mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-11-03 21:48:15 +00:00 
			
		
		
		
	Remove undocumented nor->addr_width == 3 test. This was added in commit
5d40b3d384dc ("mtd: spi-nor: Add parallel and stacked memories support")
without any explanation in the commit message. Remove it.
This also has a bad side-effect which breaks READ operation of every SPI NOR
which does not use addr_width == 3, e.g. s25fs512s does not work at all. This
is because if addr_width != 3, rem_bank_len is always 0, and if rem_bank_len
is 0, then read_len is 0 and if read_len is 0, then the spi_nor_read() returns
-EIO.
Basic reproducer is as follows:
"
=> sf probe ; sf read 0x50000000 0 0x10000
SF: Detected s25fs512s with page size 256 Bytes, erase size 256 KiB, total 64 MiB
device 0 offset 0x0, size 0x10000
SF: 65536 bytes @ 0x0 Read: ERROR -5
"
Fixes: 5d40b3d384dc ("mtd: spi-nor: Add parallel and stacked memories support")
Signed-off-by: Marek Vasut <marek.vasut+renesas@mailbox.org>
		
	
			
		
			
				
	
	
		
			4658 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4658 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 | 
						|
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 2005, Intec Automation Inc.
 | 
						|
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
 | 
						|
 *
 | 
						|
 * Synced from Linux v4.19
 | 
						|
 */
 | 
						|
 | 
						|
#include <display_options.h>
 | 
						|
#include <log.h>
 | 
						|
#include <watchdog.h>
 | 
						|
#include <dm.h>
 | 
						|
#include <dm/device_compat.h>
 | 
						|
#include <dm/devres.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/log2.h>
 | 
						|
#include <linux/math64.h>
 | 
						|
#include <linux/printk.h>
 | 
						|
#include <linux/sizes.h>
 | 
						|
#include <linux/bitfield.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
 | 
						|
#include <linux/mtd/mtd.h>
 | 
						|
#include <linux/mtd/spi-nor.h>
 | 
						|
#include <mtd/cfi_flash.h>
 | 
						|
#include <spi-mem.h>
 | 
						|
#include <spi.h>
 | 
						|
 | 
						|
#include "sf_internal.h"
 | 
						|
 | 
						|
/* Define max times to check status register before we give up. */
 | 
						|
 | 
						|
/*
 | 
						|
 * For everything but full-chip erase; probably could be much smaller, but kept
 | 
						|
 * around for safety for now
 | 
						|
 */
 | 
						|
 | 
						|
#define HZ					CONFIG_SYS_HZ
 | 
						|
 | 
						|
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
 | 
						|
 | 
						|
/*
 | 
						|
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 | 
						|
 * for larger flash
 | 
						|
 */
 | 
						|
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES      (40UL * HZ)
 | 
						|
 | 
						|
#define ROUND_UP_TO(x, y)	(((x) + (y) - 1) / (y) * (y))
 | 
						|
 | 
						|
struct sfdp_parameter_header {
 | 
						|
	u8		id_lsb;
 | 
						|
	u8		minor;
 | 
						|
	u8		major;
 | 
						|
	u8		length; /* in double words */
 | 
						|
	u8		parameter_table_pointer[3]; /* byte address */
 | 
						|
	u8		id_msb;
 | 
						|
};
 | 
						|
 | 
						|
#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
 | 
						|
#define SFDP_PARAM_HEADER_PTP(p) \
 | 
						|
	(((p)->parameter_table_pointer[2] << 16) | \
 | 
						|
	 ((p)->parameter_table_pointer[1] <<  8) | \
 | 
						|
	 ((p)->parameter_table_pointer[0] <<  0))
 | 
						|
 | 
						|
#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
 | 
						|
#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
 | 
						|
#define SFDP_SST_ID		0x01bf	/* Manufacturer specific Table */
 | 
						|
#define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 Table */
 | 
						|
#define SFDP_SCCR_MAP_ID	0xff87	/*
 | 
						|
					 * Status, Control and Configuration
 | 
						|
					 * Register Map.
 | 
						|
					 */
 | 
						|
 | 
						|
#define SFDP_SIGNATURE		0x50444653U
 | 
						|
#define SFDP_JESD216_MAJOR	1
 | 
						|
#define SFDP_JESD216_MINOR	0
 | 
						|
#define SFDP_JESD216A_MINOR	5
 | 
						|
#define SFDP_JESD216B_MINOR	6
 | 
						|
 | 
						|
struct sfdp_header {
 | 
						|
	u32		signature; /* Ox50444653U <=> "SFDP" */
 | 
						|
	u8		minor;
 | 
						|
	u8		major;
 | 
						|
	u8		nph; /* 0-base number of parameter headers */
 | 
						|
	u8		unused;
 | 
						|
 | 
						|
	/* Basic Flash Parameter Table. */
 | 
						|
	struct sfdp_parameter_header	bfpt_header;
 | 
						|
};
 | 
						|
 | 
						|
/* Basic Flash Parameter Table */
 | 
						|
 | 
						|
/*
 | 
						|
 * JESD216 rev D defines a Basic Flash Parameter Table of 20 DWORDs.
 | 
						|
 * They are indexed from 1 but C arrays are indexed from 0.
 | 
						|
 */
 | 
						|
#define BFPT_DWORD(i)		((i) - 1)
 | 
						|
#define BFPT_DWORD_MAX		20
 | 
						|
 | 
						|
/* The first version of JESB216 defined only 9 DWORDs. */
 | 
						|
#define BFPT_DWORD_MAX_JESD216			9
 | 
						|
#define BFPT_DWORD_MAX_JESD216B			16
 | 
						|
 | 
						|
/* 1st DWORD. */
 | 
						|
#define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
 | 
						|
#define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
 | 
						|
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
 | 
						|
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
 | 
						|
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
 | 
						|
#define BFPT_DWORD1_DTR				BIT(19)
 | 
						|
#define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
 | 
						|
#define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
 | 
						|
#define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)
 | 
						|
 | 
						|
/* 5th DWORD. */
 | 
						|
#define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
 | 
						|
#define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)
 | 
						|
 | 
						|
/* 11th DWORD. */
 | 
						|
#define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
 | 
						|
#define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)
 | 
						|
 | 
						|
/* 15th DWORD. */
 | 
						|
 | 
						|
/*
 | 
						|
 * (from JESD216 rev B)
 | 
						|
 * Quad Enable Requirements (QER):
 | 
						|
 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
 | 
						|
 *         reads based on instruction. DQ3/HOLD# functions are hold during
 | 
						|
 *         instruction phase.
 | 
						|
 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
 | 
						|
 *         two data bytes where bit 1 of the second byte is one.
 | 
						|
 *         [...]
 | 
						|
 *         Writing only one byte to the status register has the side-effect of
 | 
						|
 *         clearing status register 2, including the QE bit. The 100b code is
 | 
						|
 *         used if writing one byte to the status register does not modify
 | 
						|
 *         status register 2.
 | 
						|
 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
 | 
						|
 *         one data byte where bit 6 is one.
 | 
						|
 *         [...]
 | 
						|
 * - 011b: QE is bit 7 of status register 2. It is set via Write status
 | 
						|
 *         register 2 instruction 3Eh with one data byte where bit 7 is one.
 | 
						|
 *         [...]
 | 
						|
 *         The status register 2 is read using instruction 3Fh.
 | 
						|
 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
 | 
						|
 *         two data bytes where bit 1 of the second byte is one.
 | 
						|
 *         [...]
 | 
						|
 *         In contrast to the 001b code, writing one byte to the status
 | 
						|
 *         register does not modify status register 2.
 | 
						|
 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
 | 
						|
 *         Read Status instruction 05h. Status register2 is read using
 | 
						|
 *         instruction 35h. QE is set via Writ Status instruction 01h with
 | 
						|
 *         two data bytes where bit 1 of the second byte is one.
 | 
						|
 *         [...]
 | 
						|
 */
 | 
						|
#define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
 | 
						|
#define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
 | 
						|
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
 | 
						|
#define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
 | 
						|
#define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
 | 
						|
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
 | 
						|
#define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */
 | 
						|
 | 
						|
#define BFPT_DWORD16_SOFT_RST			BIT(12)
 | 
						|
#define BFPT_DWORD16_EX4B_PWRCYC		BIT(21)
 | 
						|
 | 
						|
#define BFPT_DWORD18_CMD_EXT_MASK		GENMASK(30, 29)
 | 
						|
#define BFPT_DWORD18_CMD_EXT_REP		(0x0UL << 29) /* Repeat */
 | 
						|
#define BFPT_DWORD18_CMD_EXT_INV		(0x1UL << 29) /* Invert */
 | 
						|
#define BFPT_DWORD18_CMD_EXT_RES		(0x2UL << 29) /* Reserved */
 | 
						|
#define BFPT_DWORD18_CMD_EXT_16B		(0x3UL << 29) /* 16-bit opcode */
 | 
						|
 | 
						|
/* xSPI Profile 1.0 table (from JESD216D.01). */
 | 
						|
#define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
 | 
						|
#define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
 | 
						|
#define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
 | 
						|
#define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
 | 
						|
#define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
 | 
						|
#define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
 | 
						|
#define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
 | 
						|
#define PROFILE1_DUMMY_DEFAULT			20
 | 
						|
 | 
						|
/* Status, Control and Configuration Register Map(SCCR) */
 | 
						|
#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE      BIT(31)
 | 
						|
 | 
						|
struct sfdp_bfpt {
 | 
						|
	u32	dwords[BFPT_DWORD_MAX];
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * struct spi_nor_fixups - SPI NOR fixup hooks
 | 
						|
 * @post_bfpt: called after the BFPT table has been parsed
 | 
						|
 * @post_sfdp: called after SFDP has been parsed. Typically used to tweak
 | 
						|
 *             various parameters that could not be extracted by other means
 | 
						|
 *             (i.e. when information provided by the SFDP tables are incomplete
 | 
						|
 *             or wrong).
 | 
						|
 * @late_init: used to initialize flash parameters that are not declared in the
 | 
						|
 *             JESD216 SFDP standard, or where SFDP tables not defined at all.
 | 
						|
 *
 | 
						|
 * Those hooks can be used to tweak the SPI NOR configuration when the SFDP
 | 
						|
 * table is broken or not available.
 | 
						|
 */
 | 
						|
struct spi_nor_fixups {
 | 
						|
	int (*post_bfpt)(struct spi_nor *nor,
 | 
						|
			 const struct sfdp_parameter_header *bfpt_header,
 | 
						|
			 const struct sfdp_bfpt *bfpt,
 | 
						|
			 struct spi_nor_flash_parameter *params);
 | 
						|
	void (*post_sfdp)(struct spi_nor *nor,
 | 
						|
			  struct spi_nor_flash_parameter *params);
 | 
						|
	void (*late_init)(struct spi_nor *nor,
 | 
						|
			  struct spi_nor_flash_parameter *params);
 | 
						|
};
 | 
						|
 | 
						|
#define SPI_NOR_SRST_SLEEP_LEN			200
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
 | 
						|
 *			   extension type.
 | 
						|
 * @nor:		pointer to a 'struct spi_nor'
 | 
						|
 * @op:			pointer to the 'struct spi_mem_op' whose properties
 | 
						|
 *			need to be initialized.
 | 
						|
 *
 | 
						|
 * Right now, only "repeat" and "invert" are supported.
 | 
						|
 *
 | 
						|
 * Return: The opcode extension.
 | 
						|
 */
 | 
						|
static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
 | 
						|
			      const struct spi_mem_op *op)
 | 
						|
{
 | 
						|
	switch (nor->cmd_ext_type) {
 | 
						|
	case SPI_NOR_EXT_INVERT:
 | 
						|
		return ~op->cmd.opcode;
 | 
						|
 | 
						|
	case SPI_NOR_EXT_REPEAT:
 | 
						|
		return op->cmd.opcode;
 | 
						|
 | 
						|
	default:
 | 
						|
		dev_dbg(nor->dev, "Unknown command extension type\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_setup_op() - Set up common properties of a spi-mem op.
 | 
						|
 * @nor:		pointer to a 'struct spi_nor'
 | 
						|
 * @op:			pointer to the 'struct spi_mem_op' whose properties
 | 
						|
 *			need to be initialized.
 | 
						|
 * @proto:		the protocol from which the properties need to be set.
 | 
						|
 */
 | 
						|
void spi_nor_setup_op(const struct spi_nor *nor,
 | 
						|
		      struct spi_mem_op *op,
 | 
						|
		      const enum spi_nor_protocol proto)
 | 
						|
{
 | 
						|
	u8 ext;
 | 
						|
 | 
						|
	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
 | 
						|
 | 
						|
	if (op->addr.nbytes)
 | 
						|
		op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
 | 
						|
 | 
						|
	if (op->dummy.nbytes)
 | 
						|
		op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
 | 
						|
 | 
						|
	if (op->data.nbytes)
 | 
						|
		op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
 | 
						|
 | 
						|
	if (spi_nor_protocol_is_dtr(proto)) {
 | 
						|
		/*
 | 
						|
		 * spi-mem supports mixed DTR modes, but right now we can only
 | 
						|
		 * have all phases either DTR or STR. IOW, spi-mem can have
 | 
						|
		 * something like 4S-4D-4D, but spi-nor can't. So, set all 4
 | 
						|
		 * phases to either DTR or STR.
 | 
						|
		 */
 | 
						|
		op->cmd.dtr = op->addr.dtr = op->dummy.dtr =
 | 
						|
			op->data.dtr = true;
 | 
						|
 | 
						|
		/* 2 bytes per clock cycle in DTR mode. */
 | 
						|
		op->dummy.nbytes *= 2;
 | 
						|
 | 
						|
		ext = spi_nor_get_cmd_ext(nor, op);
 | 
						|
		op->cmd.opcode = (op->cmd.opcode << 8) | ext;
 | 
						|
		op->cmd.nbytes = 2;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
 | 
						|
		*op, void *buf)
 | 
						|
{
 | 
						|
	if (op->data.dir == SPI_MEM_DATA_IN)
 | 
						|
		op->data.buf.in = buf;
 | 
						|
	else
 | 
						|
		op->data.buf.out = buf;
 | 
						|
	return spi_mem_exec_op(nor->spi, op);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
 | 
						|
{
 | 
						|
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 0),
 | 
						|
					  SPI_MEM_OP_NO_ADDR,
 | 
						|
					  SPI_MEM_OP_NO_DUMMY,
 | 
						|
					  SPI_MEM_OP_DATA_IN(len, NULL, 0));
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->reg_proto);
 | 
						|
 | 
						|
	ret = spi_nor_read_write_reg(nor, &op, val);
 | 
						|
	if (ret < 0)
 | 
						|
		dev_dbg(nor->dev, "error %d reading %x\n", ret, code);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 | 
						|
{
 | 
						|
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0),
 | 
						|
					  SPI_MEM_OP_NO_ADDR,
 | 
						|
					  SPI_MEM_OP_NO_DUMMY,
 | 
						|
					  SPI_MEM_OP_DATA_OUT(len, NULL, 0));
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->reg_proto);
 | 
						|
 | 
						|
	if (len == 0)
 | 
						|
		op.data.dir = SPI_MEM_NO_DATA;
 | 
						|
 | 
						|
	return spi_nor_read_write_reg(nor, &op, buf);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SPANSION
 | 
						|
static int spansion_read_any_reg(struct spi_nor *nor, u32 addr, u8 dummy,
 | 
						|
				 u8 *val)
 | 
						|
{
 | 
						|
	struct spi_mem_op op =
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0),
 | 
						|
			   SPI_MEM_OP_ADDR(nor->addr_mode_nbytes, addr, 0),
 | 
						|
			   SPI_MEM_OP_DUMMY(dummy, 0),
 | 
						|
			   SPI_MEM_OP_DATA_IN(1, NULL, 0));
 | 
						|
	u8 buf[2];
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->reg_proto);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In Octal DTR mode, the number of address bytes is always 4 regardless
 | 
						|
	 * of addressing mode setting.
 | 
						|
	 */
 | 
						|
	if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR)
 | 
						|
		op.addr.nbytes = 4;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't want to read only one byte in DTR mode. So, read 2 and then
 | 
						|
	 * discard the second byte.
 | 
						|
	 */
 | 
						|
	if (spi_nor_protocol_is_dtr(nor->reg_proto))
 | 
						|
		op.data.nbytes = 2;
 | 
						|
 | 
						|
	ret = spi_nor_read_write_reg(nor, &op, buf);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	*val = buf[0];
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spansion_write_any_reg(struct spi_nor *nor, u32 addr, u8 val)
 | 
						|
{
 | 
						|
	struct spi_mem_op op =
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
 | 
						|
			   SPI_MEM_OP_ADDR(nor->addr_mode_nbytes, addr, 1),
 | 
						|
			   SPI_MEM_OP_NO_DUMMY,
 | 
						|
			   SPI_MEM_OP_DATA_OUT(1, NULL, 1));
 | 
						|
 | 
						|
	return spi_nor_read_write_reg(nor, &op, &val);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
 | 
						|
				 u_char *buf)
 | 
						|
{
 | 
						|
	struct spi_mem_op op =
 | 
						|
			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
 | 
						|
				   SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
 | 
						|
				   SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
 | 
						|
				   SPI_MEM_OP_DATA_IN(len, buf, 0));
 | 
						|
	size_t remaining = len;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->read_proto);
 | 
						|
 | 
						|
	/* convert the dummy cycles to the number of bytes */
 | 
						|
	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
 | 
						|
	if (spi_nor_protocol_is_dtr(nor->read_proto))
 | 
						|
		op.dummy.nbytes *= 2;
 | 
						|
 | 
						|
	while (remaining) {
 | 
						|
		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
 | 
						|
 | 
						|
		if (CONFIG_IS_ENABLED(SPI_DIRMAP) && nor->dirmap.rdesc) {
 | 
						|
			/*
 | 
						|
			 * Record current operation information which may be used
 | 
						|
			 * when the address or data length exceeds address mapping.
 | 
						|
			 */
 | 
						|
			memcpy(&nor->dirmap.rdesc->info.op_tmpl, &op,
 | 
						|
			       sizeof(struct spi_mem_op));
 | 
						|
			ret = spi_mem_dirmap_read(nor->dirmap.rdesc,
 | 
						|
						  op.addr.val, op.data.nbytes,
 | 
						|
						  op.data.buf.in);
 | 
						|
			if (ret < 0)
 | 
						|
				return ret;
 | 
						|
			op.data.nbytes = ret;
 | 
						|
		} else {
 | 
						|
			ret = spi_mem_adjust_op_size(nor->spi, &op);
 | 
						|
			if (ret)
 | 
						|
				return ret;
 | 
						|
 | 
						|
			ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
			if (ret)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		op.addr.val += op.data.nbytes;
 | 
						|
		remaining -= op.data.nbytes;
 | 
						|
		op.data.buf.in += op.data.nbytes;
 | 
						|
	}
 | 
						|
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
 | 
						|
				  const u_char *buf)
 | 
						|
{
 | 
						|
	struct spi_mem_op op =
 | 
						|
			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
 | 
						|
				   SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
 | 
						|
				   SPI_MEM_OP_NO_DUMMY,
 | 
						|
				   SPI_MEM_OP_DATA_OUT(len, buf, 0));
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
 | 
						|
		op.addr.nbytes = 0;
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->write_proto);
 | 
						|
 | 
						|
	if (CONFIG_IS_ENABLED(SPI_DIRMAP) && nor->dirmap.wdesc) {
 | 
						|
		memcpy(&nor->dirmap.wdesc->info.op_tmpl, &op,
 | 
						|
		       sizeof(struct spi_mem_op));
 | 
						|
		op.data.nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
 | 
						|
						      op.data.nbytes, op.data.buf.out);
 | 
						|
	} else {
 | 
						|
		ret = spi_mem_adjust_op_size(nor->spi, &op);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
		op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
 | 
						|
 | 
						|
		ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return op.data.nbytes;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the status register value. If the chip is parallel, then the
 | 
						|
 * read will be striped, so we should read 2 bytes to get the sr
 | 
						|
 * register value from both of the parallel chips.
 | 
						|
 * Returns negative if error occurred.
 | 
						|
 */
 | 
						|
static int read_sr(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	struct spi_mem_op op;
 | 
						|
	int ret;
 | 
						|
	u8 val[2];
 | 
						|
	u8 addr_nbytes, dummy;
 | 
						|
 | 
						|
	if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
 | 
						|
		addr_nbytes = nor->rdsr_addr_nbytes;
 | 
						|
		dummy = nor->rdsr_dummy;
 | 
						|
	} else {
 | 
						|
		addr_nbytes = 0;
 | 
						|
		dummy = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
 | 
						|
					   SPI_MEM_OP_ADDR(addr_nbytes, 0, 0),
 | 
						|
					   SPI_MEM_OP_DUMMY(dummy, 0),
 | 
						|
					   SPI_MEM_OP_DATA_IN(1, NULL, 0));
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->reg_proto);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't want to read only one byte in DTR mode. So, read 2 and then
 | 
						|
	 * discard the second byte.
