mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-31 12:08:19 +00:00 
			
		
		
		
	- remove trailing white space, trailing empty lines, C++ comments, etc.
  - split cmd_boot.c (separate cmd_bdinfo.c and cmd_load.c)
* Patches by Kenneth Johansson, 25 Jun 2003:
  - major rework of command structure
    (work done mostly by Michal Cendrowski and Joakim Kristiansen)
		
	
			
		
			
				
	
	
		
			384 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _I386_BITOPS_H
 | |
| #define _I386_BITOPS_H
 | |
| 
 | |
| /*
 | |
|  * Copyright 1992, Linus Torvalds.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * These have to be done with inline assembly: that way the bit-setting
 | |
|  * is guaranteed to be atomic. All bit operations return 0 if the bit
 | |
|  * was cleared before the operation and != 0 if it was not.
 | |
|  *
 | |
|  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| #define LOCK_PREFIX "lock ; "
 | |
| #else
 | |
| #define LOCK_PREFIX ""
 | |
| #endif
 | |
| 
 | |
| #define ADDR (*(volatile long *) addr)
 | |
| 
 | |
| /**
 | |
|  * set_bit - Atomically set a bit in memory
 | |
|  * @nr: the bit to set
 | |
|  * @addr: the address to start counting from
 | |
|  *
 | |
|  * This function is atomic and may not be reordered.  See __set_bit()
 | |
|  * if you do not require the atomic guarantees.
 | |
|  * Note that @nr may be almost arbitrarily large; this function is not
 | |
|  * restricted to acting on a single-word quantity.
 | |
|  */
 | |
| static __inline__ void set_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	__asm__ __volatile__( LOCK_PREFIX
 | |
| 		"btsl %1,%0"
 | |
| 		:"=m" (ADDR)
 | |
| 		:"Ir" (nr));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __set_bit - Set a bit in memory
 | |
|  * @nr: the bit to set
 | |
|  * @addr: the address to start counting from
 | |
|  *
 | |
|  * Unlike set_bit(), this function is non-atomic and may be reordered.
 | |
|  * If it's called on the same region of memory simultaneously, the effect
 | |
|  * may be that only one operation succeeds.
 | |
|  */
 | |
| static __inline__ void __set_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	__asm__(
 | |
| 		"btsl %1,%0"
 | |
| 		:"=m" (ADDR)
 | |
| 		:"Ir" (nr));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * clear_bit - Clears a bit in memory
 | |
|  * @nr: Bit to clear
 | |
|  * @addr: Address to start counting from
 | |
|  *
 | |
|  * clear_bit() is atomic and may not be reordered.  However, it does
 | |
|  * not contain a memory barrier, so if it is used for locking purposes,
 | |
|  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 | |
|  * in order to ensure changes are visible on other processors.
 | |
|  */
 | |
| static __inline__ void clear_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	__asm__ __volatile__( LOCK_PREFIX
 | |
| 		"btrl %1,%0"
 | |
| 		:"=m" (ADDR)
 | |
| 		:"Ir" (nr));
 | |
| }
 | |
| #define smp_mb__before_clear_bit()	barrier()
 | |
| #define smp_mb__after_clear_bit()	barrier()
 | |
| 
 | |
| /**
 | |
|  * __change_bit - Toggle a bit in memory
 | |
|  * @nr: the bit to set
 | |
|  * @addr: the address to start counting from
 | |
|  *
 | |
|  * Unlike change_bit(), this function is non-atomic and may be reordered.
 | |
|  * If it's called on the same region of memory simultaneously, the effect
 | |
|  * may be that only one operation succeeds.
 | |
|  */
 | |
| static __inline__ void __change_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	__asm__ __volatile__(
 | |
| 		"btcl %1,%0"
 | |
| 		:"=m" (ADDR)
 | |
| 		:"Ir" (nr));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * change_bit - Toggle a bit in memory
 | |
|  * @nr: Bit to clear
 | |
|  * @addr: Address to start counting from
 | |
|  *
 | |
|  * change_bit() is atomic and may not be reordered.
 | |
|  * Note that @nr may be almost arbitrarily large; this function is not
 | |
|  * restricted to acting on a single-word quantity.
 | |
|  */
 | |
| static __inline__ void change_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	__asm__ __volatile__( LOCK_PREFIX
 | |
| 		"btcl %1,%0"
 | |
| 		:"=m" (ADDR)
 | |
