPI_SYSTEM_RESET = 0x02,
};
struct scpi_header {
u8 command;
u8 sender;
u16 size;
u32 status;
};
struct scpi_message {
struct scpi_header header;
u8 payload[SCPI_PAYLOAD_SIZE];
};
struct scpi_shmem {
struct scpi_message rx;
struct scpi_message tx;
};
static bool __secure_data gic_dist_init;
static u32 __secure_data lock;
static inline u32 __secure read_mpidr(void)
{
u32 val;
asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (val));
return val;
}
static void __secure cp15_write_cntp_tval(u32 tval)
{
asm volatile ("mcr p15, 0, %0, c14, c2, 0" : : "r" (tval));
}
static void __secure cp15_write_cntp_ctl(u32 val)
{
asm volatile ("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
}
static u32 __secure cp15_read_cntp_ctl(void)
{
u32 val;
asm volatile ("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
return val;
}
#define ONE_US (CONFIG_COUNTER_FREQUENCY / 1000000)
static void __secure mdfs_udelay(u32 us)
{
u32 reg = ONE_US * us;
cp15_write_cntp_tval(reg);
isb();
cp15_write_cntp_ctl(3);
do {
isb();
reg = cp15_read_cntp_ctl();
} while (!(reg & BIT(2)));
cp15_write_cntp_ctl(0);
isb();
}
static void __secure scpi_begin_command(void)
{
u32 mpidr = read_mpidr();
do {
while (readl(&lock));
writel(mpidr, &lock);
dsb();
} while (readl(&lock) != mpidr);
while (readl(REMOTE_IRQ_STAT_REG) & RX_IRQ(SCPI_TX_CHANNEL));
}
static void __secure scpi_send_command(void)
{
writel(SCPI_VIRTUAL_CHANNEL, MSG_DATA_REG(SCPI_TX_CHANNEL));
}
static void __secure scpi_wait_response(void)
{
while (!readl(MSG_STAT_REG(SCPI_RX_CHANNEL)));
}
static void __secure scpi_end_command(void)
{
while (readl(MSG_STAT_REG(SCPI_RX_CHANNEL)))
readl(MSG_DATA_REG(SCPI_RX_CHANNEL));
writel(RX_IRQ(SCPI_RX_CHANNEL), LOCAL_IRQ_STAT_REG);
writel(0, &lock);
}
static void __secure scpi_set_css_power_state(u32 target_cpu, u32 core_state,
u32 cluster_state, u32 css_state)
{
struct scpi_shmem *shmem = SCPI_SHMEM;
scpi_begin_command();
shmem->tx.header.command = SCPI_CMD_SET_CSS_POWER_STATE;
shmem->tx.header.size = 4;
shmem->tx.payload[0] = target_cpu >> 4 | target_cpu;
shmem->tx.payload[1] = cluster_state << 4 | core_state;
shmem->tx.payload[2] = css_state;
shmem->tx.payload[3] = 0;
scpi_send_command();
scpi_end_command();
}
static s32 __secure scpi_get_css_power_state(u32 target_cpu, u8 *core_states,
u8 *cluster_state)
{
struct scpi_shmem *shmem = SCPI_SHMEM;
u32 cluster = MPIDR_AFFLVL1(target_cpu);
u32 offset;
s32 ret;
scpi_begin_command();
shmem->tx.header.command = SCPI_CMD_GET_CSS_POWER_STATE;
shmem->tx.header.size = 0;
scpi_send_command();
scpi_wait_response();
for (offset = 0; offset < shmem->rx.header.size; offset += 2) {
if ((shmem->rx.payload[offset] & 0xf) == cluster) {
*cluster_state = shmem->rx.payload[offset+0] >> 4;
*core_states = shmem->rx.payload[offset+1];
break;
}
}
ret = shmem->rx.header.status;
scpi_end_command();
return ret;
}
static s32 __secure scpi_set_sys_power_state(u32 sys_state)
{
struct scpi_shmem *shmem = SCPI_SHMEM;
s32 ret;
scpi_begin_command();
shmem->tx.header.command = SCPI_CMD_SET_SYS_POWER_STATE;
shmem->tx.header.size = 1;
shmem->tx.payload[0] = sys_state;
scpi_send_command();
scpi_wait_response();
ret = shmem->rx.header.status;
scpi_end_command();
return ret;
}
void psci_enable_smp(void);
static s32 __secure psci_suspend_common(u32 pc, u32 context_id, u32 core_state,
u32 cluster_state, u32 css_state)
{
u32 target_cpu = read_mpidr();
if (core_state == SCPI_POWER_OFF)
psci_save(MPIDR_AFFLVL0(target_cpu), pc, context_id);
if (css_state == SCPI_POWER_OFF)
gic_dist_init = true;
scpi_set_css_power_state(target_cpu, core_state,