 | 
						|
	 */
 | 
						|
	if (spi_nor_protocol_is_dtr(nor->reg_proto))
 | 
						|
		op.data.nbytes = 2;
 | 
						|
 | 
						|
	if (nor->flags & SNOR_F_HAS_PARALLEL) {
 | 
						|
		op.data.nbytes = 2;
 | 
						|
		ret = spi_nor_read_write_reg(nor, &op, &val[0]);
 | 
						|
		if (ret < 0) {
 | 
						|
			pr_debug("error %d reading SR\n", (int)ret);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
		val[0] |= val[1];
 | 
						|
	} else {
 | 
						|
		ret = spi_nor_read_write_reg(nor, &op, &val[0]);
 | 
						|
		if (ret < 0) {
 | 
						|
			pr_debug("error %d reading SR\n", (int)ret);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return val[0];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the flag status register value. If the chip is parallel, then
 | 
						|
 * the read will be striped, so we should read 2 bytes to get the fsr
 | 
						|
 * register value from both of the parallel chips.
 | 
						|
 * Returns negative if error occurred.
 | 
						|
 */
 | 
						|
static int read_fsr(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	struct spi_mem_op op;
 | 
						|
	int ret;
 | 
						|
	u8 val[2];
 | 
						|
	u8 addr_nbytes, dummy;
 | 
						|
 | 
						|
	if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
 | 
						|
		addr_nbytes = nor->rdsr_addr_nbytes;
 | 
						|
		dummy = nor->rdsr_dummy;
 | 
						|
	} else {
 | 
						|
		addr_nbytes = 0;
 | 
						|
		dummy = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
 | 
						|
					   SPI_MEM_OP_ADDR(addr_nbytes, 0, 0),
 | 
						|
					   SPI_MEM_OP_DUMMY(dummy, 0),
 | 
						|
					   SPI_MEM_OP_DATA_IN(1, NULL, 0));
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->reg_proto);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't want to read only one byte in DTR mode. So, read 2 and then
 | 
						|
	 * discard the second byte.
 | 
						|
	 */
 | 
						|
	if (spi_nor_protocol_is_dtr(nor->reg_proto))
 | 
						|
		op.data.nbytes = 2;
 | 
						|
 | 
						|
	if (nor->flags & SNOR_F_HAS_PARALLEL) {
 | 
						|
		op.data.nbytes = 2;
 | 
						|
		ret = spi_nor_read_write_reg(nor, &op, &val[0]);
 | 
						|
		if (ret < 0) {
 | 
						|
			pr_debug("error %d reading SR\n", (int)ret);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
		val[0] &= val[1];
 | 
						|
	} else {
 | 
						|
		ret = spi_nor_read_write_reg(nor, &op, &val[0]);
 | 
						|
		if (ret < 0) {
 | 
						|
			pr_debug("error %d reading FSR\n", ret);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return val[0];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read configuration register, returning its value in the
 | 
						|
 * location. Return the configuration register value.
 | 
						|
 * Returns negative if error occurred.
 | 
						|
 */
 | 
						|
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | 
						|
static int read_cr(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	u8 val;
 | 
						|
 | 
						|
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_dbg(nor->dev, "error %d reading CR\n", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return val;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * read_sr3() - Read status register 3 unique to newer Winbond flashes
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 */
 | 
						|
static int read_sr3(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	u8 val;
 | 
						|
 | 
						|
	ret = nor->read_reg(nor, SPINOR_OP_RDSR3, &val, 1);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_dbg(nor->dev, "error %d reading SR3\n", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write status register 1 byte
 | 
						|
 * Returns negative if error occurred.
 | 
						|
 */
 | 
						|
static int write_sr(struct spi_nor *nor, u8 val)
 | 
						|
{
 | 
						|
	nor->cmd_buf[0] = val;
 | 
						|
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * write_sr3() - Write status register 3 unique to newer Winbond flashes
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 * @val:	value to be written into SR3
 | 
						|
 */
 | 
						|
static int write_sr3(struct spi_nor *nor, u8 val)
 | 
						|
{
 | 
						|
	nor->cmd_buf[0] = val;
 | 
						|
	return nor->write_reg(nor, SPINOR_OP_WRSR3, nor->cmd_buf, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set write enable latch with Write Enable command.
 | 
						|
 * Returns negative if error occurred.
 | 
						|
 */
 | 
						|
static int write_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Send write disable instruction to the chip.
 | 
						|
 */
 | 
						|
static int write_disable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
 | 
						|
{
 | 
						|
	return mtd->priv;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_SPI_FLASH_BAR
 | 
						|
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
 | 
						|
{
 | 
						|
	size_t i;
 | 
						|
 | 
						|
	for (i = 0; i < size; i++)
 | 
						|
		if (table[i][0] == opcode)
 | 
						|
			return table[i][1];
 | 
						|
 | 
						|
	/* No conversion found, keep input op code. */
 | 
						|
	return opcode;
 | 
						|
}
 | 
						|
 | 
						|
static u8 spi_nor_convert_3to4_read(u8 opcode)
 | 
						|
{
 | 
						|
	static const u8 spi_nor_3to4_read[][2] = {
 | 
						|
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
 | 
						|
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
 | 
						|
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
 | 
						|
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
 | 
						|
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
 | 
						|
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
 | 
						|
		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
 | 
						|
		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
 | 
						|
 | 
						|
		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
 | 
						|
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
 | 
						|
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
 | 
						|
	};
 | 
						|
 | 
						|
	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
 | 
						|
				      ARRAY_SIZE(spi_nor_3to4_read));
 | 
						|
}
 | 
						|
 | 
						|
static u8 spi_nor_convert_3to4_program(u8 opcode)
 | 
						|
{
 | 
						|
	static const u8 spi_nor_3to4_program[][2] = {
 | 
						|
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
 | 
						|
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
 | 
						|
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
 | 
						|
		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
 | 
						|
		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
 | 
						|
	};
 | 
						|
 | 
						|
	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
 | 
						|
				      ARRAY_SIZE(spi_nor_3to4_program));
 | 
						|
}
 | 
						|
 | 
						|
static u8 spi_nor_convert_3to4_erase(u8 opcode)
 | 
						|
{
 | 
						|
	static const u8 spi_nor_3to4_erase[][2] = {
 | 
						|
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
 | 
						|
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
 | 
						|
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
 | 
						|
	};
 | 
						|
 | 
						|
	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
 | 
						|
				      ARRAY_SIZE(spi_nor_3to4_erase));
 | 
						|
}
 | 
						|
 | 
						|
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
 | 
						|
				      const struct flash_info *info)
 | 
						|
{
 | 
						|
	bool shift = 0;
 | 
						|
 | 
						|
	if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
		shift = 1;
 | 
						|
 | 
						|
	/* Do some manufacturer fixups first */
 | 
						|
	switch (JEDEC_MFR(info)) {
 | 
						|
	case SNOR_MFR_SPANSION:
 | 
						|
		/* No small sector erase for 4-byte command set */
 | 
						|
		nor->erase_opcode = SPINOR_OP_SE;
 | 
						|
		nor->mtd.erasesize = info->sector_size << shift;
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
 | 
						|
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
 | 
						|
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
 | 
						|
}
 | 
						|
#endif /* !CONFIG_SPI_FLASH_BAR */
 | 
						|
 | 
						|
/* Enable/disable 4-byte addressing mode. */
 | 
						|
static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
 | 
						|
		     int enable)
 | 
						|
{
 | 
						|
	int status;
 | 
						|
	bool need_wren = false;
 | 
						|
	u8 cmd;
 | 
						|
 | 
						|
	switch (JEDEC_MFR(info)) {
 | 
						|
	case SNOR_MFR_ST:
 | 
						|
	case SNOR_MFR_MICRON:
 | 
						|
		/* Some Micron need WREN command; all will accept it */
 | 
						|
		need_wren = true;
 | 
						|
		fallthrough;
 | 
						|
	case SNOR_MFR_ISSI:
 | 
						|
	case SNOR_MFR_MACRONIX:
 | 
						|
	case SNOR_MFR_WINBOND:
 | 
						|
		if (need_wren)
 | 
						|
			write_enable(nor);
 | 
						|
 | 
						|
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 | 
						|
		status = nor->write_reg(nor, cmd, NULL, 0);
 | 
						|
		if (need_wren)
 | 
						|
			write_disable(nor);
 | 
						|
 | 
						|
		if (!status && !enable &&
 | 
						|
		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
 | 
						|
			/*
 | 
						|
			 * On Winbond W25Q256FV, leaving 4byte mode causes
 | 
						|
			 * the Extended Address Register to be set to 1, so all
 | 
						|
			 * 3-byte-address reads come from the second 16M.
 | 
						|
			 * We must clear the register to enable normal behavior.
 | 
						|
			 */
 | 
						|
			write_enable(nor);
 | 
						|
			nor->cmd_buf[0] = 0;
 | 
						|
			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
 | 
						|
			write_disable(nor);
 | 
						|
		}
 | 
						|
 | 
						|
		return status;
 | 
						|
	case SNOR_MFR_CYPRESS:
 | 
						|
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B_CYPRESS;
 | 
						|
		return nor->write_reg(nor, cmd, NULL, 0);
 | 
						|
	default:
 | 
						|
		/* Spansion style */
 | 
						|
		nor->cmd_buf[0] = enable << 7;
 | 
						|
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SPANSION
 | 
						|
/*
 | 
						|
 * Read status register 1 by using Read Any Register command to support multi
 | 
						|
 * die package parts.
 | 
						|
 */
 | 
						|
static int spansion_sr_ready(struct spi_nor *nor, u32 addr_base, u8 dummy)
 | 
						|
{
 | 
						|
	u32 reg_addr = addr_base + SPINOR_REG_CYPRESS_STR1V;
 | 
						|
	u8 sr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = spansion_read_any_reg(nor, reg_addr, dummy, &sr);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (sr & (SR_E_ERR | SR_P_ERR)) {
 | 
						|
		if (sr & SR_E_ERR)
 | 
						|
			dev_dbg(nor->dev, "Erase Error occurred\n");
 | 
						|
		else
 | 
						|
			dev_dbg(nor->dev, "Programming Error occurred\n");
 | 
						|
 | 
						|
		nor->write_reg(nor, SPINOR_OP_CYPRESS_CLPEF, NULL, 0);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	return !(sr & SR_WIP);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int spi_nor_sr_ready(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int sr = read_sr(nor);
 | 
						|
 | 
						|
	if (sr < 0)
 | 
						|
		return sr;
 | 
						|
 | 
						|
	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
 | 
						|
		if (sr & SR_E_ERR)
 | 
						|
			dev_dbg(nor->dev, "Erase Error occurred\n");
 | 
						|
		else
 | 
						|
			dev_dbg(nor->dev, "Programming Error occurred\n");
 | 
						|
 | 
						|
		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	return !(sr & SR_WIP);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_fsr_ready(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int fsr = read_fsr(nor);
 | 
						|
 | 
						|
	if (fsr < 0)
 | 
						|
		return fsr;
 | 
						|
 | 
						|
	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
 | 
						|
		if (fsr & FSR_E_ERR)
 | 
						|
			dev_err(nor->dev, "Erase operation failed.\n");
 | 
						|
		else
 | 
						|
			dev_err(nor->dev, "Program operation failed.\n");
 | 
						|
 | 
						|
		if (fsr & FSR_PT_ERR)
 | 
						|
			dev_err(nor->dev,
 | 
						|
				"Attempted to modify a protected sector.\n");
 | 
						|
 | 
						|
		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	return fsr & FSR_READY;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_default_ready(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int sr, fsr;
 | 
						|
 | 
						|
	sr = spi_nor_sr_ready(nor);
 | 
						|
	if (sr < 0)
 | 
						|
		return sr;
 | 
						|
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
 | 
						|
	if (fsr < 0)
 | 
						|
		return fsr;
 | 
						|
	return sr && fsr;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_ready(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	if (nor->ready)
 | 
						|
		return nor->ready(nor);
 | 
						|
 | 
						|
	return spi_nor_default_ready(nor);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Service routine to read status register until ready, or timeout occurs.
 | 
						|
 * Returns non-zero if error.
 | 
						|
 */
 | 
						|
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
 | 
						|
						unsigned long timeout)
 | 
						|
{
 | 
						|
	unsigned long timebase;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	timebase = get_timer(0);
 | 
						|
 | 
						|
	while (get_timer(timebase) < timeout) {
 | 
						|
		ret = spi_nor_ready(nor);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
		if (ret)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	dev_err(nor->dev, "flash operation timed out\n");
 | 
						|
 | 
						|
	return -ETIMEDOUT;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_wait_till_ready(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	return spi_nor_wait_till_ready_with_timeout(nor,
 | 
						|
						    DEFAULT_READY_WAIT_JIFFIES);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_erase_chip_wait_till_ready(struct spi_nor *nor, unsigned long size)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Scale the timeout linearly with the size of the flash, with
 | 
						|
	 * a minimum calibrated to an old 2MB flash. We could try to
 | 
						|
	 * pull these from CFI/SFDP, but these values should be good
 | 
						|
	 * enough for now.
 | 
						|
	 */
 | 
						|
	unsigned long timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
 | 
						|
				    CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
 | 
						|
				    (unsigned long)(size / SZ_2M));
 | 
						|
	return spi_nor_wait_till_ready_with_timeout(nor, timeout);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_BAR
 | 
						|
/*
 | 
						|
 * This "clean_bar" is necessary in a situation when one was accessing
 | 
						|
 * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
 | 
						|
 *
 | 
						|
 * After it the BA24 bit shall be cleared to allow access to correct
 | 
						|
 * memory region after SW reset (by calling "reset" command).
 | 
						|
 *
 | 
						|
 * Otherwise, the BA24 bit may be left set and then after reset, the
 | 
						|
 * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
 | 
						|
 */
 | 
						|
static int clean_bar(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	u8 cmd, bank_sel = 0;
 | 
						|
 | 
						|
	if (nor->bank_curr == 0)
 | 
						|
		return 0;
 | 
						|
	cmd = nor->bank_write_cmd;
 | 
						|
	nor->bank_curr = 0;
 | 
						|
	write_enable(nor);
 | 
						|
 | 
						|
	return nor->write_reg(nor, cmd, &bank_sel, 1);
 | 
						|
}
 | 
						|
 | 
						|
static int write_bar(struct spi_nor *nor, u32 offset)
 | 
						|
{
 | 
						|
	u8 cmd, bank_sel, upage_curr;
 | 
						|
	int ret;
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
 | 
						|
	/* Wait until previous write command is finished */
 | 
						|
	if (spi_nor_wait_till_ready(nor))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (nor->flags & (SNOR_F_HAS_PARALLEL | SNOR_F_HAS_STACKED) &&
 | 
						|
	    mtd->size <= SZ_32M)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (mtd->size <= SZ_16M)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	offset = offset % (u32)mtd->size;
 | 
						|
	bank_sel = offset >> 24;
 | 
						|
 | 
						|
	upage_curr = nor->spi->flags & SPI_XFER_U_PAGE;
 | 
						|
 | 
						|
	if (!(nor->flags & SNOR_F_HAS_STACKED) && bank_sel == nor->bank_curr)
 | 
						|
		return 0;
 | 
						|
	else if (upage_curr == nor->upage_prev && bank_sel == nor->bank_curr)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	nor->upage_prev = upage_curr;
 | 
						|
 | 
						|
	cmd = nor->bank_write_cmd;
 | 
						|
	write_enable(nor);
 | 
						|
	ret = nor->write_reg(nor, cmd, &bank_sel, 1);
 | 
						|
	if (ret < 0) {
 | 
						|
		debug("SF: fail to write bank register\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	nor->bank_curr = bank_sel;
 | 
						|
 | 
						|
	return write_disable(nor);
 | 
						|
}
 | 
						|
 | 
						|
static int read_bar(struct spi_nor *nor, const struct flash_info *info)
 | 
						|
{
 | 
						|
	u8 curr_bank = 0;
 | 
						|
	int ret;
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
 | 
						|
	if (mtd->size <= SZ_16M)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	switch (JEDEC_MFR(info)) {
 | 
						|
	case SNOR_MFR_SPANSION:
 | 
						|
		nor->bank_read_cmd = SPINOR_OP_BRRD;
 | 
						|
		nor->bank_write_cmd = SPINOR_OP_BRWR;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		nor->bank_read_cmd = SPINOR_OP_RDEAR;
 | 
						|
		nor->bank_write_cmd = SPINOR_OP_WREAR;
 | 
						|
	}
 | 
						|
 | 
						|
	if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
		nor->spi->flags |= SPI_XFER_LOWER;
 | 
						|
 | 
						|
	ret = nor->read_reg(nor, nor->bank_read_cmd,
 | 
						|
			    &curr_bank, 1);
 | 
						|
	if (ret) {
 | 
						|
		debug("SF: fail to read bank addr register\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	nor->bank_curr = curr_bank;
 | 
						|
 | 
						|
	// Make sure both chips use the same BAR
 | 
						|
	if (nor->flags & SNOR_F_HAS_PARALLEL) {
 | 
						|
		write_enable(nor);
 | 
						|
		ret = nor->write_reg(nor, nor->bank_write_cmd, &curr_bank, 1);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		ret = write_disable(nor);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_erase_chip() - Erase the entire flash memory.
 | 
						|
 * @nor:	pointer to 'struct spi_nor'.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_erase_chip(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	struct spi_mem_op op =
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 0),
 | 
						|
			   SPI_MEM_OP_NO_ADDR,
 | 
						|
			   SPI_MEM_OP_NO_DUMMY,
 | 
						|
			   SPI_MEM_OP_NO_DATA);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->write_proto);
 | 
						|
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return nor->mtd.size;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initiate the erasure of a single sector. Returns the number of bytes erased
 | 
						|
 * on success, a negative error code on error.
 | 
						|
 */
 | 
						|
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
 | 
						|
{
 | 
						|
	struct spi_mem_op op =
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
 | 
						|
			   SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
 | 
						|
			   SPI_MEM_OP_NO_DUMMY,
 | 
						|
			   SPI_MEM_OP_NO_DATA);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->write_proto);
 | 
						|
 | 
						|
	if (nor->erase)
 | 
						|
		return nor->erase(nor, addr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Default implementation, if driver doesn't have a specialized HW
 | 
						|
	 * control
 | 
						|
	 */
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return nor->mtd.erasesize;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Erase an address range on the nor chip.  The address range may extend
 | 
						|
 * one or more erase sectors.  Return an error is there is a problem erasing.