| 		:"Ir" (nr));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * test_and_set_bit - Set a bit and return its old value
 | |
|  * @nr: Bit to set
 | |
|  * @addr: Address to count from
 | |
|  *
 | |
|  * This operation is atomic and cannot be reordered.
 | |
|  * It also implies a memory barrier.
 | |
|  */
 | |
| static __inline__ int test_and_set_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	int oldbit;
 | |
| 
 | |
| 	__asm__ __volatile__( LOCK_PREFIX
 | |
| 		"btsl %2,%1\n\tsbbl %0,%0"
 | |
| 		:"=r" (oldbit),"=m" (ADDR)
 | |
| 		:"Ir" (nr) : "memory");
 | |
| 	return oldbit;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __test_and_set_bit - Set a bit and return its old value
 | |
|  * @nr: Bit to set
 | |
|  * @addr: Address to count from
 | |
|  *
 | |
|  * This operation is non-atomic and can be reordered.
 | |
|  * If two examples of this operation race, one can appear to succeed
 | |
|  * but actually fail.  You must protect multiple accesses with a lock.
 | |
|  */
 | |
| static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	int oldbit;
 | |
| 
 | |
| 	__asm__(
 | |
| 		"btsl %2,%1\n\tsbbl %0,%0"
 | |
| 		:"=r" (oldbit),"=m" (ADDR)
 | |
| 		:"Ir" (nr));
 | |
| 	return oldbit;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * test_and_clear_bit - Clear a bit and return its old value
 | |
|  * @nr: Bit to set
 | |
|  * @addr: Address to count from
 | |
|  *
 | |
|  * This operation is atomic and cannot be reordered.
 | |
|  * It also implies a memory barrier.
 | |
|  */
 | |
| static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	int oldbit;
 | |
| 
 | |
| 	__asm__ __volatile__( LOCK_PREFIX
 | |
| 		"btrl %2,%1\n\tsbbl %0,%0"
 | |
| 		:"=r" (oldbit),"=m" (ADDR)
 | |
| 		:"Ir" (nr) : "memory");
 | |
| 	return oldbit;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __test_and_clear_bit - Clear a bit and return its old value
 | |
|  * @nr: Bit to set
 | |
|  * @addr: Address to count from
 | |
|  *
 | |
|  * This operation is non-atomic and can be reordered.
 | |
|  * If two examples of this operation race, one can appear to succeed
 | |
|  * but actually fail.  You must protect multiple accesses with a lock.
 | |
|  */
 | |
| static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	int oldbit;
 | |
| 
 | |
| 	__asm__(
 | |
| 		"btrl %2,%1\n\tsbbl %0,%0"
 | |
| 		:"=r" (oldbit),"=m" (ADDR)
 | |
| 		:"Ir" (nr));
 | |
| 	return oldbit;
 | |
| }
 | |
| 
 | |
| /* WARNING: non atomic and it can be reordered! */
 | |
| static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	int oldbit;
 | |
| 
 | |
| 	__asm__ __volatile__(
 | |
| 		"btcl %2,%1\n\tsbbl %0,%0"
 | |
| 		:"=r" (oldbit),"=m" (ADDR)
 | |
| 		:"Ir" (nr) : "memory");
 | |
| 	return oldbit;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * test_and_change_bit - Change a bit and return its new value
 | |
|  * @nr: Bit to set
 | |
|  * @addr: Address to count from
 | |
|  *
 | |
|  * This operation is atomic and cannot be reordered.
 | |
|  * It also implies a memory barrier.
 | |
|  */
 | |
| static __inline__ int test_and_change_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	int oldbit;
 | |
| 
 | |
| 	__asm__ __volatile__( LOCK_PREFIX
 | |
| 		"btcl %2,%1\n\tsbbl %0,%0"
 | |
| 		:"=r" (oldbit),"=m" (ADDR)
 | |
| 		:"Ir" (nr) : "memory");
 | |
| 	return oldbit;
 | |
| }
 | |
| 
 | |
| #if 0 /* Fool kernel-doc since it doesn't do macros yet */
 | |
| /**
 | |
|  * test_bit - Determine whether a bit is set
 | |
|  * @nr: bit number to test
 | |
|  * @addr: Address to start counting from
 | |
|  */
 | |
| static int test_bit(int nr, const volatile void * addr);
 | |
| #endif
 | |
| 
 | |
| static __inline__ int constant_test_bit(int nr, const volatile void * addr)
 | |
| {
 | |
| 	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
 | |
| }
 | |
| 
 | |
| static __inline__ int variable_test_bit(int nr, volatile void * addr)
 | |
| {
 | |
| 	int oldbit;
 | |
| 
 | |
| 	__asm__ __volatile__(
 | |
| 		"btl %2,%1\n\tsbbl %0,%0"
 | |
| 		:"=r" (oldbit)
 | |
| 		:"m" (ADDR),"Ir" (nr));
 | |
| 	return oldbit;
 | |
| }
 | |
| 
 | |
| #define test_bit(nr,addr) \
 | |
| (__builtin_constant_p(nr) ? \
 | |