cluster_state, css_state);
psci_cpu_off_common();
wfi();
psci_enable_smp();
return ARM_PSCI_RET_SUCCESS;
}
u32 __secure psci_version(void)
{
return ARM_PSCI_VER_1_1;
}
s32 __secure psci_cpu_suspend(u32 __always_unused function_id,
u32 power_state, u32 pc, u32 context_id)
{
return psci_suspend_common(pc, context_id,
power_state >> 0 & 0xf,
power_state >> 4 & 0xf,
power_state >> 8 & 0xf);
}
s32 __secure psci_cpu_off(void)
{
u32 pc = 0, context_id = 0;
return psci_suspend_common(pc, context_id, SCPI_POWER_OFF,
SCPI_POWER_OFF, SCPI_POWER_ON);
}
s32 __secure psci_cpu_on(u32 __always_unused function_id,
u32 target_cpu, u32 pc, u32 context_id)
{
psci_save(MPIDR_AFFLVL0(target_cpu), pc, context_id);
scpi_set_css_power_state(target_cpu, SCPI_POWER_ON,
SCPI_POWER_ON, SCPI_POWER_ON);
return ARM_PSCI_RET_SUCCESS;
}
s32 __secure psci_affinity_info(u32 function_id,
u32 target_cpu, u32 power_level)
{
if (power_level != CORE_POWER_LEVEL)
return ARM_PSCI_RET_INVAL;
/* This happens to have the same HW_ON/HW_OFF encoding. */
return psci_node_hw_state(function_id, target_cpu, power_level);
}
void __secure psci_system_off(void)
{
scpi_set_sys_power_state(SCPI_SYSTEM_SHUTDOWN);
/* Wait to be turned off. */
for (;;) wfi();
}
void __secure psci_system_reset(void)
{
scpi_set_sys_power_state(SCPI_SYSTEM_REBOOT);
/* Wait to be turned off. */
for (;;) wfi();
}
s32 __secure psci_features(u32 __always_unused function_id,
u32 psci_fid)
{
switch (psci_fid) {
case ARM_PSCI_0_2_FN_PSCI_VERSION:
case ARM_PSCI_0_2_FN_CPU_SUSPEND:
case ARM_PSCI_0_2_FN_CPU_OFF:
case ARM_PSCI_0_2_FN_CPU_ON:
case ARM_PSCI_0_2_FN_AFFINITY_INFO:
case ARM_PSCI_0_2_FN_SYSTEM_OFF:
case ARM_PSCI_0_2_FN_SYSTEM_RESET:
case ARM_PSCI_1_0_FN_PSCI_FEATURES:
case ARM_PSCI_1_0_FN_CPU_DEFAULT_SUSPEND:
case ARM_PSCI_1_0_FN_NODE_HW_STATE:
case ARM_PSCI_1_0_FN_SYSTEM_SUSPEND:
case ARM_PSCI_1_1_FN_SYSTEM_RESET2:
return ARM_PSCI_RET_SUCCESS;
default:
return ARM_PSCI_RET_NI;
}
}
s32 __secure psci_cpu_default_suspend(u32 __always_unused function_id,
u32 pc, u32 context_id)
{
return psci_suspend_common(pc, context_id, SCPI_POWER_OFF,
SCPI_POWER_OFF, SCPI_POWER_RETENTION);
}
s32 __secure psci_node_hw_state(u32 __always_unused function_id,
u32 target_cpu, u32 power_level)
{
u32 core = MPIDR_AFFLVL0(target_cpu);
u8 core_states, cluster_state;
if (power_level >= CSS_POWER_LEVEL)
return HW_ON;
if (scpi_get_css_power_state(target_cpu, &core_states, &cluster_state))
return ARM_PSCI_RET_NI;
if (power_level == CLUSTER_POWER_LEVEL) {
if (cluster_state == SCPI_POWER_ON)
return HW_ON;
if (cluster_state < SCPI_POWER_OFF)
return HW_STANDBY;
return HW_OFF;
}
return (core_states & BIT(core)) ? HW_ON : HW_OFF;
}
s32 __secure psci_system_suspend(u32 __always_unused function_id,
u32 pc, u32 context_id)
{
return psci_suspend_common(pc, context_id, SCPI_POWER_OFF,
SCPI_POWER_OFF, SCPI_POWER_OFF);
}
s32 __secure psci_system_reset2(u32 __always_unused function_id,
u32 reset_type, u32 cookie)
{
s32 ret;
if (reset_type)
return ARM_PSCI_RET_INVAL;
ret = scpi_set_sys_power_state(SCPI_SYSTEM_RESET);
if (ret)
return ARM_PSCI_RET_INVAL;
/* Wait to be turned off. */
for (;;) wfi();
}
#define MCTL_COM_BASE ((void *)(0x1c62000))
#define MCTL_CTL_BASE ((void *)(0x1c63000))
#define _CCM_PLL_DDR_REG (CCM_PLL_BASE + 0x20)
#define MC_WORK_MODE (MCTL_COM_BASE + 0x00)
#define PIR (MCTL_CTL_BASE + 0x00)
#define PWRCTL (MCTL_CTL_BASE + 0x04)
#define PGSR0 (MCTL_CTL_BASE + 0x10)
#define STATR (MCTL_CTL_BASE + 0x18)
#define DTCR (MCTL_CTL_BASE + 0xc0)
#define ODTMAP (MCTL_CTL_BASE + 0x120)
#define DXnGCR0(x) (MCTL_CTL_BASE + 0x344 + 0x80*(x))