 | 
						|
 */
 | 
						|
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
 | 
						|
{
 | 
						|
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
 | 
						|
	u32 addr, len, rem, offset, max_size;
 | 
						|
	bool addr_known = false;
 | 
						|
	int ret, err;
 | 
						|
 | 
						|
	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
 | 
						|
		(long long)instr->len);
 | 
						|
 | 
						|
	div_u64_rem(instr->len, mtd->erasesize, &rem);
 | 
						|
	if (rem) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	addr = instr->addr;
 | 
						|
	len = instr->len;
 | 
						|
	max_size = instr->len;
 | 
						|
 | 
						|
	instr->state = MTD_ERASING;
 | 
						|
	addr_known = true;
 | 
						|
 | 
						|
	while (len) {
 | 
						|
		schedule();
 | 
						|
		if (!IS_ENABLED(CONFIG_XPL_BUILD) && ctrlc()) {
 | 
						|
			addr_known = false;
 | 
						|
			ret = -EINTR;
 | 
						|
			goto erase_err;
 | 
						|
		}
 | 
						|
		offset = addr;
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
			offset /= 2;
 | 
						|
 | 
						|
		if (nor->flags & SNOR_F_HAS_STACKED) {
 | 
						|
			if (offset >= (mtd->size / 2)) {
 | 
						|
				offset = offset - (mtd->size / 2);
 | 
						|
				nor->spi->flags |= SPI_XFER_U_PAGE;
 | 
						|
			} else {
 | 
						|
				nor->spi->flags &= ~SPI_XFER_U_PAGE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
#ifdef CONFIG_SPI_FLASH_BAR
 | 
						|
		ret = write_bar(nor, addr);
 | 
						|
		if (ret < 0)
 | 
						|
			goto erase_err;
 | 
						|
#endif
 | 
						|
		ret = write_enable(nor);
 | 
						|
		if (ret < 0)
 | 
						|
			goto erase_err;
 | 
						|
 | 
						|
		if (len == mtd->size &&
 | 
						|
		    !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
 | 
						|
			ret = spi_nor_erase_chip(nor);
 | 
						|
		} else {
 | 
						|
			ret = spi_nor_erase_sector(nor, addr);
 | 
						|
		}
 | 
						|
		if (ret < 0)
 | 
						|
			goto erase_err;
 | 
						|
 | 
						|
		addr += ret;
 | 
						|
		len -= ret;
 | 
						|
 | 
						|
		if (max_size == mtd->size &&
 | 
						|
		    !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
 | 
						|
			ret = spi_nor_erase_chip_wait_till_ready(nor, mtd->size);
 | 
						|
		} else {
 | 
						|
			ret = spi_nor_wait_till_ready(nor);
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret)
 | 
						|
			goto erase_err;
 | 
						|
	}
 | 
						|
 | 
						|
	addr_known = false;
 | 
						|
erase_err:
 | 
						|
#ifdef CONFIG_SPI_FLASH_BAR
 | 
						|
	err = clean_bar(nor);
 | 
						|
	if (!ret)
 | 
						|
		ret = err;
 | 
						|
#endif
 | 
						|
	err = write_disable(nor);
 | 
						|
	if (!ret)
 | 
						|
		ret = err;
 | 
						|
 | 
						|
err:
 | 
						|
	if (ret) {
 | 
						|
		instr->fail_addr = addr_known ? addr : MTD_FAIL_ADDR_UNKNOWN;
 | 
						|
		instr->state = MTD_ERASE_FAILED;
 | 
						|
	} else {
 | 
						|
		instr->state = MTD_ERASE_DONE;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SPANSION
 | 
						|
/**
 | 
						|
 * spansion_erase_non_uniform() - erase non-uniform sectors for Spansion/Cypress
 | 
						|
 *                                chips
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 * @addr:	address of the sector to erase
 | 
						|
 * @opcode_4k:	opcode for 4K sector erase
 | 
						|
 * @ovlsz_top:	size of overlaid portion at the top address
 | 
						|
 * @ovlsz_btm:	size of overlaid portion at the bottom address
 | 
						|
 *
 | 
						|
 * Erase an address range on the nor chip that can contain 4KB sectors overlaid
 | 
						|
 * on top and/or bottom. The appropriate erase opcode and size are chosen by
 | 
						|
 * address to erase and size of overlaid portion.
 | 
						|
 *
 | 
						|
 * Return: number of bytes erased on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spansion_erase_non_uniform(struct spi_nor *nor, u32 addr,
 | 
						|
				      u8 opcode_4k, u32 ovlsz_top,
 | 
						|
				      u32 ovlsz_btm)
 | 
						|
{
 | 
						|
	struct spi_mem_op op =
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
 | 
						|
			   SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
 | 
						|
			   SPI_MEM_OP_NO_DUMMY,
 | 
						|
			   SPI_MEM_OP_NO_DATA);
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
	u32 erasesize;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* 4KB sectors */
 | 
						|
	if (op.addr.val < ovlsz_btm ||
 | 
						|
	    op.addr.val >= mtd->size - ovlsz_top) {
 | 
						|
		op.cmd.opcode = opcode_4k;
 | 
						|
		erasesize = SZ_4K;
 | 
						|
 | 
						|
	/* Non-overlaid portion in the normal sector at the bottom */
 | 
						|
	} else if (op.addr.val == ovlsz_btm) {
 | 
						|
		op.cmd.opcode = nor->erase_opcode;
 | 
						|
		erasesize = mtd->erasesize - ovlsz_btm;
 | 
						|
 | 
						|
	/* Non-overlaid portion in the normal sector at the top */
 | 
						|
	} else if (op.addr.val == mtd->size - mtd->erasesize) {
 | 
						|
		op.cmd.opcode = nor->erase_opcode;
 | 
						|
		erasesize = mtd->erasesize - ovlsz_top;
 | 
						|
 | 
						|
	/* Normal sectors */
 | 
						|
	} else {
 | 
						|
		op.cmd.opcode = nor->erase_opcode;
 | 
						|
		erasesize = mtd->erasesize;
 | 
						|
	}
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, nor->write_proto);
 | 
						|
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return erasesize;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_SPI_FLASH_LOCK)
 | 
						|
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
 | 
						|
/* Write status register and ensure bits in mask match written values */
 | 
						|
static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	write_enable(nor);
 | 
						|
	ret = write_sr(nor, status_new);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = spi_nor_wait_till_ready(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = read_sr(nor);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
 | 
						|
}
 | 
						|
 | 
						|
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
 | 
						|
				 uint64_t *len)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 | 
						|
	int shift = ffs(mask) - 1;
 | 
						|
	int pow;
 | 
						|
 | 
						|
	if (!(sr & mask)) {
 | 
						|
		/* No protection */
 | 
						|
		*ofs = 0;
 | 
						|
		*len = 0;
 | 
						|
	} else {
 | 
						|
		pow = ((sr & mask) ^ mask) >> shift;
 | 
						|
		*len = mtd->size >> pow;
 | 
						|
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
 | 
						|
			*ofs = 0;
 | 
						|
		else
 | 
						|
			*ofs = mtd->size - *len;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 | 
						|
 * @locked is false); 0 otherwise
 | 
						|
 */
 | 
						|
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
 | 
						|
				    u8 sr, bool locked)
 | 
						|
{
 | 
						|
	loff_t lock_offs;
 | 
						|
	uint64_t lock_len;
 | 
						|
 | 
						|
	if (!len)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
 | 
						|
 | 
						|
	if (locked)
 | 
						|
		/* Requested range is a sub-range of locked range */
 | 
						|
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
 | 
						|
	else
 | 
						|
		/* Requested range does not overlap with locked range */
 | 
						|
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
 | 
						|
}
 | 
						|
 | 
						|
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
 | 
						|
			    u8 sr)
 | 
						|
{
 | 
						|
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
 | 
						|
}
 | 
						|
 | 
						|
static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
 | 
						|
			      u8 sr)
 | 
						|
{
 | 
						|
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
 | 
						|
 * Supports the block protection bits BP{0,1,2} in the status register
 | 
						|
 * (SR). Does not support these features found in newer SR bitfields:
 | 
						|
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 | 
						|
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 | 
						|
 *
 | 
						|
 * Support for the following is provided conditionally for some flash:
 | 
						|
 *   - TB: top/bottom protect
 | 
						|
 *
 | 
						|
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 | 
						|
 *
 | 
						|
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 | 
						|
 *  --------------------------------------------------------------------------
 | 
						|
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 | 
						|
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 | 
						|
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 | 
						|
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 | 
						|
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 | 
						|
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 | 
						|
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 | 
						|
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
 | 
						|
 *  ------|-------|-------|-------|-------|---------------|-------------------
 | 
						|
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 | 
						|
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 | 
						|
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 | 
						|
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 | 
						|
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 | 
						|
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
 | 
						|
 *
 | 
						|
 * Returns negative on errors, 0 on success.
 | 
						|
 */
 | 
						|
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
	int status_old, status_new;
 | 
						|
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 | 
						|
	u8 shift = ffs(mask) - 1, pow, val;
 | 
						|
	loff_t lock_len;
 | 
						|
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
 | 
						|
	bool use_top;
 | 
						|
 | 
						|
	status_old = read_sr(nor);
 | 
						|
	if (status_old < 0)
 | 
						|
		return status_old;
 | 
						|
 | 
						|
	/* If nothing in our range is unlocked, we don't need to do anything */
 | 
						|
	if (stm_is_locked_sr(nor, ofs, len, status_old))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* If anything below us is unlocked, we can't use 'bottom' protection */
 | 
						|
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
 | 
						|
		can_be_bottom = false;
 | 
						|
 | 
						|
	/* If anything above us is unlocked, we can't use 'top' protection */
 | 
						|
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
 | 
						|
			      status_old))
 | 
						|
		can_be_top = false;
 | 
						|
 | 
						|
	if (!can_be_bottom && !can_be_top)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Prefer top, if both are valid */
 | 
						|
	use_top = can_be_top;
 | 
						|
 | 
						|
	/* lock_len: length of region that should end up locked */
 | 
						|
	if (use_top)
 | 
						|
		lock_len = mtd->size - ofs;
 | 
						|
	else
 | 
						|
		lock_len = ofs + len;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Need smallest pow such that:
 | 
						|
	 *
 | 
						|
	 *   1 / (2^pow) <= (len / size)
 | 
						|
	 *
 | 
						|
	 * so (assuming power-of-2 size) we do:
 | 
						|
	 *
 | 
						|
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
 | 
						|
	 */
 | 
						|
	pow = ilog2(mtd->size) - ilog2(lock_len);
 | 
						|
	val = mask - (pow << shift);
 | 
						|
	if (val & ~mask)
 | 
						|
		return -EINVAL;
 | 
						|
	/* Don't "lock" with no region! */
 | 
						|
	if (!(val & mask))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	status_new = (status_old & ~mask & ~SR_TB) | val;
 | 
						|
 | 
						|
	/* Disallow further writes if WP pin is asserted */
 | 
						|
	status_new |= SR_SRWD;
 | 
						|
 | 
						|
	if (!use_top)
 | 
						|
		status_new |= SR_TB;
 | 
						|
 | 
						|
	/* Don't bother if they're the same */
 | 
						|
	if (status_new == status_old)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Only modify protection if it will not unlock other areas */
 | 
						|
	if ((status_new & mask) < (status_old & mask))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return write_sr_and_check(nor, status_new, mask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unlock a region of the flash. See stm_lock() for more info
 | 
						|
 *
 | 
						|
 * Returns negative on errors, 0 on success.
 | 
						|
 */
 | 
						|
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
	int status_old, status_new;
 | 
						|
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 | 
						|
	u8 shift = ffs(mask) - 1, pow, val;
 | 
						|
	loff_t lock_len;
 | 
						|
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
 | 
						|
	bool use_top;
 | 
						|
 | 
						|
	status_old = read_sr(nor);
 | 
						|
	if (status_old < 0)
 | 
						|
		return status_old;
 | 
						|
 | 
						|
	/* If nothing in our range is locked, we don't need to do anything */
 | 
						|
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* If anything below us is locked, we can't use 'top' protection */
 | 
						|
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
 | 
						|
		can_be_top = false;
 | 
						|
 | 
						|
	/* If anything above us is locked, we can't use 'bottom' protection */
 | 
						|
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
 | 
						|
				status_old))
 | 
						|
		can_be_bottom = false;
 | 
						|
 | 
						|
	if (!can_be_bottom && !can_be_top)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Prefer top, if both are valid */
 | 
						|
	use_top = can_be_top;
 | 
						|
 | 
						|
	/* lock_len: length of region that should remain locked */
 | 
						|
	if (use_top)
 | 
						|
		lock_len = mtd->size - (ofs + len);
 | 
						|
	else
 | 
						|
		lock_len = ofs;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Need largest pow such that:
 | 
						|
	 *
 | 
						|
	 *   1 / (2^pow) >= (len / size)
 | 
						|
	 *
 | 
						|
	 * so (assuming power-of-2 size) we do:
 | 
						|
	 *
 | 
						|
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
 | 
						|
	 */
 | 
						|
	pow = ilog2(mtd->size) - order_base_2(lock_len);
 | 
						|
	if (lock_len == 0) {
 | 
						|
		val = 0; /* fully unlocked */
 | 
						|
	} else {
 | 
						|
		val = mask - (pow << shift);
 | 
						|
		/* Some power-of-two sizes are not supported */
 | 
						|
		if (val & ~mask)
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	status_new = (status_old & ~mask & ~SR_TB) | val;
 | 
						|
 | 
						|
	/* Don't protect status register if we're fully unlocked */
 | 
						|
	if (lock_len == 0)
 | 
						|
		status_new &= ~SR_SRWD;
 | 
						|
 | 
						|
	if (!use_top)
 | 
						|
		status_new |= SR_TB;
 | 
						|
 | 
						|
	/* Don't bother if they're the same */
 | 
						|
	if (status_new == status_old)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Only modify protection if it will not lock other areas */
 | 
						|
	if ((status_new & mask) > (status_old & mask))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return write_sr_and_check(nor, status_new, mask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if a region of the flash is (completely) unlocked. See stm_lock() for
 | 
						|
 * more info.
 | 
						|
 *
 | 
						|
 * Returns 1 if entire region is unlocked, 0 if any portion is locked, and
 | 
						|
 * negative on errors.
 | 
						|
 */
 | 
						|
static int stm_is_unlocked(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | 
						|
{
 | 
						|
	int status;
 | 
						|
 | 
						|
	status = read_sr(nor);
 | 
						|
	if (status < 0)
 | 
						|
		return status;
 | 
						|
 | 
						|
	return stm_is_unlocked_sr(nor, ofs, len, status);
 | 
						|
}
 | 
						|
#endif /* CONFIG_SPI_FLASH_STMICRO */
 | 
						|
#endif
 | 
						|
 | 
						|
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int			tmp;
 | 
						|
	u8			id[SPI_NOR_MAX_ID_LEN];
 | 
						|
	const struct flash_info	*info;
 | 
						|
 | 
						|
	if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
		nor->spi->flags |= SPI_XFER_LOWER;
 | 
						|
 | 
						|
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
 | 
						|
	if (tmp < 0) {
 | 
						|
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
 | 
						|
		return ERR_PTR(tmp);
 | 
						|
	}
 | 
						|
 | 
						|
	info = spi_nor_ids;
 | 
						|
	for (; info->name; info++) {
 | 
						|
		if (info->id_len) {
 | 
						|
			if (!memcmp(info->id, id, info->id_len))
 | 
						|
				return info;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
 | 
						|
		id[0], id[1], id[2]);
 | 
						|
	return ERR_PTR(-ENODEV);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
 | 
						|
			size_t *retlen, u_char *buf)
 | 
						|
{
 | 
						|
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
 | 
						|
	int ret;
 | 
						|
	loff_t offset = from;
 | 
						|
	u32 read_len = 0;
 | 
						|
	u32 rem_bank_len = 0;
 | 
						|
	u8 bank;
 | 
						|
	bool is_ofst_odd = false;
 | 
						|
 | 
						|
	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
 | 
						|
 | 
						|
	if ((nor->flags & SNOR_F_HAS_PARALLEL) && (offset & 1)) {
 | 
						|
	    /* We can hit this case when we use file system like ubifs */
 | 
						|
		from--;
 | 
						|
		len++;
 | 
						|
		is_ofst_odd = true;
 | 
						|
	}
 | 
						|
 | 
						|
	while (len) {
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL) {
 | 
						|
			bank = (u32)from / (SZ_16M << 0x01);
 | 
						|
			rem_bank_len = ((SZ_16M << 0x01) * (bank + 1)) - from;
 | 
						|
		} else {
 | 
						|
			bank = (u32)from / SZ_16M;
 | 
						|
			rem_bank_len = (SZ_16M * (bank + 1)) - from;
 | 
						|
		}
 | 
						|
 | 
						|
		offset = from;
 | 
						|
 | 
						|
		if (nor->flags & SNOR_F_HAS_STACKED) {
 | 
						|
			if (offset >= (mtd->size / 2)) {
 | 
						|
				offset = offset - (mtd->size / 2);
 | 
						|
				nor->spi->flags |= SPI_XFER_U_PAGE;
 | 
						|
			} else {
 | 
						|
				nor->spi->flags &= ~SPI_XFER_U_PAGE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
			offset /= 2;
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_BAR
 | 
						|
		ret = write_bar(nor, offset);
 | 
						|
		if (ret < 0)
 | 
						|
			return log_ret(ret);
 | 
						|
#endif
 | 
						|
 | 
						|
		if (len < rem_bank_len)
 | 
						|
			read_len = len;
 | 
						|
		else
 | 
						|
			read_len = rem_bank_len;
 | 
						|
 | 
						|
		if (read_len == 0)
 | 
						|
			return -EIO;
 | 
						|
 | 
						|
		ret = spi_nor_wait_till_ready(nor);
 | 
						|
		if (ret)
 | 
						|
			goto read_err;
 | 
						|
 | 
						|
		ret = nor->read(nor, offset, read_len, buf);
 | 
						|
		if (ret == 0) {
 | 
						|
			/* We shouldn't see 0-length reads */
 | 
						|
			ret = -EIO;
 | 
						|
			goto read_err;
 | 
						|
		}
 | 
						|
		if (ret < 0)
 | 
						|
			goto read_err;
 | 
						|
 | 
						|
		if (is_ofst_odd == true) {
 | 
						|
			memmove(buf, (buf + 1), (len - 1));
 | 
						|
			*retlen += (ret - 1);
 | 
						|
			buf += ret - 1;
 | 
						|
			is_ofst_odd = false;
 | 
						|
		} else {
 | 
						|
			*retlen += ret;
 | 
						|
			buf += ret;
 | 
						|
		}
 | 
						|
		from += ret;
 | 
						|
		len -= ret;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
read_err:
 | 
						|
#ifdef CONFIG_SPI_FLASH_BAR
 | 
						|
	ret = clean_bar(nor);
 | 
						|
#endif
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_SPI_FLASH_LOCK)
 | 
						|
#ifdef CONFIG_SPI_FLASH_SST
 | 
						|
/*
 | 
						|
 * sst26 flash series has its own block protection implementation:
 | 
						|
 * 4x   - 8  KByte blocks - read & write protection bits - upper addresses
 | 
						|
 * 1x   - 32 KByte blocks - write protection bits
 | 
						|
 * rest - 64 KByte blocks - write protection bits
 | 
						|
 * 1x   - 32 KByte blocks - write protection bits
 | 
						|
 * 4x   - 8  KByte blocks - read & write protection bits - lower addresses
 | 
						|
 *
 | 
						|
 * We'll support only per 64k lock/unlock so lower and upper 64 KByte region
 | 
						|
 * will be treated as single block.
 | 
						|
 */
 | 
						|
#define SST26_BPR_8K_NUM		4
 | 
						|
#define SST26_MAX_BPR_REG_LEN		(18 + 1)
 | 
						|
#define SST26_BOUND_REG_SIZE		((32 + SST26_BPR_8K_NUM * 8) * SZ_1K)
 | 
						|
 | 
						|
enum lock_ctl {
 | 
						|
	SST26_CTL_LOCK,
 | 
						|
	SST26_CTL_UNLOCK,
 | 
						|
	SST26_CTL_CHECK
 | 
						|
};
 | 
						|
 | 
						|
static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
 | 
						|
{
 | 
						|
	switch (ctl) {
 | 
						|
	case SST26_CTL_LOCK:
 | 
						|
		cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
 | 
						|
		break;
 | 
						|
	case SST26_CTL_UNLOCK:
 | 
						|
		cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
 | 
						|
		break;
 | 
						|
	case SST26_CTL_CHECK:
 | 
						|
		return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Lock, unlock or check lock status of the flash region of the flash (depending
 | 
						|
 * on the lock_ctl value)
 | 
						|
 */
 | 
						|
static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
	u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
 | 
						|
	bool lower_64k = false, upper_64k = false;
 | 
						|
	u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Check length and offset for 64k alignment */
 | 
						|
	if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) {
 | 
						|
		dev_err(nor->dev, "length or offset is not 64KiB allighned\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ofs + len > mtd->size) {
 | 
						|
		dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n",
 | 
						|
			ofs, len, mtd->size);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
 | 
						|
	if (mtd->size != SZ_2M &&
 | 
						|
	    mtd->size != SZ_4M &&
 | 
						|
	    mtd->size != SZ_8M)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	bpr_size = 2 + (mtd->size / SZ_64K / 8);
 | 
						|
 | 
						|
	ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_err(nor->dev, "fail to read block-protection register\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE);
 | 
						|
	lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
 | 
						|
 | 
						|
	upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE));
 | 
						|
	lower_64k = (ofs < SST26_BOUND_REG_SIZE);
 | 
						|
 | 
						|
	/* Lower bits in block-protection register are about 64k region */
 | 
						|
	bpr_ptr = lptr_64k / SZ_64K - 1;
 | 
						|
 | 
						|
	/* Process 64K blocks region */
 | 
						|
	while (lptr_64k < rptr_64k) {
 | 
						|
		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | 
						|
			return EACCES;
 | 
						|
 | 
						|
		bpr_ptr++;
 | 
						|
		lptr_64k += SZ_64K;
 | 
						|
	}
 | 
						|
 | 
						|
	/* 32K and 8K region bits in BPR are after 64k region bits */
 | 
						|
	bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
 | 
						|
 | 
						|
	/* Process lower 32K block region */
 | 
						|
	if (lower_64k)
 | 
						|
		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | 
						|
			return EACCES;
 | 
						|
 | 
						|
	bpr_ptr++;
 | 
						|
 | 
						|
	/* Process upper 32K block region */
 | 
						|
	if (upper_64k)
 | 
						|
		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | 
						|
			return EACCES;
 | 
						|
 | 
						|
	bpr_ptr++;
 | 
						|
 | 
						|
	/* Process lower 8K block regions */
 | 
						|
	for (i = 0; i < SST26_BPR_8K_NUM; i++) {
 | 
						|
		if (lower_64k)
 | 
						|
			if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | 
						|
				return EACCES;
 | 
						|
 | 
						|
		/* In 8K area BPR has both read and write protection bits */
 | 
						|
		bpr_ptr += 2;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Process upper 8K block regions */
 | 
						|
	for (i = 0; i < SST26_BPR_8K_NUM; i++) {
 | 
						|
		if (upper_64k)
 | 
						|
			if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | 
						|
				return EACCES;
 | 
						|
 | 
						|
		/* In 8K area BPR has both read and write protection bits */
 | 
						|
		bpr_ptr += 2;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If we check region status we don't need to write BPR back */
 | 
						|
	if (ctl == SST26_CTL_CHECK)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_err(nor->dev, "fail to write block-protection register\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | 
						|
{
 | 
						|
	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK);
 | 
						|
}
 | 
						|
 | 
						|
static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | 
						|
{
 | 
						|
	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns EACCES (positive value) if region is (partially) locked, 0 if region
 | 
						|
 * is completely unlocked, and negative on errors.