|  constant_test_bit((nr),(addr)) : \
 | |
|  variable_test_bit((nr),(addr)))
 | |
| 
 | |
| /**
 | |
|  * find_first_zero_bit - find the first zero bit in a memory region
 | |
|  * @addr: The address to start the search at
 | |
|  * @size: The maximum size to search
 | |
|  *
 | |
|  * Returns the bit-number of the first zero bit, not the number of the byte
 | |
|  * containing a bit.
 | |
|  */
 | |
| static __inline__ int find_first_zero_bit(void * addr, unsigned size)
 | |
| {
 | |
| 	int d0, d1, d2;
 | |
| 	int res;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return 0;
 | |
| 	/* This looks at memory. Mark it volatile to tell gcc not to move it around */
 | |
| 	__asm__ __volatile__(
 | |
| 		"movl $-1,%%eax\n\t"
 | |
| 		"xorl %%edx,%%edx\n\t"
 | |
| 		"repe; scasl\n\t"
 | |
| 		"je 1f\n\t"
 | |
| 		"xorl -4(%%edi),%%eax\n\t"
 | |
| 		"subl $4,%%edi\n\t"
 | |
| 		"bsfl %%eax,%%edx\n"
 | |
| 		"1:\tsubl %%ebx,%%edi\n\t"
 | |
| 		"shll $3,%%edi\n\t"
 | |
| 		"addl %%edi,%%edx"
 | |
| 		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
 | |
| 		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_next_zero_bit - find the first zero bit in a memory region
 | |
|  * @addr: The address to base the search on
 | |
|  * @offset: The bitnumber to start searching at
 | |
|  * @size: The maximum size to search
 | |
|  */
 | |
| static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
 | |
| {
 | |
| 	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
 | |
| 	int set = 0, bit = offset & 31, res;
 | |
| 
 | |
| 	if (bit) {
 | |
| 		/*
 | |
| 		 * Look for zero in first byte
 | |
| 		 */
 | |
| 		__asm__("bsfl %1,%0\n\t"
 | |
| 			"jne 1f\n\t"
 | |
| 			"movl $32, %0\n"
 | |
| 			"1:"
 | |
| 			: "=r" (set)
 | |
| 			: "r" (~(*p >> bit)));
 | |
| 		if (set < (32 - bit))
 | |
| 			return set + offset;
 | |
| 		set = 32 - bit;
 | |
| 		p++;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * No zero yet, search remaining full bytes for a zero
 | |
| 	 */
 | |
| 	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
 | |
| 	return (offset + set + res);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ffz - find first zero in word.
 | |
|  * @word: The word to search
 | |
|  *
 | |
|  * Undefined if no zero exists, so code should check against ~0UL first.
 | |
|  */
 | |
| static __inline__ unsigned long ffz(unsigned long word)
 | |
| {
 | |
| 	__asm__("bsfl %1,%0"
 | |
| 		:"=r" (word)
 | |
| 		:"r" (~word));
 | |
| 	return word;
 | |
| }
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| /**
 | |
|  * ffs - find first bit set
 | |
|  * @x: the word to search
 | |
|  *
 | |
|  * This is defined the same way as
 | |
|  * the libc and compiler builtin ffs routines, therefore
 | |
|  * differs in spirit from the above ffz (man ffs).
 | |
|  */
 | |
| static __inline__ int ffs(int x)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	__asm__("bsfl %1,%0\n\t"
 | |
| 		"jnz 1f\n\t"
 | |
| 		"movl $-1,%0\n"
 | |
| 		"1:" : "=r" (r) : "g" (x));
 | |
| 	return r+1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hweightN - returns the hamming weight of a N-bit word
 | |
|  * @x: the word to weigh
 | |
|  *
 | |
|  * The Hamming Weight of a number is the total number of bits set in it.
 | |
|  */
 | |
| 
 | |
| #define hweight32(x) generic_hweight32(x)
 | |
| #define hweight16(x) generic_hweight16(x)
 | |
| #define hweight8(x) generic_hweight8(x)
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| #define ext2_set_bit                 __test_and_set_bit
 | |
| #define ext2_clear_bit               __test_and_clear_bit
 | |
| #define ext2_test_bit                test_bit
 | |
| #define ext2_find_first_zero_bit     find_first_zero_bit
 | |
| #define ext2_find_next_zero_bit      find_next_zero_bit
 | |
| 
 | |
| /* Bitmap functions for the minix filesystem.  */
 | |
| #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
 | |
| #define minix_set_bit(nr,addr) __set_bit(nr,addr)
 | |
| #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
 | |
| #define minix_test_bit(nr,addr) test_bit(nr,addr)
 | |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| 
 | |
| #endif /* _I386_BITOPS_H */
 |