s32 __secure sunxi_dram_dvfs_req(u32 __always_unused function_id,
u32 freq, u32 flags)
{
u32 rank_num, reg_val;
unsigned int i = 0;
rank_num = readl(MC_WORK_MODE) & 0x1;
/* 1. enter self-refresh and disable all master access */
reg_val = readl(PWRCTL);
reg_val |= (0x1<<0);
reg_val |= (0x1<<8);
writel(reg_val, PWRCTL);
mdfs_udelay(1);
/* make sure enter self-refresh */
while ((readl(STATR) & 0x7) != 0x3)
;
/* 2.Update PLL setting and wait 1ms */
reg_val = readl(SUNXI_CCM_BASE + 0x20);
reg_val |= (1U << 20);
writel(reg_val, SUNXI_CCM_BASE + 0x20);
mdfs_udelay(1000);
/* 3.set PIR register issue phy reset and DDL calibration */
if (rank_num) {
reg_val = readl(DTCR);
reg_val &= ~(0x3<<24);
reg_val |= (0x3<<24);
writel(reg_val, DTCR);
} else {
reg_val = readl(DTCR);
reg_val &= ~(0x3<<24);
reg_val |= (0x1<<24);
writel(reg_val, DTCR);
}
/* trigger phy reset and DDL calibration */
writel(0x40000061, PIR);
/* add 1us delay here */
mdfs_udelay(1);
/* wait for DLL Lock */
while ((readl(PGSR0) & 0x1) != 0x1)
;
/*4.setting ODT configure */
if (!(flags & BIT(0))) {
/* turn off DRAMC ODT */
for (i = 0; i < 4; i++) {
reg_val = readl(DXnGCR0(i));
reg_val &= ~(0x3U<<4);
reg_val |= (0x2<<4);
writel(reg_val, DXnGCR0(i));
}
} else {
/* turn on DRAMC dynamic ODT */
for (i = 0; i < 4; i++) {
reg_val = readl(DXnGCR0(i));
reg_val &= ~(0x3U<<4);
writel(reg_val, DXnGCR0(i));
}
}
/* 5.exit self-refresh and enable all master access */
reg_val = readl(PWRCTL);
reg_val &= ~(0x1<<0);
reg_val &= ~(0x1<<8);
writel(reg_val, PWRCTL);
mdfs_udelay(1);
/* make sure exit self-refresh */
while ((readl(STATR) & 0x7) != 0x1)
;
return 0;
}
/*
* R40 is different from other single cluster SoCs. The secondary core
* entry address register is in the SRAM controller address range.
*/
#define SUN8I_R40_SRAMC_SOFT_ENTRY_REG0 (0xbc)
#ifdef CONFIG_MACH_SUN8I_R40
/* secondary core entry address is programmed differently on R40 */
static void __secure sunxi_set_entry_address(void *entry)
{
writel((u32)entry,
SUNXI_SRAMC_BASE + SUN8I_R40_SRAMC_SOFT_ENTRY_REG0);
}
#else
static void __secure sunxi_set_entry_address(void *entry)
{
struct sunxi_cpucfg_reg *cpucfg =
(struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
writel((u32)entry, &cpucfg->priv0);
#ifdef CONFIG_MACH_SUN8I_H3
/* Redirect CPU 0 to the secure monitor via the resume shim. */
writel(0x16aaefe8, &cpucfg->super_standy_flag);
writel(0xaa16efe8, &cpucfg->super_standy_flag);
writel(CONFIG_SUNXI_RESUME_BASE, &cpucfg->priv1);
#endif
}
#endif
void __secure psci_arch_init(void)
{
static bool __secure_data one_time_init = true;
if (one_time_init) {
/* Set secondary core power-on PC. */
sunxi_set_entry_address(psci_cpu_entry);
/* Wait for the SCP firmware to boot. */
scpi_begin_command();
scpi_wait_response();
scpi_end_command();
one_time_init = false;
}
/*
* Copied from arch/arm/cpu/armv7/virt-v7.c
* See also gic_resume() in arch/arm/mach-imx/mx7/psci-mx7.c
*/
if (gic_dist_init) {
u32 i, itlinesnr;
/* enable the GIC distributor */
writel(readl(GICD_BASE + GICD_CTLR) | 0x03, GICD_BASE + GICD_CTLR);
/* TYPER[4:0] contains an encoded number of available interrupts */
itlinesnr = readl(GICD_BASE + GICD_TYPER) & 0x1f;
/* set all bits in the GIC group registers to one to allow access
* from non-secure state. The first 32 interrupts are private per
* CPU and will be set later when enabling the GIC for each core
*/
for (i = 1; i <= itlinesnr; i++)
writel((unsigned)-1, GICD_BASE + GICD_IGROUPRn + 4 * i);
gic_dist_init = false;
}
/* Be cool with non-secure. */
writel(0xff, GICC_BASE + GICC_PMR);
}