 | 
						|
 */
 | 
						|
static int sst26_is_unlocked(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * is_unlocked function is used for check before reading or erasing
 | 
						|
	 * flash region, so offset and length might be not 64k aligned, so
 | 
						|
	 * adjust them to be 64k aligned as sst26_lock_ctl works only with 64k
 | 
						|
	 * aligned regions.
 | 
						|
	 */
 | 
						|
	ofs -= ofs & (SZ_64K - 1);
 | 
						|
	len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
 | 
						|
 | 
						|
	return !sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK);
 | 
						|
}
 | 
						|
 | 
						|
static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
 | 
						|
				 size_t *retlen, const u_char *buf)
 | 
						|
{
 | 
						|
	size_t actual;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	for (actual = 0; actual < len; actual++) {
 | 
						|
		nor->program_opcode = SPINOR_OP_BP;
 | 
						|
 | 
						|
		write_enable(nor);
 | 
						|
		/* write one byte. */
 | 
						|
		ret = nor->write(nor, to, 1, buf + actual);
 | 
						|
		if (ret < 0)
 | 
						|
			goto sst_write_err;
 | 
						|
		ret = spi_nor_wait_till_ready(nor);
 | 
						|
		if (ret)
 | 
						|
			goto sst_write_err;
 | 
						|
		to++;
 | 
						|
	}
 | 
						|
 | 
						|
sst_write_err:
 | 
						|
	write_disable(nor);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
 | 
						|
		     size_t *retlen, const u_char *buf)
 | 
						|
{
 | 
						|
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
 | 
						|
	struct spi_slave *spi = nor->spi;
 | 
						|
	size_t actual;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
 | 
						|
	if (spi->mode & SPI_TX_BYTE)
 | 
						|
		return sst_write_byteprogram(nor, to, len, retlen, buf);
 | 
						|
 | 
						|
	write_enable(nor);
 | 
						|
 | 
						|
	nor->sst_write_second = false;
 | 
						|
 | 
						|
	actual = to % 2;
 | 
						|
	/* Start write from odd address. */
 | 
						|
	if (actual) {
 | 
						|
		nor->program_opcode = SPINOR_OP_BP;
 | 
						|
 | 
						|
		/* write one byte. */
 | 
						|
		ret = nor->write(nor, to, 1, buf);
 | 
						|
		if (ret < 0)
 | 
						|
			goto sst_write_err;
 | 
						|
		ret = spi_nor_wait_till_ready(nor);
 | 
						|
		if (ret)
 | 
						|
			goto sst_write_err;
 | 
						|
	}
 | 
						|
	to += actual;
 | 
						|
 | 
						|
	/* Write out most of the data here. */
 | 
						|
	for (; actual < len - 1; actual += 2) {
 | 
						|
		nor->program_opcode = SPINOR_OP_AAI_WP;
 | 
						|
 | 
						|
		/* write two bytes. */
 | 
						|
		ret = nor->write(nor, to, 2, buf + actual);
 | 
						|
		if (ret < 0)
 | 
						|
			goto sst_write_err;
 | 
						|
		ret = spi_nor_wait_till_ready(nor);
 | 
						|
		if (ret)
 | 
						|
			goto sst_write_err;
 | 
						|
		to += 2;
 | 
						|
		nor->sst_write_second = true;
 | 
						|
	}
 | 
						|
	nor->sst_write_second = false;
 | 
						|
 | 
						|
	write_disable(nor);
 | 
						|
	ret = spi_nor_wait_till_ready(nor);
 | 
						|
	if (ret)
 | 
						|
		goto sst_write_err;
 | 
						|
 | 
						|
	/* Write out trailing byte if it exists. */
 | 
						|
	if (actual != len) {
 | 
						|
		write_enable(nor);
 | 
						|
 | 
						|
		nor->program_opcode = SPINOR_OP_BP;
 | 
						|
		ret = nor->write(nor, to, 1, buf + actual);
 | 
						|
		if (ret < 0)
 | 
						|
			goto sst_write_err;
 | 
						|
		ret = spi_nor_wait_till_ready(nor);
 | 
						|
		if (ret)
 | 
						|
			goto sst_write_err;
 | 
						|
		write_disable(nor);
 | 
						|
		actual += 1;
 | 
						|
	}
 | 
						|
sst_write_err:
 | 
						|
	*retlen += actual;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Write an address range to the nor chip.  Data must be written in
 | 
						|
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 | 
						|
 * it is within the physical boundaries.
 | 
						|
 */
 | 
						|
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
 | 
						|
	size_t *retlen, const u_char *buf)
 | 
						|
{
 | 
						|
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
 | 
						|
	size_t page_offset, page_remain, i;
 | 
						|
	ssize_t ret;
 | 
						|
	u32 offset;
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SST
 | 
						|
	/* sst nor chips use AAI word program */
 | 
						|
	if (nor->info->flags & SST_WRITE)
 | 
						|
		return sst_write(mtd, to, len, retlen, buf);
 | 
						|
#endif
 | 
						|
 | 
						|
	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
 | 
						|
 | 
						|
	if (!len)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Cannot write to odd offset in parallel mode,
 | 
						|
	 * so write 2 bytes first
 | 
						|
	 */
 | 
						|
	if ((nor->flags & SNOR_F_HAS_PARALLEL) && (to & 1)) {
 | 
						|
		u8 two[2] = {0xff, buf[0]};
 | 
						|
		size_t local_retlen;
 | 
						|
 | 
						|
		ret = spi_nor_write(mtd, to & ~1, 2, &local_retlen, two);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		*retlen += 1; /* We've written only one actual byte */
 | 
						|
		++buf;
 | 
						|
		--len;
 | 
						|
		++to;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < len; ) {
 | 
						|
		ssize_t written;
 | 
						|
		loff_t addr = to + i;
 | 
						|
		schedule();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If page_size is a power of two, the offset can be quickly
 | 
						|
		 * calculated with an AND operation. On the other cases we
 | 
						|
		 * need to do a modulus operation (more expensive).
 | 
						|
		 */
 | 
						|
		if (is_power_of_2(nor->page_size)) {
 | 
						|
			page_offset = addr & (nor->page_size - 1);
 | 
						|
		} else {
 | 
						|
			u64 aux = addr;
 | 
						|
 | 
						|
			page_offset = do_div(aux, nor->page_size);
 | 
						|
		}
 | 
						|
		offset = (to + i);
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
			offset /= 2;
 | 
						|
 | 
						|
		if (nor->flags & SNOR_F_HAS_STACKED) {
 | 
						|
			if (offset >= (mtd->size / 2)) {
 | 
						|
				offset = offset - (mtd->size / 2);
 | 
						|
				nor->spi->flags |= SPI_XFER_U_PAGE;
 | 
						|
			} else {
 | 
						|
				nor->spi->flags &= ~SPI_XFER_U_PAGE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_BAR
 | 
						|
		ret = write_bar(nor, offset);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
#endif
 | 
						|
 | 
						|
		/* the size of data remaining on the first page */
 | 
						|
		page_remain = min_t(size_t,
 | 
						|
				    nor->page_size - page_offset, len - i);
 | 
						|
 | 
						|
		ret = spi_nor_wait_till_ready(nor);
 | 
						|
		if (ret)
 | 
						|
			goto write_err;
 | 
						|
 | 
						|
		write_enable(nor);
 | 
						|
		/*
 | 
						|
		 * On DTR capable flashes like Micron Xcella the writes cannot
 | 
						|
		 * start or end at an odd address in DTR mode. So we need to
 | 
						|
		 * append or prepend extra 0xff bytes to make sure the start
 | 
						|
		 * address and end address are even.
 | 
						|
		 */
 | 
						|
		if (spi_nor_protocol_is_dtr(nor->write_proto) &&
 | 
						|
		    ((offset | page_remain) & 1)) {
 | 
						|
			u_char *tmp;
 | 
						|
			size_t extra_bytes = 0;
 | 
						|
 | 
						|
			tmp = kmalloc(nor->page_size, 0);
 | 
						|
			if (!tmp) {
 | 
						|
				ret = -ENOMEM;
 | 
						|
				goto write_err;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Prepend a 0xff byte if the start address is odd. */
 | 
						|
			if (offset & 1) {
 | 
						|
				tmp[0] = 0xff;
 | 
						|
				memcpy(tmp + 1, buf + i, page_remain);
 | 
						|
				offset--;
 | 
						|
				page_remain++;
 | 
						|
				extra_bytes++;
 | 
						|
			} else {
 | 
						|
				memcpy(tmp, buf + i, page_remain);
 | 
						|
			}
 | 
						|
 | 
						|
			/* Append a 0xff byte if the end address is odd. */
 | 
						|
			if ((offset + page_remain) & 1) {
 | 
						|
				tmp[page_remain + extra_bytes] = 0xff;
 | 
						|
				extra_bytes++;
 | 
						|
				page_remain++;
 | 
						|
			}
 | 
						|
 | 
						|
			ret = nor->write(nor, offset, page_remain, tmp);
 | 
						|
 | 
						|
			kfree(tmp);
 | 
						|
 | 
						|
			if (ret < 0)
 | 
						|
				goto write_err;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We write extra bytes but they are not part of the
 | 
						|
			 * original write.
 | 
						|
			 */
 | 
						|
			written = ret - extra_bytes;
 | 
						|
		} else {
 | 
						|
			ret = nor->write(nor, offset, page_remain, buf + i);
 | 
						|
			if (ret < 0)
 | 
						|
				goto write_err;
 | 
						|
			written = ret;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = spi_nor_wait_till_ready(nor);
 | 
						|
		if (ret)
 | 
						|
			goto write_err;
 | 
						|
 | 
						|
		ret = write_disable(nor);
 | 
						|
		if (ret)
 | 
						|
			goto write_err;
 | 
						|
 | 
						|
		*retlen += written;
 | 
						|
		i += written;
 | 
						|
	}
 | 
						|
 | 
						|
write_err:
 | 
						|
#ifdef CONFIG_SPI_FLASH_BAR
 | 
						|
	ret = clean_bar(nor);
 | 
						|
#endif
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
 | 
						|
/**
 | 
						|
 * macronix_quad_enable() - set QE bit in Status Register.
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 *
 | 
						|
 * Set the Quad Enable (QE) bit in the Status Register.
 | 
						|
 *
 | 
						|
 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int macronix_quad_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int ret, val;
 | 
						|
 | 
						|
	val = read_sr(nor);
 | 
						|
	if (val < 0)
 | 
						|
		return val;
 | 
						|
	if (val & SR_QUAD_EN_MX)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	write_enable(nor);
 | 
						|
 | 
						|
	write_sr(nor, val | SR_QUAD_EN_MX);
 | 
						|
 | 
						|
	ret = spi_nor_wait_till_ready(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = write_disable(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = read_sr(nor);
 | 
						|
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
 | 
						|
		dev_err(nor->dev, "Macronix Quad bit not set\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SPANSION
 | 
						|
/**
 | 
						|
 * spansion_quad_enable_volatile() - enable Quad I/O mode in volatile register.
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 * @addr_base:	base address of register (can be >0 in multi-die parts)
 | 
						|
 * @dummy:	number of dummy cycles for register read
 | 
						|
 *
 | 
						|
 * It is recommended to update volatile registers in the field application due
 | 
						|
 * to a risk of the non-volatile registers corruption by power interrupt. This
 | 
						|
 * function sets Quad Enable bit in CFR1 volatile.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spansion_quad_enable_volatile(struct spi_nor *nor, u32 addr_base,
 | 
						|
					 u8 dummy)
 | 
						|
{
 | 
						|
	u32 addr = addr_base + SPINOR_REG_CYPRESS_CFR1V;
 | 
						|
 | 
						|
	u8 cr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Check current Quad Enable bit value. */
 | 
						|
	ret = spansion_read_any_reg(nor, addr, dummy, &cr);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"error while reading configuration register\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cr & CR_QUAD_EN_SPAN)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	cr |= CR_QUAD_EN_SPAN;
 | 
						|
 | 
						|
	write_enable(nor);
 | 
						|
 | 
						|
	ret = spansion_write_any_reg(nor, addr, cr);
 | 
						|
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"error while writing configuration register\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Read back and check it. */
 | 
						|
	ret = spansion_read_any_reg(nor, addr, dummy, &cr);
 | 
						|
	if (ret || !(cr & CR_QUAD_EN_SPAN)) {
 | 
						|
		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return write_disable(nor);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | 
						|
/*
 | 
						|
 * Write status Register and configuration register with 2 bytes
 | 
						|
 * The first byte will be written to the status register, while the
 | 
						|
 * second byte will be written to the configuration register.
 | 
						|
 * Return negative if error occurred.
 | 
						|
 */
 | 
						|
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	write_enable(nor);
 | 
						|
 | 
						|
	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"error while writing configuration register\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = spi_nor_wait_till_ready(nor);
 | 
						|
	if (ret) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"timeout while writing configuration register\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 *
 | 
						|
 * Set the Quad Enable (QE) bit in the Configuration Register.
 | 
						|
 * This function should be used with QSPI memories supporting the Read
 | 
						|
 * Configuration Register (35h) instruction.
 | 
						|
 *
 | 
						|
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 | 
						|
 * memories.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spansion_read_cr_quad_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	u8 sr_cr[2];
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Check current Quad Enable bit value. */
 | 
						|
	ret = read_cr(nor);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"error while reading configuration register\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret & CR_QUAD_EN_SPAN)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	sr_cr[1] = ret | CR_QUAD_EN_SPAN;
 | 
						|
 | 
						|
	/* Keep the current value of the Status Register. */
 | 
						|
	ret = read_sr(nor);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_dbg(nor->dev, "error while reading status register\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	sr_cr[0] = ret;
 | 
						|
 | 
						|
	ret = write_sr_cr(nor, sr_cr);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Read back and check it. */
 | 
						|
	ret = read_cr(nor);
 | 
						|
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
 | 
						|
		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
 | 
						|
/**
 | 
						|
 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 *
 | 
						|
 * Set the Quad Enable (QE) bit in the Configuration Register.
 | 
						|
 * This function should be used with QSPI memories not supporting the Read
 | 
						|
 * Configuration Register (35h) instruction.
 | 
						|
 *
 | 
						|
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 | 
						|
 * memories.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	u8 sr_cr[2];
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Keep the current value of the Status Register. */
 | 
						|
	ret = read_sr(nor);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_dbg(nor->dev, "error while reading status register\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	sr_cr[0] = ret;
 | 
						|
	sr_cr[1] = CR_QUAD_EN_SPAN;
 | 
						|
 | 
						|
	return write_sr_cr(nor, sr_cr);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
 | 
						|
#endif /* CONFIG_SPI_FLASH_SPANSION */
 | 
						|
 | 
						|
static void
 | 
						|
spi_nor_set_read_settings(struct spi_nor_read_command *read,
 | 
						|
			  u8 num_mode_clocks,
 | 
						|
			  u8 num_wait_states,
 | 
						|
			  u8 opcode,
 | 
						|
			  enum spi_nor_protocol proto)
 | 
						|
{
 | 
						|
	read->num_mode_clocks = num_mode_clocks;
 | 
						|
	read->num_wait_states = num_wait_states;
 | 
						|
	read->opcode = opcode;
 | 
						|
	read->proto = proto;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
 | 
						|
			u8 opcode,
 | 
						|
			enum spi_nor_protocol proto)
 | 
						|
{
 | 
						|
	pp->opcode = opcode;
 | 
						|
	pp->proto = proto;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
 | 
						|
/*
 | 
						|
 * Serial Flash Discoverable Parameters (SFDP) parsing.
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 * @addr:	offset in the SFDP area to start reading data from
 | 
						|
 * @len:	number of bytes to read
 | 
						|
 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
 | 
						|
 *
 | 
						|
 * Whatever the actual numbers of bytes for address and dummy cycles are
 | 
						|
 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 | 
						|
 * followed by a 3-byte address and 8 dummy clock cycles.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
 | 
						|
			     size_t len, void *buf)
 | 
						|
{
 | 
						|
	u8 addr_width, read_opcode, read_dummy;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	read_opcode = nor->read_opcode;
 | 
						|
	addr_width = nor->addr_width;
 | 
						|
	read_dummy = nor->read_dummy;
 | 
						|
 | 
						|
	nor->read_opcode = SPINOR_OP_RDSFDP;
 | 
						|
	nor->addr_width = 3;
 | 
						|
	nor->read_dummy = 8;
 | 
						|
 | 
						|
	while (len) {
 | 
						|
		/* Both chips are identical, so should be the SFDP data */
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
			nor->spi->flags |= SPI_XFER_LOWER;
 | 
						|
 | 
						|
		ret = nor->read(nor, addr, len, (u8 *)buf);
 | 
						|
		if (!ret || ret > len) {
 | 
						|
			ret = -EIO;
 | 
						|
			goto read_err;
 | 
						|
		}
 | 
						|
		if (ret < 0)
 | 
						|
			goto read_err;
 | 
						|
 | 
						|
		buf += ret;
 | 
						|
		addr += ret;
 | 
						|
		len -= ret;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
read_err:
 | 
						|
	nor->read_opcode = read_opcode;
 | 
						|
	nor->addr_width = addr_width;
 | 
						|
	nor->read_dummy = read_dummy;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 * @addr:	offset in the SFDP area to start reading data from
 | 
						|
 * @len:	number of bytes to read
 | 
						|
 * @buf:	buffer where the SFDP data are copied into
 | 
						|
 *
 | 
						|
 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
 | 
						|
 * guaranteed to be dma-safe.
 | 
						|
 *
 | 
						|
 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
 | 
						|
 *          otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
 | 
						|
					size_t len, void *buf)
 | 
						|
{
 | 
						|
	void *dma_safe_buf;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	dma_safe_buf = kmalloc(len, GFP_KERNEL);
 | 
						|
	if (!dma_safe_buf)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
 | 
						|
	memcpy(buf, dma_safe_buf, len);
 | 
						|
	kfree(dma_safe_buf);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Fast Read settings. */
 | 
						|
 | 
						|
static void
 | 
						|
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
 | 
						|
				    u16 half,
 | 
						|
				    enum spi_nor_protocol proto)
 | 
						|
{
 | 
						|
	read->num_mode_clocks = (half >> 5) & 0x07;
 | 
						|
	read->num_wait_states = (half >> 0) & 0x1f;
 | 
						|
	read->opcode = (half >> 8) & 0xff;
 | 
						|
	read->proto = proto;
 | 
						|
}
 | 
						|
 | 
						|
struct sfdp_bfpt_read {
 | 
						|
	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
 | 
						|
	u32			hwcaps;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
 | 
						|
	 * whether the Fast Read x-y-z command is supported.
 | 
						|
	 */
 | 
						|
	u32			supported_dword;
 | 
						|
	u32			supported_bit;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
 | 
						|
	 * encodes the op code, the number of mode clocks and the number of wait
 | 
						|
	 * states to be used by Fast Read x-y-z command.
 | 
						|
	 */
 | 
						|
	u32			settings_dword;
 | 
						|
	u32			settings_shift;
 | 
						|
 | 
						|
	/* The SPI protocol for this Fast Read x-y-z command. */
 | 
						|
	enum spi_nor_protocol	proto;
 | 
						|
};
 | 
						|
 | 
						|
static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
 | 
						|
	/* Fast Read 1-1-2 */
 | 
						|
	{
 | 
						|
		SNOR_HWCAPS_READ_1_1_2,
 | 
						|
		BFPT_DWORD(1), BIT(16),	/* Supported bit */
 | 
						|
		BFPT_DWORD(4), 0,	/* Settings */
 | 
						|
		SNOR_PROTO_1_1_2,
 | 
						|
	},
 | 
						|
 | 
						|
	/* Fast Read 1-2-2 */
 | 
						|
	{
 | 
						|
		SNOR_HWCAPS_READ_1_2_2,
 | 
						|
		BFPT_DWORD(1), BIT(20),	/* Supported bit */
 | 
						|
		BFPT_DWORD(4), 16,	/* Settings */
 | 
						|
		SNOR_PROTO_1_2_2,
 | 
						|
	},
 | 
						|
 | 
						|
	/* Fast Read 2-2-2 */
 | 
						|
	{
 | 
						|
		SNOR_HWCAPS_READ_2_2_2,
 | 
						|
		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
 | 
						|
		BFPT_DWORD(6), 16,	/* Settings */
 | 
						|
		SNOR_PROTO_2_2_2,
 | 
						|
	},
 | 
						|
 | 
						|
	/* Fast Read 1-1-4 */
 | 
						|
	{
 | 
						|
		SNOR_HWCAPS_READ_1_1_4,
 | 
						|
		BFPT_DWORD(1), BIT(22),	/* Supported bit */
 | 
						|
		BFPT_DWORD(3), 16,	/* Settings */
 | 
						|
		SNOR_PROTO_1_1_4,
 | 
						|
	},
 | 
						|
 | 
						|
	/* Fast Read 1-4-4 */
 | 
						|
	{
 | 
						|
		SNOR_HWCAPS_READ_1_4_4,
 | 
						|
		BFPT_DWORD(1), BIT(21),	/* Supported bit */
 | 
						|
		BFPT_DWORD(3), 0,	/* Settings */
 | 
						|
		SNOR_PROTO_1_4_4,
 | 
						|
	},
 | 
						|
 | 
						|
	/* Fast Read 4-4-4 */
 | 
						|
	{
 | 
						|
		SNOR_HWCAPS_READ_4_4_4,
 | 
						|
		BFPT_DWORD(5), BIT(4),	/* Supported bit */
 | 
						|
		BFPT_DWORD(7), 16,	/* Settings */
 | 
						|
		SNOR_PROTO_4_4_4,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
struct sfdp_bfpt_erase {
 | 
						|
	/*
 | 
						|
	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
 | 
						|
	 * op code and erase sector size to be used by Sector Erase commands.
 | 
						|
	 */
 | 
						|
	u32			dword;
 | 
						|
	u32			shift;
 | 
						|
};
 | 
						|
 | 
						|
static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
 | 
						|
	/* Erase Type 1 in DWORD8 bits[15:0] */
 | 
						|
	{BFPT_DWORD(8), 0},
 | 
						|
 | 
						|
	/* Erase Type 2 in DWORD8 bits[31:16] */
 | 
						|
	{BFPT_DWORD(8), 16},
 | 
						|
 | 
						|
	/* Erase Type 3 in DWORD9 bits[15:0] */
 | 
						|
	{BFPT_DWORD(9), 0},
 | 
						|
 | 
						|
	/* Erase Type 4 in DWORD9 bits[31:16] */
 | 
						|
	{BFPT_DWORD(9), 16},
 | 
						|
};
 | 
						|
 | 
						|
static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
 | 
						|
 | 
						|
static int
 | 
						|
spi_nor_post_bfpt_fixups(struct spi_nor *nor,
 | 
						|
			 const struct sfdp_parameter_header *bfpt_header,
 | 
						|
			 const struct sfdp_bfpt *bfpt,
 | 
						|
			 struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	if (nor->fixups && nor->fixups->post_bfpt)
 | 
						|
		return nor->fixups->post_bfpt(nor, bfpt_header, bfpt, params);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 | 
						|
 * @nor:		pointer to a 'struct spi_nor'
 | 
						|
 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 | 
						|
 *			the Basic Flash Parameter Table length and version
 | 
						|
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 | 
						|
 *			filled
 | 
						|
 *
 | 
						|
 * The Basic Flash Parameter Table is the main and only mandatory table as
 | 
						|
 * defined by the SFDP (JESD216) specification.
 | 
						|
 * It provides us with the total size (memory density) of the data array and
 | 
						|
 * the number of address bytes for Fast Read, Page Program and Sector Erase
 | 
						|
 * commands.
 | 
						|
 * For Fast READ commands, it also gives the number of mode clock cycles and
 | 
						|
 * wait states (regrouped in the number of dummy clock cycles) for each
 | 
						|
 * supported instruction op code.
 | 
						|
 * For Page Program, the page size is now available since JESD216 rev A, however
 | 
						|
 * the supported instruction op codes are still not provided.
 | 
						|
 * For Sector Erase commands, this table stores the supported instruction op
 | 
						|
 * codes and the associated sector sizes.
 | 
						|
 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 | 
						|
 * rev A. The QER bits encode the manufacturer dependent procedure to be
 | 
						|
 * executed to set the Quad Enable (QE) bit in some internal register of the
 | 
						|
 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 | 
						|
 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 | 
						|
 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 | 
						|
 * and IO3 hence enabling 4 (Quad) I/O lines.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_parse_bfpt(struct spi_nor *nor,
 | 
						|
			      const struct sfdp_parameter_header *bfpt_header,
 | 
						|
			      struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
	struct sfdp_bfpt bfpt;
 | 
						|
	size_t len;
 | 
						|
	int i, cmd, err;
 | 
						|
	u32 addr;
 | 
						|
	u16 half;
 | 
						|
 | 
						|
	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
 | 
						|
	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Read the Basic Flash Parameter Table. */
 | 
						|
	len = min_t(size_t, sizeof(bfpt),
 | 
						|
		    bfpt_header->length * sizeof(u32));
 | 
						|
	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
 | 
						|
	memset(&bfpt, 0, sizeof(bfpt));
 | 
						|
	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
 | 
						|
	if (err < 0)
 | 
						|
		return err;
 | 
						|
 | 
						|
	/* Fix endianness of the BFPT DWORDs. */
 | 
						|
	for (i = 0; i < BFPT_DWORD_MAX; i++)
 | 
						|
		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
 | 
						|
 | 
						|
	/* Number of address bytes. */
 | 
						|
	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
 | 
						|
	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
 | 
						|
	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
 | 
						|
		nor->addr_width = 3;
 | 
						|
		nor->addr_mode_nbytes = 3;
 | 
						|
		break;
 | 
						|
 | 
						|
	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
 | 
						|
		nor->addr_width = 4;
 | 
						|
		nor->addr_mode_nbytes = 4;
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Flash Memory Density (in bits). */
 | 
						|
	params->size = bfpt.dwords[BFPT_DWORD(2)];
 | 
						|
	if (params->size & BIT(31)) {
 | 
						|
		params->size &= ~BIT(31);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
 | 
						|
		 * bits is unlikely to exist so this error probably means
 | 
						|
		 * the BFPT we are reading is corrupted/wrong.
 | 
						|
		 */
 | 
						|
		if (params->size > 63)
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		params->size = 1ULL << params->size;
 | 
						|
	} else {
 | 
						|
		params->size++;
 | 
						|
	}
 | 
						|
	params->size >>= 3; /* Convert to bytes. */
 | 
						|
 | 
						|
	/* Fast Read settings. */
 | 
						|
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
 | 
						|
		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
 | 
						|
		struct spi_nor_read_command *read;
 | 
						|
 | 
						|
		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
 | 
						|
			params->hwcaps.mask &= ~rd->hwcaps;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		params->hwcaps.mask |= rd->hwcaps;
 | 
						|
		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
 | 
						|
		read = ¶ms->reads[cmd];
 | 
						|
		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
 | 
						|
		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Sector Erase settings. */
 | 
						|
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
 | 
						|
		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
 | 
						|
		u32 erasesize;
 | 
						|
		u8 opcode;
 | 
						|
 | 
						|
		half = bfpt.dwords[er->dword] >> er->shift;
 | 
						|
		erasesize = half & 0xff;
 | 
						|
 | 
						|
		/* erasesize == 0 means this Erase Type is not supported. */
 | 
						|
		if (!erasesize)
 | 
						|
			continue;
 | 
						|
 | 
						|
		erasesize = 1U << erasesize;
 | 
						|
		opcode = (half >> 8) & 0xff;
 | 
						|
#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
 | 
						|
		if (erasesize == SZ_4K) {
 | 
						|
			nor->erase_opcode = opcode;
 | 
						|
			mtd->erasesize = erasesize;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
		if (!mtd->erasesize || mtd->erasesize < erasesize) {
 | 
						|
			nor->erase_opcode = opcode;
 | 
						|
			mtd->erasesize = erasesize;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Stop here if not JESD216 rev A or later. */
 | 
						|
	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
 | 
						|
		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
 | 
						|
						params);
 | 
						|
 | 
						|
	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
 | 
						|
	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
 | 
						|
	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
 | 
						|
	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
 | 
						|
	params->page_size = 1U << params->page_size;
 | 
						|
 | 
						|
	/* Quad Enable Requirements. */
 | 
						|
	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
 | 
						|
	case BFPT_DWORD15_QER_NONE:
 | 
						|
		params->quad_enable = NULL;
 | 
						|
		break;
 | 
						|
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | 
						|
	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
 | 
						|
	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
 | 
						|
		params->quad_enable = spansion_no_read_cr_quad_enable;
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
 | 
						|
	case BFPT_DWORD15_QER_SR1_BIT6:
 | 
						|
		params->quad_enable = macronix_quad_enable;
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | 
						|
	case BFPT_DWORD15_QER_SR2_BIT1:
 | 
						|
		params->quad_enable = spansion_read_cr_quad_enable;
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
	default:
 | 
						|
		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Soft Reset support. */
 | 
						|
	if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SOFT_RST)
 | 
						|
		nor->flags |= SNOR_F_SOFT_RESET;
 | 
						|
 | 
						|
	/* Stop here if JESD216 rev B. */
 | 
						|
	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
 | 
						|
		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
 | 
						|
						params);
 | 
						|
 | 
						|
	/* 8D-8D-8D command extension. */
 | 
						|
	switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
 | 
						|
	case BFPT_DWORD18_CMD_EXT_REP:
 | 
						|
		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
 | 
						|
		break;
 | 
						|
 | 
						|
	case BFPT_DWORD18_CMD_EXT_INV:
 | 
						|
		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
 | 
						|
		break;
 | 
						|
 | 
						|
	case BFPT_DWORD18_CMD_EXT_RES:
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	case BFPT_DWORD18_CMD_EXT_16B:
 | 
						|
		dev_err(nor->dev, "16-bit opcodes not supported\n");
 | 
						|
		return -ENOTSUPP;
 | 
						|
	}
 | 
						|
 | 
						|
	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_parse_microchip_sfdp() - parse the Microchip manufacturer specific
 | 
						|
 * SFDP table.
 | 
						|
 * @nor:		pointer to a 'struct spi_nor'.
 | 
						|
 * @param_header:	pointer to the SFDP parameter header.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int
 | 
						|
spi_nor_parse_microchip_sfdp(struct spi_nor *nor,
 | 
						|
			     const struct sfdp_parameter_header *param_header)
 | 
						|
{
 | 
						|
	size_t size;
 | 
						|
	u32 addr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	size = param_header->length * sizeof(u32);
 | 
						|
	addr = SFDP_PARAM_HEADER_PTP(param_header);
 | 
						|
 | 
						|
	nor->manufacturer_sfdp = devm_kmalloc(nor->dev, size, GFP_KERNEL);
 | 
						|
	if (!nor->manufacturer_sfdp)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = spi_nor_read_sfdp(nor, addr, size, nor->manufacturer_sfdp);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
 | 
						|
 * @nor:		pointer to a 'struct spi_nor'
 | 
						|
 * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
 | 
						|
 *			the 4-Byte Address Instruction Table length and version.
 | 
						|
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_parse_profile1(struct spi_nor *nor,
 | 
						|
				  const struct sfdp_parameter_header *profile1_header,
 | 
						|
				  struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	u32 *table, opcode, addr;
 | 
						|
	size_t len;
 | 
						|
	int ret, i;
 | 
						|
	u8 dummy;
 | 
						|
 | 
						|
	len = profile1_header->length * sizeof(*table);
 | 
						|
	table = kmalloc(len, GFP_KERNEL);
 | 
						|
	if (!table)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
 | 
						|
	ret = spi_nor_read_sfdp(nor, addr, len, table);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Fix endianness of the table DWORDs. */
 | 
						|
	for (i = 0; i < profile1_header->length; i++)
 | 
						|
		table[i] = le32_to_cpu(table[i]);
 | 
						|
 | 
						|
	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
 | 
						|
	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, table[0]);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't know what speed the controller is running at. Find the
 | 
						|
	 * dummy cycles for the fastest frequency the flash can run at to be
 | 
						|
	 * sure we are never short of dummy cycles. A value of 0 means the
 | 
						|
	 * frequency is not supported.
 | 
						|
	 *
 | 
						|
	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
 | 
						|
	 * flashes set the correct value if needed in their fixup hooks.
 | 
						|
	 */
 | 
						|
	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, table[3]);
 | 
						|
	if (!dummy)
 | 
						|
		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, table[4]);
 | 
						|
	if (!dummy)
 | 
						|
		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, table[4]);
 | 
						|
	if (!dummy)
 | 
						|
		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, table[4]);
 | 
						|
	if (!dummy)
 | 
						|
		dummy = PROFILE1_DUMMY_DEFAULT;
 | 
						|
 | 
						|
	/* Round up to an even value to avoid tripping controllers up. */
 | 
						|
	dummy = ROUND_UP_TO(dummy, 2);
 | 
						|
 | 
						|
	/* Update the fast read settings. */
 | 
						|
	spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
 | 
						|
				  0, dummy, opcode,
 | 
						|
				  SNOR_PROTO_8_8_8_DTR);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set the Read Status Register dummy cycles and dummy address bytes.
 | 
						|
	 */
 | 
						|
	if (table[0] & PROFILE1_DWORD1_RDSR_DUMMY)
 | 
						|
		params->rdsr_dummy = 8;
 | 
						|
	else
 | 
						|
		params->rdsr_dummy = 4;
 | 
						|
 | 
						|
	if (table[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
 | 
						|
		params->rdsr_addr_nbytes = 4;
 | 
						|
	else
 | 
						|
		params->rdsr_addr_nbytes = 0;
 | 
						|
 | 
						|
out:
 | 
						|
	kfree(table);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
 | 
						|
 *			  Map.
 | 
						|
 * @nor:		  pointer to a 'struct spi_nor'
 | 
						|
 * @sccr_header:	  pointer to the 'struct sfdp_parameter_header' describing
 | 
						|
 * 			  the SCCR Map table length and version.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_parse_sccr(struct spi_nor *nor,
 | 
						|
			      const struct sfdp_parameter_header *sccr_header)
 | 
						|
{
 | 
						|
	u32 *table, addr;
 | 
						|
	size_t len;
 | 
						|
	int ret, i;
 | 
						|
 | 
						|
	len = sccr_header->length * sizeof(*table);
 | 
						|
	table = kmalloc(len, GFP_KERNEL);
 | 
						|
	if (!table)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
 | 
						|
	ret = spi_nor_read_sfdp(nor, addr, len, table);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Fix endianness of the table DWORDs. */
 | 
						|
	for (i = 0; i < sccr_header->length; i++)
 | 
						|
		table[i] = le32_to_cpu(table[i]);
 | 
						|
 | 
						|
	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, table[21]))
 | 
						|
		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
 | 
						|
 | 
						|
out:
 | 
						|
	kfree(table);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
 | 
						|
 * @nor:		pointer to a 'struct spi_nor'
 | 
						|
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 | 
						|
 *			filled
 | 
						|
 *
 | 
						|
 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
 | 
						|
 * specification. This is a standard which tends to supported by almost all
 | 
						|
 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
 | 
						|
 * runtime the main parameters needed to perform basic SPI flash operations such
 | 
						|
 * as Fast Read, Page Program or Sector Erase commands.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_parse_sfdp(struct spi_nor *nor,
 | 
						|
			      struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	const struct sfdp_parameter_header *param_header, *bfpt_header;
 | 
						|
	struct sfdp_parameter_header *param_headers = NULL;
 | 
						|
	struct sfdp_header header;
 | 
						|
	size_t psize;
 | 
						|
	int i, err;
 | 
						|
 | 
						|
	/* Get the SFDP header. */
 | 
						|
	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
 | 
						|
	if (err < 0)
 | 
						|
		return err;
 | 
						|
 | 
						|
	/* Check the SFDP header version. */
 | 
						|
	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
 | 
						|
	    header.major != SFDP_JESD216_MAJOR)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Verify that the first and only mandatory parameter header is a
 | 
						|
	 * Basic Flash Parameter Table header as specified in JESD216.
 | 
						|
	 */
 | 
						|
	bfpt_header = &header.bfpt_header;
 | 
						|
	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
 | 
						|
	    bfpt_header->major != SFDP_JESD216_MAJOR)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate memory then read all parameter headers with a single
 | 
						|
	 * Read SFDP command. These parameter headers will actually be parsed
 | 
						|
	 * twice: a first time to get the latest revision of the basic flash
 | 
						|
	 * parameter table, then a second time to handle the supported optional
 | 
						|
	 * tables.
 | 
						|
	 * Hence we read the parameter headers once for all to reduce the
 | 
						|
	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
 | 
						|
	 * because we don't need to keep these parameter headers: the allocated
 | 
						|
	 * memory is always released with kfree() before exiting this function.
 | 
						|
	 */
 | 
						|
	if (header.nph) {
 | 
						|
		psize = header.nph * sizeof(*param_headers);
 | 
						|
 | 
						|
		param_headers = kmalloc(psize, GFP_KERNEL);
 | 
						|
		if (!param_headers)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		err = spi_nor_read_sfdp(nor, sizeof(header),
 | 
						|
					psize, param_headers);
 | 
						|
		if (err < 0) {
 | 
						|
			dev_err(nor->dev,
 | 
						|
				"failed to read SFDP parameter headers\n");
 | 
						|
			goto exit;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check other parameter headers to get the latest revision of
 | 
						|
	 * the basic flash parameter table.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < header.nph; i++) {
 | 
						|
		param_header = ¶m_headers[i];
 | 
						|
 | 
						|
		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
 | 
						|
		    param_header->major == SFDP_JESD216_MAJOR &&
 | 
						|
		    (param_header->minor > bfpt_header->minor ||
 | 
						|
		     (param_header->minor == bfpt_header->minor &&
 | 
						|
		      param_header->length > bfpt_header->length)))
 | 
						|
			bfpt_header = param_header;
 | 
						|
	}
 | 
						|
 | 
						|
	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
 | 
						|
	if (err)
 | 
						|
		goto exit;
 | 
						|
 | 
						|
	/* Parse other parameter headers. */
 | 
						|
	for (i = 0; i < header.nph; i++) {
 | 
						|
		param_header = ¶m_headers[i];
 | 
						|
 | 
						|
		switch (SFDP_PARAM_HEADER_ID(param_header)) {
 | 
						|
		case SFDP_SECTOR_MAP_ID:
 | 
						|
			dev_info(nor->dev,
 | 
						|
				 "non-uniform erase sector maps are not supported yet.\n");
 | 
						|
			break;
 | 
						|
 | 
						|
		case SFDP_SST_ID:
 | 
						|
			err = spi_nor_parse_microchip_sfdp(nor, param_header);
 | 
						|
			break;
 | 
						|
 | 
						|
		case SFDP_PROFILE1_ID:
 | 
						|
			err = spi_nor_parse_profile1(nor, param_header, params);
 | 
						|
			break;
 | 
						|
 | 
						|
		case SFDP_SCCR_MAP_ID:
 | 
						|
			err = spi_nor_parse_sccr(nor, param_header);
 | 
						|
			break;
 | 
						|
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (err) {
 | 
						|
			dev_warn(nor->dev,
 | 
						|
				 "Failed to parse optional parameter table: %04x\n",
 | 
						|
				 SFDP_PARAM_HEADER_ID(param_header));
 | 
						|
			/*
 | 
						|
			 * Let's not drop all information we extracted so far
 | 
						|
			 * if optional table parsers fail. In case of failing,
 | 
						|
			 * each optional parser is responsible to roll back to
 | 
						|
			 * the previously known spi_nor data.
 | 
						|
			 */
 | 
						|
			err = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
exit:
 | 
						|
	kfree(param_headers);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
#else
 | 
						|
static int spi_nor_parse_sfdp(struct spi_nor *nor,
 | 
						|
			      struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
#endif /* SPI_FLASH_SFDP_SUPPORT */
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
 | 
						|
 * after SFDP has been parsed.
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 *
 | 
						|
 * Typically used to tweak various parameters that could not be extracted by
 | 
						|
 * other means (i.e. when information provided by the SFDP tables are incomplete
 | 
						|
 * or wrong).
 | 
						|
 */
 | 
						|
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor,
 | 
						|
				     struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	if (nor->fixups && nor->fixups->post_sfdp)
 | 
						|
		nor->fixups->post_sfdp(nor, params);
 | 
						|
}
 | 
						|
 | 
						|
static void spi_nor_late_init_fixups(struct spi_nor *nor,
 | 
						|
				     struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	if (nor->fixups && nor->fixups->late_init)
 | 
						|
		nor->fixups->late_init(nor, params);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_init_params(struct spi_nor *nor,
 | 
						|
			       const struct flash_info *info,
 | 
						|
			       struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
#if CONFIG_IS_ENABLED(DM_SPI) && CONFIG_IS_ENABLED(SPI_ADVANCE)
 | 
						|
	struct udevice *dev = nor->spi->dev;
 | 
						|
	u64 flash_size[SNOR_FLASH_CNT_MAX] = {0};
 | 
						|
	u32 idx = 0, i = 0;
 | 
						|
	int rc;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Set legacy flash parameters as default. */
 | 
						|
	memset(params, 0, sizeof(*params));
 | 
						|
 | 
						|
	/* Set SPI NOR sizes. */
 | 
						|
	params->writesize = 1;
 | 
						|
	params->size = info->sector_size * info->n_sectors;
 | 
						|
	params->page_size = info->page_size;
 | 
						|
 | 
						|
	if (!(info->flags & SPI_NOR_NO_FR)) {
 | 
						|
		/* Default to Fast Read for DT and non-DT platform devices. */
 | 
						|
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
 | 
						|
 | 
						|
		/* Mask out Fast Read if not requested at DT instantiation. */
 | 
						|
#if CONFIG_IS_ENABLED(DM_SPI)
 | 
						|
		if (!ofnode_read_bool(dev_ofnode(nor->spi->dev),
 | 
						|
				      "m25p,fast-read"))
 | 
						|
			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/* (Fast) Read settings. */
 | 
						|
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
 | 
						|
	spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
 | 
						|
				  0, 0, SPINOR_OP_READ,
 | 
						|
				  SNOR_PROTO_1_1_1);
 | 
						|
 | 
						|
	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
 | 
						|
		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
 | 
						|
					  0, 8, SPINOR_OP_READ_FAST,
 | 
						|
					  SNOR_PROTO_1_1_1);
 | 
						|
 | 
						|
	if (info->flags & SPI_NOR_DUAL_READ) {
 | 
						|
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
 | 
						|
		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
 | 
						|
					  0, 8, SPINOR_OP_READ_1_1_2,
 | 
						|
					  SNOR_PROTO_1_1_2);
 | 
						|
	}
 | 
						|
 | 
						|
	if (info->flags & SPI_NOR_QUAD_READ) {
 | 
						|
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
 | 
						|
		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
 | 
						|
					  0, 8, SPINOR_OP_READ_1_1_4,
 | 
						|
					  SNOR_PROTO_1_1_4);
 | 
						|
	}
 | 
						|
 | 
						|
	if (info->flags & SPI_NOR_OCTAL_READ) {
 | 
						|
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
 | 
						|
		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
 | 
						|
					  0, 8, SPINOR_OP_READ_1_1_8,
 | 
						|
					  SNOR_PROTO_1_1_8);
 | 
						|
	}
 | 
						|
 | 
						|
	if (info->flags & SPI_NOR_OCTAL_DTR_READ) {
 | 
						|
		params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
 | 
						|
		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
 | 
						|
					  0, 20, SPINOR_OP_READ_FAST,
 | 
						|
					  SNOR_PROTO_8_8_8_DTR);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Page Program settings. */
 | 
						|
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
 | 
						|
	spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
 | 
						|
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since xSPI Page Program opcode is backward compatible with
 | 
						|
	 * Legacy SPI, use Legacy SPI opcode there as well.
 | 
						|
	 */
 | 
						|
	spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
 | 
						|
				SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
 | 
						|
 | 
						|
	if (info->flags & SPI_NOR_QUAD_READ) {
 | 
						|
		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
 | 
						|
		spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
 | 
						|
					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Select the procedure to set the Quad Enable bit. */
 | 
						|
	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
 | 
						|
				   SNOR_HWCAPS_PP_QUAD)) {
 | 
						|
		switch (JEDEC_MFR(info)) {
 | 
						|
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
 | 
						|
		case SNOR_MFR_MACRONIX:
 | 
						|
		case SNOR_MFR_ISSI:
 | 
						|
			params->quad_enable = macronix_quad_enable;
 | 
						|
			break;
 | 
						|
#endif
 | 
						|
		case SNOR_MFR_ST:
 | 
						|
		case SNOR_MFR_MICRON:
 | 
						|
			break;
 | 
						|
 | 
						|
		default:
 | 
						|
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | 
						|
			/* Kept only for backward compatibility purpose. */
 | 
						|
			params->quad_enable = spansion_read_cr_quad_enable;
 | 
						|
#endif
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Override the parameters with data read from SFDP tables. */
 | 
						|
	nor->addr_width = 0;
 | 
						|
	nor->mtd.erasesize = 0;
 | 
						|
	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 | 
						|
	     SPI_NOR_OCTAL_DTR_READ)) &&
 | 
						|
	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
 | 
						|
		struct spi_nor_flash_parameter sfdp_params;
 | 
						|
 | 
						|
		memcpy(&sfdp_params, params, sizeof(sfdp_params));
 | 
						|
		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
 | 
						|
			nor->addr_width = 0;
 | 
						|
			nor->mtd.erasesize = 0;
 | 
						|
		} else {
 | 
						|
			memcpy(params, &sfdp_params, sizeof(*params));
 | 
						|
		}
 | 
						|
 | 
						|
		spi_nor_post_sfdp_fixups(nor, params);
 | 
						|
	}
 | 
						|
#if CONFIG_IS_ENABLED(DM_SPI) && CONFIG_IS_ENABLED(SPI_ADVANCE)
 | 
						|
	/*
 | 
						|
	 * The flashes that are connected in stacked mode should be of same make.
 | 
						|
	 * Except the flash size all other properties are identical for all the
 | 
						|
	 * flashes connected in stacked mode.
 | 
						|
	 * The flashes that are connected in parallel mode should be identical.
 | 
						|
	 */
 | 
						|
	while (i < SNOR_FLASH_CNT_MAX) {
 | 
						|
		rc = ofnode_read_u64_index(dev_ofnode(dev), "stacked-memories",
 | 
						|
					   idx, &flash_size[i]);
 | 
						|
		if (rc == -EINVAL) {
 | 
						|
			break;
 | 
						|
		} else if (rc == -EOVERFLOW) {
 | 
						|
			idx++;
 | 
						|
		} else {
 | 
						|
			idx++;
 | 
						|
			i++;
 | 
						|
			if (!(nor->flags & SNOR_F_HAS_STACKED))
 | 
						|
				nor->flags |= SNOR_F_HAS_STACKED;
 | 
						|
			if (!(nor->spi->flags & SPI_XFER_STACKED))
 | 
						|
				nor->spi->flags |= SPI_XFER_STACKED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	i = 0;
 | 
						|
	idx = 0;
 | 
						|
	while (i < SNOR_FLASH_CNT_MAX) {
 | 
						|
		rc = ofnode_read_u64_index(dev_ofnode(dev), "parallel-memories",
 | 
						|
					   idx, &flash_size[i]);
 | 
						|
		if (rc == -EINVAL) {
 | 
						|
			break;
 | 
						|
		} else if (rc == -EOVERFLOW) {
 | 
						|
			idx++;
 | 
						|
		} else {
 | 
						|
			idx++;
 | 
						|
			i++;
 | 
						|
			if (!(nor->flags & SNOR_F_HAS_PARALLEL))
 | 
						|
				nor->flags |= SNOR_F_HAS_PARALLEL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (nor->flags & (SNOR_F_HAS_STACKED | SNOR_F_HAS_PARALLEL)) {
 | 
						|
		params->size = 0;
 | 
						|
		for (idx = 0; idx < SNOR_FLASH_CNT_MAX; idx++)
 | 
						|
			params->size += flash_size[idx];
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * In parallel-memories the erase operation is
 | 
						|
	 * performed on both the flashes simultaneously
 | 
						|
	 * so, double the erasesize.
 | 
						|
	 */
 | 
						|
	if (nor->flags & SNOR_F_HAS_PARALLEL) {
 | 
						|
		nor->mtd.erasesize <<= 1;
 | 
						|
		params->page_size <<= 1;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	spi_nor_late_init_fixups(nor, params);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
 | 
						|
{
 | 
						|
	size_t i;
 | 
						|
 | 
						|
	for (i = 0; i < size; i++)
 | 
						|
		if (table[i][0] == (int)hwcaps)
 | 
						|
			return table[i][1];
 | 
						|
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
 | 
						|
{
 | 
						|
	static const int hwcaps_read2cmd[][2] = {
 | 
						|
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
 | 
						|
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
 | 
						|
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
 | 
						|
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
 | 
						|
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
 | 
						|
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
 | 
						|
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
 | 
						|
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
 | 
						|
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
 | 
						|
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
 | 
						|
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
 | 
						|
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
 | 
						|
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
 | 
						|
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
 | 
						|
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
 | 
						|
		{ SNOR_HWCAPS_READ_8_8_8_DTR,	SNOR_CMD_READ_8_8_8_DTR },
 | 
						|
	};
 | 
						|
 | 
						|
	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
 | 
						|
				  ARRAY_SIZE(hwcaps_read2cmd));
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
 | 
						|
{
 | 
						|
	static const int hwcaps_pp2cmd[][2] = {
 | 
						|
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
 | 
						|
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
 | 
						|
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
 | 
						|
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
 | 
						|
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
 | 
						|
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
 | 
						|
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
 | 
						|
		{ SNOR_HWCAPS_PP_8_8_8_DTR,	SNOR_CMD_PP_8_8_8_DTR },
 | 
						|
	};
 | 
						|
 | 
						|
	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
 | 
						|
				  ARRAY_SIZE(hwcaps_pp2cmd));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SMART_HWCAPS
 | 
						|
/**
 | 
						|
 * spi_nor_check_op - check if the operation is supported by controller
 | 
						|
 * @nor:        pointer to a 'struct spi_nor'
 | 
						|
 * @op:         pointer to op template to be checked
 | 
						|
 *
 | 
						|
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_check_op(struct spi_nor *nor,
 | 
						|
			    struct spi_mem_op *op)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * First test with 4 address bytes. The opcode itself might be a 3B
 | 
						|
	 * addressing opcode but we don't care, because SPI controller
 | 
						|
	 * implementation should not check the opcode, but just the sequence.
 | 
						|
	 */
 | 
						|
	op->addr.nbytes = 4;
 | 
						|
	if (!spi_mem_supports_op(nor->spi, op)) {
 | 
						|
		if (nor->mtd.size > SZ_16M)
 | 
						|
			return -ENOTSUPP;
 | 
						|
 | 
						|
		/* If flash size <= 16MB, 3 address bytes are sufficient */
 | 
						|
		op->addr.nbytes = 3;
 | 
						|
		if (!spi_mem_supports_op(nor->spi, op))
 | 
						|
			return -ENOTSUPP;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_check_readop - check if the read op is supported by controller
 | 
						|
 * @nor:         pointer to a 'struct spi_nor'
 | 
						|
 * @read:        pointer to op template to be checked
 | 
						|
 *
 | 
						|
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_check_readop(struct spi_nor *nor,
 | 
						|
				const struct spi_nor_read_command *read)
 | 
						|
{
 | 
						|
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
 | 
						|
					  SPI_MEM_OP_ADDR(3, 0, 0),
 | 
						|
					  SPI_MEM_OP_DUMMY(1, 0),
 | 
						|
					  SPI_MEM_OP_DATA_IN(2, NULL, 0));
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, read->proto);
 | 
						|
 | 
						|
	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
 | 
						|
			  op.dummy.buswidth / 8;
 | 
						|
	if (spi_nor_protocol_is_dtr(nor->read_proto))
 | 
						|
		op.dummy.nbytes *= 2;
 | 
						|
 | 
						|
	return spi_nor_check_op(nor, &op);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_check_pp - check if the page program op is supported by controller
 | 
						|
 * @nor:         pointer to a 'struct spi_nor'
 | 
						|
 * @pp:          pointer to op template to be checked
 | 
						|
 *
 | 
						|
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_check_pp(struct spi_nor *nor,
 | 
						|
			    const struct spi_nor_pp_command *pp)
 | 
						|
{
 | 
						|
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
 | 
						|
					  SPI_MEM_OP_ADDR(3, 0, 0),
 | 
						|
					  SPI_MEM_OP_NO_DUMMY,
 | 
						|
					  SPI_MEM_OP_DATA_OUT(2, NULL, 0));
 | 
						|
 | 
						|
	spi_nor_setup_op(nor, &op, pp->proto);
 | 
						|
 | 
						|
	return spi_nor_check_op(nor, &op);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI
 | 
						|
 *                         controller capabilities
 | 
						|
 * @nor:        pointer to a 'struct spi_nor'
 | 
						|
 * @params:     pointer to the 'struct spi_nor_flash_parameter'
 | 
						|
 *              representing SPI NOR flash capabilities
 | 
						|
 * @hwcaps:     pointer to resulting capabilities after adjusting
 | 
						|
 *              according to controller and flash's capability
 | 
						|
 *
 | 
						|
 * Discard caps based on what the SPI controller actually supports (using
 | 
						|
 * spi_mem_supports_op()).
 | 
						|
 */
 | 
						|
static void
 | 
						|
spi_nor_adjust_hwcaps(struct spi_nor *nor,
 | 
						|
		      const struct spi_nor_flash_parameter *params,
 | 
						|
		      u32 *hwcaps)
 | 
						|
{
 | 
						|
	unsigned int cap;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Start by assuming the controller supports every capability.
 | 
						|
	 * We will mask them after checking what's really supported
 | 
						|
	 * using spi_mem_supports_op().
 | 
						|
	 */
 | 
						|
	*hwcaps = SNOR_HWCAPS_ALL & params->hwcaps.mask;
 | 
						|
 | 
						|
	/* X-X-X modes are not supported yet, mask them all. */
 | 
						|
	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the reset line is broken, we do not want to enter a stateful
 | 
						|
	 * mode.
 | 
						|
	 */
 | 
						|
	if (nor->flags & SNOR_F_BROKEN_RESET)
 | 
						|
		*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
 | 
						|
 | 
						|
	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
 | 
						|
		int rdidx, ppidx;
 | 
						|
 | 
						|
		if (!(*hwcaps & BIT(cap)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
 | 
						|
		if (rdidx >= 0 &&
 | 
						|
		    spi_nor_check_readop(nor, ¶ms->reads[rdidx]))
 | 
						|
			*hwcaps &= ~BIT(cap);
 | 
						|
 | 
						|
		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
 | 
						|
		if (ppidx < 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (spi_nor_check_pp(nor, ¶ms->page_programs[ppidx]))
 | 
						|
			*hwcaps &= ~BIT(cap);
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
/**
 | 
						|
 * spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI
 | 
						|
 *                         controller capabilities
 | 
						|
 * @nor:        pointer to a 'struct spi_nor'
 | 
						|
 * @params:     pointer to the 'struct spi_nor_flash_parameter'
 | 
						|
 *              representing SPI NOR flash capabilities
 | 
						|
 * @hwcaps:     pointer to resulting capabilities after adjusting
 | 
						|
 *              according to controller and flash's capability
 | 
						|
 *
 | 
						|
 * Select caps based on what the SPI controller and SPI flash both support.
 | 
						|
 */
 | 
						|
static void
 | 
						|
spi_nor_adjust_hwcaps(struct spi_nor *nor,
 | 
						|
		      const struct spi_nor_flash_parameter *params,
 | 
						|
		      u32 *hwcaps)
 | 
						|
{
 | 
						|
	struct spi_slave *spi = nor->spi;
 | 
						|
	u32 ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
 | 
						|
			    SNOR_HWCAPS_READ_4_4_4 |
 | 
						|
			    SNOR_HWCAPS_READ_8_8_8 |
 | 
						|
			    SNOR_HWCAPS_PP_4_4_4   |
 | 
						|
			    SNOR_HWCAPS_PP_8_8_8);
 | 
						|
	u32 spi_hwcaps = (SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST |
 | 
						|
			  SNOR_HWCAPS_PP);
 | 
						|
 | 
						|
	/* Get the hardware capabilities the SPI controller supports. */
 | 
						|
	if (spi->mode & SPI_RX_OCTAL) {
 | 
						|
		spi_hwcaps |= SNOR_HWCAPS_READ_1_1_8;
 | 
						|
 | 
						|
		if (spi->mode & SPI_TX_OCTAL)
 | 
						|
			spi_hwcaps |= (SNOR_HWCAPS_READ_1_8_8 |
 | 
						|
					SNOR_HWCAPS_PP_1_1_8 |
 | 
						|
					SNOR_HWCAPS_PP_1_8_8);
 | 
						|
	} else if (spi->mode & SPI_RX_QUAD) {
 | 
						|
		spi_hwcaps |= SNOR_HWCAPS_READ_1_1_4;
 | 
						|
 | 
						|
		if (spi->mode & SPI_TX_QUAD)
 | 
						|
			spi_hwcaps |= (SNOR_HWCAPS_READ_1_4_4 |
 | 
						|
					SNOR_HWCAPS_PP_1_1_4 |
 | 
						|
					SNOR_HWCAPS_PP_1_4_4);
 | 
						|
	} else if (spi->mode & SPI_RX_DUAL) {
 | 
						|
		spi_hwcaps |= SNOR_HWCAPS_READ_1_1_2;
 | 
						|
 | 
						|
		if (spi->mode & SPI_TX_DUAL)
 | 
						|
			spi_hwcaps |= SNOR_HWCAPS_READ_1_2_2;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Keep only the hardware capabilities supported by both the SPI
 | 
						|
	 * controller and the SPI flash memory.
 | 
						|
	 */
 | 
						|
	*hwcaps = spi_hwcaps & params->hwcaps.mask;
 | 
						|
	if (*hwcaps & ignored_mask) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"SPI n-n-n protocols are not supported yet.\n");
 | 
						|
		*hwcaps &= ~ignored_mask;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* CONFIG_SPI_FLASH_SMART_HWCAPS */
 | 
						|
 | 
						|
static int spi_nor_select_read(struct spi_nor *nor,
 | 
						|
			       const struct spi_nor_flash_parameter *params,
 | 
						|
			       u32 shared_hwcaps)
 | 
						|
{
 | 
						|
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
 | 
						|
	const struct spi_nor_read_command *read;
 | 
						|
 | 
						|
	if (best_match < 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
 | 
						|
	if (cmd < 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	read = ¶ms->reads[cmd];
 | 
						|
	nor->read_opcode = read->opcode;
 | 
						|
	nor->read_proto = read->proto;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the spi-nor framework, we don't need to make the difference
 | 
						|
	 * between mode clock cycles and wait state clock cycles.
 | 
						|
	 * Indeed, the value of the mode clock cycles is used by a QSPI
 | 
						|
	 * flash memory to know whether it should enter or leave its 0-4-4
 | 
						|
	 * (Continuous Read / XIP) mode.
 | 
						|
	 * eXecution In Place is out of the scope of the mtd sub-system.
 | 
						|
	 * Hence we choose to merge both mode and wait state clock cycles
 | 
						|
	 * into the so called dummy clock cycles.
 | 
						|
	 */
 | 
						|
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_select_pp(struct spi_nor *nor,
 | 
						|
			     const struct spi_nor_flash_parameter *params,
 | 
						|
			     u32 shared_hwcaps)
 | 
						|
{
 | 
						|
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
 | 
						|
	const struct spi_nor_pp_command *pp;
 | 
						|
 | 
						|
	if (best_match < 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
 | 
						|
	if (cmd < 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	pp = ¶ms->page_programs[cmd];
 | 
						|
	nor->program_opcode = pp->opcode;
 | 
						|
	nor->write_proto = pp->proto;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_select_erase(struct spi_nor *nor,
 | 
						|
				const struct flash_info *info)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
 | 
						|
	/* Do nothing if already configured from SFDP. */
 | 
						|
	if (mtd->erasesize)
 | 
						|
		return 0;
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
 | 
						|
	/* prefer "small sector" erase if possible */
 | 
						|
	if (info->flags & SECT_4K) {
 | 
						|
		nor->erase_opcode = SPINOR_OP_BE_4K;
 | 
						|
		/*
 | 
						|
		 * In parallel-memories the erase operation is
 | 
						|
		 * performed on both the flashes simultaneously
 | 
						|
		 * so, double the erasesize.
 | 
						|
		 */
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
			mtd->erasesize = 4096 * 2;
 | 
						|
		else
 | 
						|
			mtd->erasesize = 4096;
 | 
						|
	} else if (info->flags & SECT_4K_PMC) {
 | 
						|
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
 | 
						|
		/*
 | 
						|
		 * In parallel-memories the erase operation is
 | 
						|
		 * performed on both the flashes simultaneously
 | 
						|
		 * so, double the erasesize.
 | 
						|
		 */
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
			mtd->erasesize = 4096 * 2;
 | 
						|
		else
 | 
						|
			mtd->erasesize = 4096;
 | 
						|
	} else
 | 
						|
#endif
 | 
						|
	{
 | 
						|
		nor->erase_opcode = SPINOR_OP_SE;
 | 
						|
		/*
 | 
						|
		 * In parallel-memories the erase operation is
 | 
						|
		 * performed on both the flashes simultaneously
 | 
						|
		 * so, double the erasesize.
 | 
						|
		 */
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
			mtd->erasesize = info->sector_size * 2;
 | 
						|
		else
 | 
						|
			mtd->erasesize = info->sector_size;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((JEDEC_MFR(info) == SNOR_MFR_SST) && info->flags & SECT_4K) {
 | 
						|
		nor->erase_opcode = SPINOR_OP_BE_4K;
 | 
						|
		/*
 | 
						|
		 * In parallel-memories the erase operation is
 | 
						|
		 * performed on both the flashes simultaneously
 | 
						|
		 * so, double the erasesize.
 | 
						|
		 */
 | 
						|
		if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
			mtd->erasesize = 4096 * 2;
 | 
						|
		else
 | 
						|
			mtd->erasesize = 4096;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_default_setup(struct spi_nor *nor,
 | 
						|
				 const struct flash_info *info,
 | 
						|
				 const struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	u32 shared_mask;
 | 
						|
	bool enable_quad_io;
 | 
						|
	int err;
 | 
						|
 | 
						|
	spi_nor_adjust_hwcaps(nor, params, &shared_mask);
 | 
						|
 | 
						|
	/* Select the (Fast) Read command. */
 | 
						|
	err = spi_nor_select_read(nor, params, shared_mask);
 | 
						|
	if (err) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"can't select read settings supported by both the SPI controller and memory.\n");
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Select the Page Program command. */
 | 
						|
	err = spi_nor_select_pp(nor, params, shared_mask);
 | 
						|
	if (err) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"can't select write settings supported by both the SPI controller and memory.\n");
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Select the Sector Erase command. */
 | 
						|
	err = spi_nor_select_erase(nor, info);
 | 
						|
	if (err) {
 | 
						|
		dev_dbg(nor->dev,
 | 
						|
			"can't select erase settings supported by both the SPI controller and memory.\n");
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Enable Quad I/O if needed. */
 | 
						|
	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
 | 
						|
			  spi_nor_get_protocol_width(nor->write_proto) == 4);
 | 
						|
	if (enable_quad_io && params->quad_enable)
 | 
						|
		nor->quad_enable = params->quad_enable;
 | 
						|
	else
 | 
						|
		nor->quad_enable = NULL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
 | 
						|
			 const struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	if (!nor->setup)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return nor->setup(nor, info, params);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SPANSION
 | 
						|
 | 
						|
/* Use ID byte 4 to distinguish S25FS256T and S25Hx-T */
 | 
						|
#define S25FS256T_ID4	(0x08)
 | 
						|
 | 
						|
/* Number of dummy cycle for Read Any Register (RDAR) op. */
 | 
						|
#define S25FS_S_RDAR_DUMMY	8
 | 
						|
 | 
						|
static int s25fs_s_quad_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	return spansion_quad_enable_volatile(nor, 0, S25FS_S_RDAR_DUMMY);
 | 
						|
}
 | 
						|
 | 
						|
static int s25fs_s_erase_non_uniform(struct spi_nor *nor, loff_t addr)
 | 
						|
{
 | 
						|
	u8 opcode = nor->addr_width == 4 ? SPINOR_OP_BE_4K_4B : SPINOR_OP_BE_4K;
 | 
						|
 | 
						|
	/* Support 8 x 4KB sectors at bottom */
 | 
						|
	return spansion_erase_non_uniform(nor, addr, opcode, 0, SZ_32K);
 | 
						|
}
 | 
						|
 | 
						|
static int s25fs_s_setup(struct spi_nor *nor, const struct flash_info *info,
 | 
						|
			 const struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	u8 cfr3v;
 | 
						|
 | 
						|
	/* Bank Address Register is not supported */
 | 
						|
	if (CONFIG_IS_ENABLED(SPI_FLASH_BAR))
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Read CR3V to check if uniform sector is selected. If not, assign an
 | 
						|
	 * erase hook that supports non-uniform erase.
 | 
						|
	 */
 | 
						|
	ret = spansion_read_any_reg(nor, SPINOR_REG_CYPRESS_CFR3V,
 | 
						|
				    S25FS_S_RDAR_DUMMY, &cfr3v);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	if (!(cfr3v & SPINOR_REG_CYPRESS_CFR3_UNISECT))
 | 
						|
		nor->erase = s25fs_s_erase_non_uniform;
 | 
						|
 | 
						|
	return spi_nor_default_setup(nor, info, params);
 | 
						|
}
 | 
						|
 | 
						|
static void s25fs_s_late_init(struct spi_nor *nor,
 | 
						|
			      struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	nor->setup = s25fs_s_setup;
 | 
						|
}
 | 
						|
 | 
						|
static int s25fs_s_post_bfpt_fixup(struct spi_nor *nor,
 | 
						|
				   const struct sfdp_parameter_header *header,
 | 
						|
				   const struct sfdp_bfpt *bfpt,
 | 
						|
				   struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	/* The erase size is set to 4K from BFPT, but it's wrong. Fix it. */
 | 
						|
	nor->erase_opcode = SPINOR_OP_SE;
 | 
						|
	nor->mtd.erasesize = nor->info->sector_size;
 | 
						|
 | 
						|
	/* The S25FS-S chip family reports 512-byte pages in BFPT but
 | 
						|
	 * in reality the write buffer still wraps at the safe default
 | 
						|
	 * of 256 bytes.  Overwrite the page size advertised by BFPT
 | 
						|
	 * to get the writes working.
 | 
						|
	 */
 | 
						|
	params->page_size = 256;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void s25fs_s_post_sfdp_fixup(struct spi_nor *nor,
 | 
						|
				    struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The S25FS064S(8MB) supports 1-1-2 and 1-1-4 commands, but params for
 | 
						|
	 * read ops in SFDP are wrong. The other density parts do not support
 | 
						|
	 * 1-1-2 and 1-1-4 commands.
 | 
						|
	 */
 | 
						|
	if (params->size == SZ_8M) {
 | 
						|
		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
 | 
						|
					  0, 8, SPINOR_OP_READ_1_1_2,
 | 
						|
					  SNOR_PROTO_1_1_2);
 | 
						|
		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
 | 
						|
					  0, 8, SPINOR_OP_READ_1_1_4,
 | 
						|
					  SNOR_PROTO_1_1_4);
 | 
						|
	} else {
 | 
						|
		params->hwcaps.mask &= ~SNOR_HWCAPS_READ_1_1_2;
 | 
						|
		params->hwcaps.mask &= ~SNOR_HWCAPS_READ_1_1_4;
 | 
						|
		params->hwcaps.mask &= ~SNOR_HWCAPS_PP_1_1_4;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Use volatile register to enable quad */
 | 
						|
	params->quad_enable = s25fs_s_quad_enable;
 | 
						|
}
 | 
						|
 | 
						|
static struct spi_nor_fixups s25fs_s_fixups = {
 | 
						|
	.post_bfpt = s25fs_s_post_bfpt_fixup,
 | 
						|
	.post_sfdp = s25fs_s_post_sfdp_fixup,
 | 
						|
	.late_init = s25fs_s_late_init,
 | 
						|
};
 | 
						|
 | 
						|
static int s25_s28_mdp_ready(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	u32 addr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) {
 | 
						|
		ret = spansion_sr_ready(nor, addr, nor->rdsr_dummy);
 | 
						|
		if (!ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int s25_quad_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	u32 addr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) {
 | 
						|
		ret = spansion_quad_enable_volatile(nor, addr, 0);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int s25_s28_erase_non_uniform(struct spi_nor *nor, loff_t addr)
 | 
						|
{
 | 
						|
	/* Support 32 x 4KB sectors at bottom */
 | 
						|
	return spansion_erase_non_uniform(nor, addr, SPINOR_OP_BE_4K_4B, 0,
 | 
						|
					  SZ_128K);
 | 
						|
}
 | 
						|
 | 
						|
static int s25_s28_setup(struct spi_nor *nor, const struct flash_info *info,
 | 
						|
			 const struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	u8 cr;
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_BAR
 | 
						|
	return -ENOTSUPP; /* Bank Address Register is not supported */
 | 
						|
#endif
 | 
						|
	/*
 | 
						|
	 * S25FS256T has multiple sector architecture options, with selection of
 | 
						|
	 * count and location of 128KB and 64KB sectors. This driver supports
 | 
						|
	 * uniform 128KB only due to complexity of non-uniform layout.
 | 
						|
	 */
 | 
						|
	if (nor->info->id[4] == S25FS256T_ID4) {
 | 
						|
		ret = spansion_read_any_reg(nor, SPINOR_REG_CYPRESS_ARCFN, 8,
 | 
						|
					    &cr);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		if (cr) /* Option 0 (ARCFN[7:0] == 0x00) is uniform */
 | 
						|
			return -EOPNOTSUPP;
 | 
						|
 | 
						|
		return spi_nor_default_setup(nor, info, params);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Read CFR3V to check if uniform sector is selected. If not, assign an
 | 
						|
	 * erase hook that supports non-uniform erase.
 | 
						|
	 */
 | 
						|
	ret = spansion_read_any_reg(nor, SPINOR_REG_CYPRESS_CFR3V, 0, &cr);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	if (!(cr & SPINOR_REG_CYPRESS_CFR3_UNISECT))
 | 
						|
		nor->erase = s25_s28_erase_non_uniform;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For the multi-die package parts, the ready() hook is needed to check
 | 
						|
	 * all dies' status via read any register.
 | 
						|
	 */
 | 
						|
	if (nor->mtd.size > SZ_128M)
 | 
						|
		nor->ready = s25_s28_mdp_ready;
 | 
						|
 | 
						|
	return spi_nor_default_setup(nor, info, params);
 | 
						|
}
 | 
						|
 | 
						|
static void s25_late_init(struct spi_nor *nor,
 | 
						|
			  struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	nor->setup = s25_s28_setup;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Programming is supported only in 16-byte ECC data unit granularity.
 | 
						|
	 * Byte-programming, bit-walking, or multiple program operations to the
 | 
						|
	 * same ECC data unit without an erase are not allowed.
 | 
						|
	 */
 | 
						|
	params->writesize = 16;
 | 
						|
}
 | 
						|
 | 
						|
static int s25_s28_post_bfpt_fixup(struct spi_nor *nor,
 | 
						|
				   const struct sfdp_parameter_header *header,
 | 
						|
				   const struct sfdp_bfpt *bfpt,
 | 
						|
				   struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	u32 addr;
 | 
						|
	u8 cfr3v;
 | 
						|
 | 
						|
	/* erase size in case it is set to 4K from BFPT */
 | 
						|
	nor->erase_opcode = SPINOR_OP_SE_4B;
 | 
						|
	nor->mtd.erasesize = nor->info->sector_size;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The default address mode in multi-die package parts (>1Gb) may be
 | 
						|
	 * 3- or 4-byte, depending on model number. BootROM code in some SoCs
 | 
						|
	 * use 3-byte mode for backward compatibility and should switch to
 | 
						|
	 * 4-byte mode after BootROM phase. Since registers in the 2nd die are
 | 
						|
	 * mapped within 32-bit address space, we need to make sure the flash is
 | 
						|
	 * in 4-byte address mode. The default address mode can be distinguished
 | 
						|
	 * by BFPT 16th DWORD. Power cycle exits 4-byte address mode if default
 | 
						|
	 * is 3-byte address mode.
 | 
						|
	 */
 | 
						|
	if (params->size > SZ_128M) {
 | 
						|
		if (bfpt->dwords[BFPT_DWORD(16)] & BFPT_DWORD16_EX4B_PWRCYC) {
 | 
						|
			ret = set_4byte(nor, nor->info, 1);
 | 
						|
			if (ret)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
		nor->addr_mode_nbytes = 4;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The default address mode in S25FS256T is 4. */
 | 
						|
	if (nor->info->id[4] == S25FS256T_ID4)
 | 
						|
		nor->addr_mode_nbytes = 4;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The page_size is set to 512B from BFPT, but it actually depends on
 | 
						|
	 * the configuration register. Look up the CFR3V and determine the
 | 
						|
	 * page_size. For multi-die package parts, use 512B only when the all
 | 
						|
	 * dies are configured to 512B buffer.
 | 
						|
	 */
 | 
						|
	for (addr = 0; addr < params->size; addr += SZ_128M) {
 | 
						|
		ret = spansion_read_any_reg(nor,
 | 
						|
					    addr + SPINOR_REG_CYPRESS_CFR3V, 0,
 | 
						|
					    &cfr3v);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		if (!(cfr3v & SPINOR_REG_CYPRESS_CFR3_PGSZ)) {
 | 
						|
			params->page_size = 256;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	params->page_size = 512;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void s25_post_sfdp_fixup(struct spi_nor *nor,
 | 
						|
				struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	if (nor->info->id[4] == S25FS256T_ID4) {
 | 
						|
		/* PP_1_1_4 is supported */
 | 
						|
		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
 | 
						|
	} else {
 | 
						|
		/* READ_FAST_4B (0Ch) requires mode cycles*/
 | 
						|
		params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
 | 
						|
		/* PP_1_1_4 is not supported */
 | 
						|
		params->hwcaps.mask &= ~SNOR_HWCAPS_PP_1_1_4;
 | 
						|
		/* Use volatile register to enable quad */
 | 
						|
		params->quad_enable = s25_quad_enable;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct spi_nor_fixups s25_fixups = {
 | 
						|
	.post_bfpt = s25_s28_post_bfpt_fixup,
 | 
						|
	.post_sfdp = s25_post_sfdp_fixup,
 | 
						|
	.late_init = s25_late_init,
 | 
						|
};
 | 
						|
 | 
						|
static int s25fl256l_setup(struct spi_nor *nor, const struct flash_info *info,
 | 
						|
			   const struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	return -ENOTSUPP; /* Bank Address Register is not supported */
 | 
						|
}
 | 
						|
 | 
						|
static void s25fl256l_late_init(struct spi_nor *nor,
 | 
						|
				struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	nor->setup = s25fl256l_setup;
 | 
						|
}
 | 
						|
 | 
						|
static struct spi_nor_fixups s25fl256l_fixups = {
 | 
						|
	.late_init = s25fl256l_late_init,
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_S28HX_T
 | 
						|
/**
 | 
						|
 * spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
 | 
						|
 * @nor:		pointer to a 'struct spi_nor'
 | 
						|
 *
 | 
						|
 * This also sets the memory access latency cycles to 24 to allow the flash to
 | 
						|
 * run at up to 200MHz.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	u32 addr;
 | 
						|
	u8 buf;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = write_enable(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Use 24 dummy cycles for memory array reads. */
 | 
						|
	for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) {
 | 
						|
		ret = spansion_read_any_reg(nor,
 | 
						|
					    addr + SPINOR_REG_CYPRESS_CFR2V, 0,
 | 
						|
					    &buf);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK;
 | 
						|
		buf |= SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24;
 | 
						|
		ret = spansion_write_any_reg(nor,
 | 
						|
					     addr + SPINOR_REG_CYPRESS_CFR2V,
 | 
						|
					     buf);
 | 
						|
		if (ret) {
 | 
						|
			dev_warn(nor->dev, "failed to set default memory latency value: %d\n", ret);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	nor->read_dummy = 24;
 | 
						|
 | 
						|
	ret = write_enable(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Set the octal and DTR enable bits. */
 | 
						|
	buf = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
 | 
						|
	for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) {
 | 
						|
		ret = spansion_write_any_reg(nor,
 | 
						|
					     addr + SPINOR_REG_CYPRESS_CFR5V,
 | 
						|
					     buf);
 | 
						|
		if (ret) {
 | 
						|
			dev_warn(nor->dev, "Failed to enable octal DTR mode\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void s28hx_t_late_init(struct spi_nor *nor,
 | 
						|
			      struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	nor->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable;
 | 
						|
	nor->setup = s25_s28_setup;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Programming is supported only in 16-byte ECC data unit granularity.
 | 
						|
	 * Byte-programming, bit-walking, or multiple program operations to the
 | 
						|
	 * same ECC data unit without an erase are not allowed.
 | 
						|
	 */
 | 
						|
	params->writesize = 16;
 | 
						|
}
 | 
						|
 | 
						|
static void s28hx_t_post_sfdp_fixup(struct spi_nor *nor,
 | 
						|
				    struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * On older versions of the flash the xSPI Profile 1.0 table has the
 | 
						|
	 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
 | 
						|
	 */
 | 
						|
	if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
 | 
						|
		params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
 | 
						|
			SPINOR_OP_CYPRESS_RD_FAST;
 | 
						|
 | 
						|
	params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
 | 
						|
 | 
						|
	/* This flash is also missing the 4-byte Page Program opcode bit. */
 | 
						|
	spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
 | 
						|
				SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
 | 
						|
	/*
 | 
						|
	 * Since xSPI Page Program opcode is backward compatible with
 | 
						|
	 * Legacy SPI, use Legacy SPI opcode there as well.
 | 
						|
	 */
 | 
						|
	spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
 | 
						|
				SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The xSPI Profile 1.0 table advertises the number of additional
 | 
						|
	 * address bytes needed for Read Status Register command as 0 but the
 | 
						|
	 * actual value for that is 4.
 | 
						|
	 */
 | 
						|
	params->rdsr_addr_nbytes = 4;
 | 
						|
}
 | 
						|
 | 
						|
static struct spi_nor_fixups s28hx_t_fixups = {
 | 
						|
	.post_sfdp = s28hx_t_post_sfdp_fixup,
 | 
						|
	.post_bfpt = s25_s28_post_bfpt_fixup,
 | 
						|
	.late_init = s28hx_t_late_init,
 | 
						|
};
 | 
						|
#endif /* CONFIG_SPI_FLASH_S28HX_T */
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_MT35XU
 | 
						|
static int spi_nor_micron_octal_dtr_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	struct spi_mem_op op;
 | 
						|
	u8 buf;
 | 
						|
	u8 addr_width = 3;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Set dummy cycles for Fast Read to the default of 20. */
 | 
						|
	ret = write_enable(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	buf = 20;
 | 
						|
	op = (struct spi_mem_op)
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
 | 
						|
			   SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_MT_CFR1V, 1),
 | 
						|
			   SPI_MEM_OP_NO_DUMMY,
 | 
						|
			   SPI_MEM_OP_DATA_OUT(1, &buf, 1));
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = spi_nor_wait_till_ready(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	nor->read_dummy = 20;
 | 
						|
 | 
						|
	ret = write_enable(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	buf = SPINOR_MT_OCT_DTR;
 | 
						|
	op = (struct spi_mem_op)
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
 | 
						|
			   SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_MT_CFR0V, 1),
 | 
						|
			   SPI_MEM_OP_NO_DUMMY,
 | 
						|
			   SPI_MEM_OP_DATA_OUT(1, &buf, 1));
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(nor->dev, "Failed to enable octal DTR mode\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void mt35xu512aba_late_init(struct spi_nor *nor,
 | 
						|
				   struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	nor->octal_dtr_enable = spi_nor_micron_octal_dtr_enable;
 | 
						|
}
 | 
						|
 | 
						|
static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor,
 | 
						|
					 struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	/* Set the Fast Read settings. */
 | 
						|
	params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
 | 
						|
	spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
 | 
						|
				  0, 20, SPINOR_OP_MT_DTR_RD,
 | 
						|
				  SNOR_PROTO_8_8_8_DTR);
 | 
						|
 | 
						|
	params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
 | 
						|
 | 
						|
	nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
 | 
						|
	params->rdsr_dummy = 8;
 | 
						|
	params->rdsr_addr_nbytes = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The BFPT quad enable field is set to a reserved value so the quad
 | 
						|
	 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
 | 
						|
	 * disable it.
 | 
						|
	 */
 | 
						|
	params->quad_enable = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct spi_nor_fixups mt35xu512aba_fixups = {
 | 
						|
	.post_sfdp = mt35xu512aba_post_sfdp_fixup,
 | 
						|
	.late_init = mt35xu512aba_late_init,
 | 
						|
};
 | 
						|
#endif /* CONFIG_SPI_FLASH_MT35XU */
 | 
						|
 | 
						|
#if CONFIG_IS_ENABLED(SPI_FLASH_MACRONIX)
 | 
						|
/**
 | 
						|
 * spi_nor_macronix_octal_dtr_enable() - Enable octal DTR on Macronix flashes.
 | 
						|
 * @nor:	pointer to a 'struct spi_nor'
 | 
						|
 *
 | 
						|
 * Set Macronix max dummy cycles 20 to allow the flash to run at fastest frequency.
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_macronix_octal_dtr_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	struct spi_mem_op op;
 | 
						|
	int ret;
 | 
						|
	u8 buf;
 | 
						|
 | 
						|
	ret = write_enable(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	buf = SPINOR_REG_MXIC_DC_20;
 | 
						|
	op = (struct spi_mem_op)
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_CR2, 1),
 | 
						|
			   SPI_MEM_OP_ADDR(4, SPINOR_REG_MXIC_CR2_DC, 1),
 | 
						|
			   SPI_MEM_OP_NO_DUMMY,
 | 
						|
			   SPI_MEM_OP_DATA_OUT(1, &buf, 1));
 | 
						|
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = spi_nor_wait_till_ready(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	nor->read_dummy = MXIC_MAX_DC;
 | 
						|
	ret = write_enable(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	buf = SPINOR_REG_MXIC_OPI_DTR_EN;
 | 
						|
	op = (struct spi_mem_op)
 | 
						|
		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_CR2, 1),
 | 
						|
			   SPI_MEM_OP_ADDR(4, SPINOR_REG_MXIC_CR2_MODE, 1),
 | 
						|
			   SPI_MEM_OP_NO_DUMMY,
 | 
						|
			   SPI_MEM_OP_DATA_OUT(1, &buf, 1));
 | 
						|
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(nor->dev, "Failed to enable octal DTR mode\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void macronix_octal_late_init(struct spi_nor *nor,
 | 
						|
				     struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	nor->octal_dtr_enable = spi_nor_macronix_octal_dtr_enable;
 | 
						|
}
 | 
						|
 | 
						|
static void macronix_octal_post_sfdp_fixup(struct spi_nor *nor,
 | 
						|
					 struct spi_nor_flash_parameter *params)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Adding SNOR_HWCAPS_PP_8_8_8_DTR in hwcaps.mask when
 | 
						|
	 * SPI_NOR_OCTAL_DTR_READ flag exists.
 | 
						|
	 */
 | 
						|
	if (params->hwcaps.mask & SNOR_HWCAPS_READ_8_8_8_DTR)
 | 
						|
		params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
 | 
						|
}
 | 
						|
 | 
						|
static struct spi_nor_fixups macronix_octal_fixups = {
 | 
						|
	.post_sfdp = macronix_octal_post_sfdp_fixup,
 | 
						|
	.late_init = macronix_octal_late_init,
 | 
						|
};
 | 
						|
#endif /* CONFIG_SPI_FLASH_MACRONIX */
 | 
						|
 | 
						|
/** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
 | 
						|
 * @nor:                 pointer to a 'struct spi_nor'
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno otherwise.
 | 
						|
 */
 | 
						|
static int spi_nor_octal_dtr_enable(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!nor->octal_dtr_enable)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
 | 
						|
	      nor->write_proto == SNOR_PROTO_8_8_8_DTR))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = nor->octal_dtr_enable(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_nor_init(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (nor->flags & SNOR_F_HAS_PARALLEL)
 | 
						|
		nor->spi->flags |= SPI_NOR_ENABLE_MULTI_CS;
 | 
						|
 | 
						|
	err = spi_nor_octal_dtr_enable(nor);
 | 
						|
	if (err) {
 | 
						|
		dev_dbg(nor->dev, "Octal DTR mode not supported\n");
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
 | 
						|
	 * with the software protection bits set
 | 
						|
	 */
 | 
						|
	if (IS_ENABLED(CONFIG_SPI_FLASH_UNLOCK_ALL) &&
 | 
						|
	    (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
 | 
						|
	     JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
 | 
						|
	     JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
 | 
						|
	     nor->info->flags & SPI_NOR_HAS_LOCK)) {
 | 
						|
		write_enable(nor);
 | 
						|
		write_sr(nor, 0);
 | 
						|
		spi_nor_wait_till_ready(nor);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Some Winbond SPI NORs have special SR3 register which is
 | 
						|
		 * used among other things to control whether non-standard
 | 
						|
		 * "Individual Block/Sector Write Protection" (WPS bit)
 | 
						|
		 * locking scheme is activated. This non-standard locking
 | 
						|
		 * scheme is not supported by either U-Boot or Linux SPI
 | 
						|
		 * NOR stack so make sure it is disabled, otherwise the
 | 
						|
		 * SPI NOR may appear locked for no obvious reason.
 | 
						|
		 */
 | 
						|
		if (JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) {
 | 
						|
			err = read_sr3(nor);
 | 
						|
			if (err > 0 && err & SR3_WPS) {
 | 
						|
				write_enable(nor);
 | 
						|
				write_sr3(nor, err & ~SR3_WPS);
 | 
						|
				write_disable(nor);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (nor->quad_enable) {
 | 
						|
		err = nor->quad_enable(nor);
 | 
						|
		if (err) {
 | 
						|
			dev_dbg(nor->dev, "quad mode not supported\n");
 | 
						|
			return err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (nor->addr_width == 4 &&
 | 
						|
	    !(nor->info->flags & SPI_NOR_OCTAL_DTR_READ) &&
 | 
						|
	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
 | 
						|
	    !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
 | 
						|
		/*
 | 
						|
		 * If the RESET# pin isn't hooked up properly, or the system
 | 
						|
		 * otherwise doesn't perform a reset command in the boot
 | 
						|
		 * sequence, it's impossible to 100% protect against unexpected
 | 
						|
		 * reboots (e.g., crashes). Warn the user (or hopefully, system
 | 
						|
		 * designer) that this is bad.
 | 
						|
		 */
 | 
						|
		if (nor->flags & SNOR_F_BROKEN_RESET)
 | 
						|
			debug("enabling reset hack; may not recover from unexpected reboots\n");
 | 
						|
		set_4byte(nor, nor->info, 1);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SOFT_RESET
 | 
						|
/**
 | 
						|
 * spi_nor_soft_reset() - perform the JEDEC Software Reset sequence
 | 
						|
 * @nor:	the spi_nor structure
 | 
						|
 *
 | 
						|
 * This function can be used to switch from Octal DTR mode to legacy mode on a
 | 
						|
 * flash that supports it. The soft reset is executed in Octal DTR mode.
 | 
						|
 *
 | 
						|
 * Return: 0 for success, -errno for failure.
 | 
						|
 */
 | 
						|
static int spi_nor_soft_reset(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	struct spi_mem_op op;
 | 
						|
	int ret;
 | 
						|
	enum spi_nor_cmd_ext ext;
 | 
						|
 | 
						|
	ext = nor->cmd_ext_type;
 | 
						|
	if (nor->cmd_ext_type == SPI_NOR_EXT_NONE) {
 | 
						|
		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
 | 
						|
#if CONFIG_IS_ENABLED(SPI_NOR_BOOT_SOFT_RESET_EXT_INVERT)
 | 
						|
		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
 | 
						|
#endif /* SPI_NOR_BOOT_SOFT_RESET_EXT_INVERT */
 | 
						|
	}
 | 
						|
 | 
						|
	op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
 | 
						|
			SPI_MEM_OP_NO_DUMMY,
 | 
						|
			SPI_MEM_OP_NO_ADDR,
 | 
						|
			SPI_MEM_OP_NO_DATA);
 | 
						|
	spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret) {
 | 
						|
		dev_warn(nor->dev, "Software reset enable failed: %d\n", ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
 | 
						|
			SPI_MEM_OP_NO_DUMMY,
 | 
						|
			SPI_MEM_OP_NO_ADDR,
 | 
						|
			SPI_MEM_OP_NO_DATA);
 | 
						|
	spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
 | 
						|
	ret = spi_mem_exec_op(nor->spi, &op);
 | 
						|
	if (ret) {
 | 
						|
		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Software Reset is not instant, and the delay varies from flash to
 | 
						|
	 * flash. Looking at a few flashes, most range somewhere below 100
 | 
						|
	 * microseconds. So, wait for 200ms just to be sure.
 | 
						|
	 */
 | 
						|
	udelay(SPI_NOR_SRST_SLEEP_LEN);
 | 
						|
 | 
						|
out:
 | 
						|
	nor->cmd_ext_type = ext;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif /* CONFIG_SPI_FLASH_SOFT_RESET */
 | 
						|
 | 
						|
int spi_nor_remove(struct spi_nor *nor)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SPI_FLASH_SOFT_RESET
 | 
						|
	if (nor->info->flags & SPI_NOR_OCTAL_DTR_READ &&
 | 
						|
	    nor->flags & SNOR_F_SOFT_RESET)
 | 
						|
		return spi_nor_soft_reset(nor);
 | 
						|
#endif
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void spi_nor_set_fixups(struct spi_nor *nor)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SPI_FLASH_SPANSION
 | 
						|
	if (JEDEC_MFR(nor->info) == SNOR_MFR_CYPRESS) {
 | 
						|
		switch (nor->info->id[1]) {
 | 
						|
		case 0x2a: /* S25HL (QSPI, 3.3V) */
 | 
						|
		case 0x2b: /* S25HS (QSPI, 1.8V) */
 | 
						|
			nor->fixups = &s25_fixups;
 | 
						|
			break;
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_S28HX_T
 | 
						|
		case 0x5a: /* S28HL (Octal, 3.3V) */
 | 
						|
		case 0x5b: /* S28HS (Octal, 1.8V) */
 | 
						|
			nor->fixups = &s28hx_t_fixups;
 | 
						|
			break;
 | 
						|
#endif
 | 
						|
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (CONFIG_IS_ENABLED(SPI_FLASH_BAR) &&
 | 
						|
	    !strcmp(nor->info->name, "s25fl256l"))
 | 
						|
		nor->fixups = &s25fl256l_fixups;
 | 
						|
 | 
						|
	/* For FS-S (family ID = 0x81)  */
 | 
						|
	if (JEDEC_MFR(nor->info) == SNOR_MFR_SPANSION && nor->info->id[5] == 0x81)
 | 
						|
		nor->fixups = &s25fs_s_fixups;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_MT35XU
 | 
						|
	if (!strcmp(nor->info->name, "mt35xu512aba"))
 | 
						|
		nor->fixups = &mt35xu512aba_fixups;
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_IS_ENABLED(SPI_FLASH_MACRONIX)
 | 
						|
	if (JEDEC_MFR(nor->info) == SNOR_MFR_MACRONIX &&
 | 
						|
	    nor->info->flags & SPI_NOR_OCTAL_DTR_READ)
 | 
						|
		nor->fixups = ¯onix_octal_fixups;
 | 
						|
#endif /* SPI_FLASH_MACRONIX */
 | 
						|
}
 | 
						|
 | 
						|
int spi_nor_scan(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	struct spi_nor_flash_parameter params;
 | 
						|
	const struct flash_info *info = NULL;
 | 
						|
	struct mtd_info *mtd = &nor->mtd;
 | 
						|
	struct spi_slave *spi = nor->spi;
 | 
						|
	int ret;
 | 
						|
	int cfi_mtd_nb = 0;
 | 
						|
	bool shift = 0;
 | 
						|
 | 
						|
#ifdef CONFIG_FLASH_CFI_MTD
 | 
						|
	cfi_mtd_nb = CFI_FLASH_BANKS;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Reset SPI protocol for all commands. */
 | 
						|
	nor->reg_proto = SNOR_PROTO_1_1_1;
 | 
						|
	nor->read_proto = SNOR_PROTO_1_1_1;
 | 
						|
	nor->write_proto = SNOR_PROTO_1_1_1;
 | 
						|
	nor->read = spi_nor_read_data;
 | 
						|
	nor->write = spi_nor_write_data;
 | 
						|
	nor->read_reg = spi_nor_read_reg;
 | 
						|
	nor->write_reg = spi_nor_write_reg;
 | 
						|
 | 
						|
	nor->setup = spi_nor_default_setup;
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT
 | 
						|
	/*
 | 
						|
	 * When the flash is handed to us in a stateful mode like 8D-8D-8D, it
 | 
						|
	 * is difficult to detect the mode the flash is in. One option is to
 | 
						|
	 * read SFDP in all modes and see which one gives the correct "SFDP"
 | 
						|
	 * signature, but not all flashes support SFDP in 8D-8D-8D mode.
 | 
						|
	 *
 | 
						|
	 * Further, even if you detect the mode of the flash via SFDP, you
 | 
						|
	 * still have the problem of actually reading the ID. The Read ID
 | 
						|
	 * command is not standardized across flash vendors. Flashes can have
 | 
						|
	 * different dummy cycles needed for reading the ID. Some flashes even
 | 
						|
	 * expect a 4-byte dummy address with the Read ID command. All this
 | 
						|
	 * information cannot be obtained from the SFDP table.
 | 
						|
	 *
 | 
						|
	 * So, perform a Software Reset sequence before reading the ID and
 | 
						|
	 * initializing the flash. A Soft Reset will bring back the flash in
 | 
						|
	 * its default protocol mode assuming no non-volatile configuration was
 | 
						|
	 * set. This will let us detect the flash even if ROM hands it to us in
 | 
						|
	 * Octal DTR mode.
 | 
						|
	 *
 | 
						|
	 * To accommodate cases where there is more than one flash on a board,
 | 
						|
	 * and only one of them needs a soft reset, failure to reset is not
 | 
						|
	 * made fatal, and we still try to read ID if possible.
 | 
						|
	 */
 | 
						|
	spi_nor_soft_reset(nor);
 | 
						|
#endif /* CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT */
 | 
						|
 | 
						|
	info = spi_nor_read_id(nor);
 | 
						|
	if (IS_ERR_OR_NULL(info))
 | 
						|
		return -ENOENT;
 | 
						|
	nor->info = info;
 | 
						|
 | 
						|
	spi_nor_set_fixups(nor);
 | 
						|
 | 
						|
	/* Parse the Serial Flash Discoverable Parameters table. */
 | 
						|
	ret = spi_nor_init_params(nor, info, ¶ms);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (!mtd->name) {
 | 
						|
		sprintf(nor->mtd_name, "%s%d",
 | 
						|
			MTD_DEV_TYPE(MTD_DEV_TYPE_NOR),
 | 
						|
			cfi_mtd_nb + dev_seq(nor->dev));
 | 
						|
		mtd->name = nor->mtd_name;
 | 
						|
	}
 | 
						|
	mtd->dev = nor->dev;
 | 
						|
	mtd->priv = nor;
 | 
						|
	mtd->type = MTD_NORFLASH;
 | 
						|
	mtd->writesize = params.writesize;
 | 
						|
	mtd->flags = MTD_CAP_NORFLASH;
 | 
						|
	mtd->size = params.size;
 | 
						|
	mtd->_erase = spi_nor_erase;
 | 
						|
	mtd->_read = spi_nor_read;
 | 
						|
	mtd->_write = spi_nor_write;
 | 
						|
 | 
						|
#if defined(CONFIG_SPI_FLASH_LOCK)
 | 
						|
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
 | 
						|
	/* NOR protection support for STmicro/Micron chips and similar */
 | 
						|
	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
 | 
						|
	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
 | 
						|
	    JEDEC_MFR(info) == SNOR_MFR_SST ||
 | 
						|
			info->flags & SPI_NOR_HAS_LOCK) {
 | 
						|
		nor->flash_lock = stm_lock;
 | 
						|
		nor->flash_unlock = stm_unlock;
 | 
						|
		nor->flash_is_unlocked = stm_is_unlocked;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SPI_FLASH_SST
 | 
						|
	/*
 | 
						|
	 * sst26 series block protection implementation differs from other
 | 
						|
	 * series.
 | 
						|
	 */
 | 
						|
	if (info->flags & SPI_NOR_HAS_SST26LOCK) {
 | 
						|
		nor->flash_lock = sst26_lock;
 | 
						|
		nor->flash_unlock = sst26_unlock;
 | 
						|
		nor->flash_is_unlocked = sst26_is_unlocked;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
	if (info->flags & USE_FSR)
 | 
						|
		nor->flags |= SNOR_F_USE_FSR;
 | 
						|
	if (info->flags & SPI_NOR_HAS_TB)
 | 
						|
		nor->flags |= SNOR_F_HAS_SR_TB;
 | 
						|
	if (info->flags & NO_CHIP_ERASE)
 | 
						|
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
 | 
						|
	if (info->flags & USE_CLSR)
 | 
						|
		nor->flags |= SNOR_F_USE_CLSR;
 | 
						|
 | 
						|
	if (info->flags & SPI_NOR_NO_ERASE)
 | 
						|
		mtd->flags |= MTD_NO_ERASE;
 | 
						|
 | 
						|
	nor->page_size = params.page_size;
 | 
						|
	mtd->writebufsize = nor->page_size;
 | 
						|
 | 
						|
	/* Some devices cannot do fast-read, no matter what DT tells us */
 | 
						|
	if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
 | 
						|
		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Configure the SPI memory:
 | 
						|
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
 | 
						|
	 * - set the number of dummy cycles (mode cycles + wait states).
 | 
						|
	 * - set the SPI protocols for register and memory accesses.
 | 
						|
	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
 | 
						|
	 */
 | 
						|
	ret = spi_nor_setup(nor, info, ¶ms);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (spi_nor_protocol_is_dtr(nor->read_proto)) {
 | 
						|
		 /* Always use 4-byte addresses in DTR mode. */
 | 
						|
		nor->addr_width = 4;
 | 
						|
	} else if (nor->addr_width) {
 | 
						|
		/* already configured from SFDP */
 | 
						|
	} else if (info->addr_width) {
 | 
						|
		nor->addr_width = info->addr_width;
 | 
						|
	} else {
 | 
						|
		nor->addr_width = 3;
 | 
						|
	}
 | 
						|
 | 
						|
	if (nor->flags & (SNOR_F_HAS_PARALLEL | SNOR_F_HAS_STACKED))
 | 
						|
		shift = 1;
 | 
						|
	if (nor->addr_width == 3 && (mtd->size >> shift) > SZ_16M) {
 | 
						|
#ifndef CONFIG_SPI_FLASH_BAR
 | 
						|
		/* enable 4-byte addressing if the device exceeds 16MiB */
 | 
						|
		nor->addr_width = 4;
 | 
						|
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
 | 
						|
		    info->flags & SPI_NOR_4B_OPCODES)
 | 
						|
			spi_nor_set_4byte_opcodes(nor, info);
 | 
						|
#else
 | 
						|
	/* Configure the BAR - discover bank cmds and read current bank */
 | 
						|
	nor->addr_width = 3;
 | 
						|
	set_4byte(nor, info, 0);
 | 
						|
	ret = read_bar(nor, info);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
 | 
						|
		dev_dbg(nor->dev, "address width is too large: %u\n",
 | 
						|
			nor->addr_width);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Send all the required SPI flash commands to initialize device */
 | 
						|
	ret = spi_nor_init(nor);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (nor->flags & SNOR_F_HAS_STACKED) {
 | 
						|
		nor->spi->flags |= SPI_XFER_U_PAGE;
 | 
						|
		ret = spi_nor_init(nor);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
		nor->spi->flags &= ~SPI_XFER_U_PAGE;
 | 
						|
	}
 | 
						|
 | 
						|
	nor->rdsr_dummy = params.rdsr_dummy;
 | 
						|
	nor->rdsr_addr_nbytes = params.rdsr_addr_nbytes;
 | 
						|
	nor->name = info->name;
 | 
						|
	nor->size = mtd->size;
 | 
						|
	nor->erase_size = mtd->erasesize;
 | 
						|
	nor->sector_size = mtd->erasesize;
 | 
						|
 | 
						|
#ifndef CONFIG_XPL_BUILD
 | 
						|
	printf("SF: Detected %s with page size ", nor->name);
 | 
						|
	print_size(nor->page_size, ", erase size ");
 | 
						|
	print_size(nor->erase_size, ", total ");
 | 
						|
	print_size(nor->size, "");
 | 
						|
	puts("\n");
 | 
						|
#endif
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* U-Boot specific functions, need to extend MTD to support these */
 | 
						|
int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
 | 
						|
{
 | 
						|
	int sr = read_sr(nor);
 | 
						|
 | 
						|
	if (sr < 0)
 | 
						|
		return sr;
 | 
						|
 | 
						|
	return (sr >> 2) & 7;
 | 
						|
}
 |