mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-11-04 05:50:17 +00:00 
			
		
		
		
	This returns a devicetree and updates a parameter with an error code. Swap it, since this fits better with the way U-Boot normally works. It also (more easily) allows leaving the existing pointer unchanged. No yaks were harmed in this change, but there is a very small code-size reduction. For sifive, the OF_BOARD option must be set for the function to be called, so there is no point in checking it again. Also OF_SEPARATE is defined always. Signed-off-by: Simon Glass <sjg@chromium.org> Reviewed-by: Matthias Brugger <mbrugger@suse.com> Reviewed-by: Patrice Chotard <patrice.chotard@foss.st.com> [trini: Update total_compute] Signed-off-by: Tom Rini <trini@konsulko.com>
		
			
				
	
	
		
			453 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			453 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0+
 | 
						|
/*
 | 
						|
 * Copyright (c) 2011 The Chromium OS Authors.
 | 
						|
 */
 | 
						|
 | 
						|
#define LOG_CATEGORY	LOGC_SANDBOX
 | 
						|
 | 
						|
#include <bootstage.h>
 | 
						|
#include <cpu_func.h>
 | 
						|
#include <errno.h>
 | 
						|
#include <log.h>
 | 
						|
#include <os.h>
 | 
						|
#include <asm/global_data.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/malloc.h>
 | 
						|
#include <asm/setjmp.h>
 | 
						|
#include <asm/state.h>
 | 
						|
#include <dm/ofnode.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/libfdt.h>
 | 
						|
 | 
						|
DECLARE_GLOBAL_DATA_PTR;
 | 
						|
 | 
						|
/* Enable access to PCI memory with map_sysmem() */
 | 
						|
static bool enable_pci_map;
 | 
						|
 | 
						|
#ifdef CONFIG_PCI
 | 
						|
/* Last device that was mapped into memory, and length of mapping */
 | 
						|
static struct udevice *map_dev;
 | 
						|
unsigned long map_len;
 | 
						|
#endif
 | 
						|
 | 
						|
void __noreturn sandbox_exit(void)
 | 
						|
{
 | 
						|
	/* Do this here while it still has an effect */
 | 
						|
	os_fd_restore();
 | 
						|
 | 
						|
	if (state_uninit())
 | 
						|
		os_exit(2);
 | 
						|
 | 
						|
	/* This is considered normal termination for now */
 | 
						|
	os_exit(0);
 | 
						|
}
 | 
						|
 | 
						|
/* delay x useconds */
 | 
						|
void __udelay(unsigned long usec)
 | 
						|
{
 | 
						|
	struct sandbox_state *state = state_get_current();
 | 
						|
 | 
						|
	if (!state->skip_delays)
 | 
						|
		os_usleep(usec);
 | 
						|
}
 | 
						|
 | 
						|
int cleanup_before_linux(void)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int cleanup_before_linux_select(int flags)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * is_in_sandbox_mem() - Checks if a pointer is within sandbox's emulated DRAM
 | 
						|
 *
 | 
						|
 * This provides a way to check if a pointer is owned by sandbox (and is within
 | 
						|
 * its RAM) or not. Sometimes pointers come from a test which conceptually runs
 | 
						|
 * output sandbox, potentially with direct access to the C-library malloc()
 | 
						|
 * function, or the sandbox stack (which is not actually within the emulated
 | 
						|
 * DRAM.
 | 
						|
 *
 | 
						|
 * Such pointers obviously cannot be mapped into sandbox's DRAM, so we must
 | 
						|
 * detect them an process them separately, by recording a mapping to a tag,
 | 
						|
 * which we can use to map back to the pointer later.
 | 
						|
 *
 | 
						|
 * @ptr: Pointer to check
 | 
						|
 * Return: true if this is within sandbox emulated DRAM, false if not
 | 
						|
 */
 | 
						|
static bool is_in_sandbox_mem(const void *ptr)
 | 
						|
{
 | 
						|
	return (const uint8_t *)ptr >= gd->arch.ram_buf &&
 | 
						|
		(const uint8_t *)ptr < gd->arch.ram_buf + gd->ram_size;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * phys_to_virt() - Converts a sandbox RAM address to a pointer
 | 
						|
 *
 | 
						|
 * Sandbox uses U-Boot addresses from 0 to the size of DRAM. These index into
 | 
						|
 * the emulated DRAM buffer used by sandbox. This function converts such an
 | 
						|
 * address to a pointer into this buffer, which can be used to access the
 | 
						|
 * memory.
 | 
						|
 *
 | 
						|
 * If the address is outside this range, it is assumed to be a tag
 | 
						|
 */
 | 
						|
void *phys_to_virt(phys_addr_t paddr)
 | 
						|
{
 | 
						|
	struct sandbox_mapmem_entry *mentry;
 | 
						|
	struct sandbox_state *state;
 | 
						|
 | 
						|
	/* If the address is within emulated DRAM, calculate the value */
 | 
						|
	if (paddr < gd->ram_size)
 | 
						|
		return (void *)(gd->arch.ram_buf + paddr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Otherwise search out list of tags for the correct pointer previously
 | 
						|
	 * created by map_to_sysmem()
 | 
						|
	 */
 | 
						|
	state = state_get_current();
 | 
						|
	list_for_each_entry(mentry, &state->mapmem_head, sibling_node) {
 | 
						|
		if (mentry->tag == paddr) {
 | 
						|
			log_debug("Used map from %lx to %p\n", (ulong)paddr,
 | 
						|
				  mentry->ptr);
 | 
						|
			mentry->refcnt++;
 | 
						|
			return mentry->ptr;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	printf("%s: Cannot map sandbox address %lx (SDRAM from 0 to %lx)\n",
 | 
						|
	       __func__, (ulong)paddr, (ulong)gd->ram_size);
 | 
						|
	os_abort();
 | 
						|
 | 
						|
	/* Not reached */
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
struct sandbox_mapmem_entry *find_tag(const void *ptr)
 | 
						|
{
 | 
						|
	struct sandbox_mapmem_entry *mentry;
 | 
						|
	struct sandbox_state *state = state_get_current();
 | 
						|
 | 
						|
	list_for_each_entry(mentry, &state->mapmem_head, sibling_node) {
 | 
						|
		if (mentry->ptr == ptr) {
 | 
						|
			log_debug("Used map from %p to %lx\n", ptr,
 | 
						|
				  mentry->tag);
 | 
						|
			return mentry;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t virt_to_phys(void *ptr)
 | 
						|
{
 | 
						|
	struct sandbox_mapmem_entry *mentry;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If it is in emulated RAM, don't bother looking for a tag. Just
 | 
						|
	 * calculate the pointer using the provides offset into the RAM buffer.
 | 
						|
	 */
 | 
						|
	if (is_in_sandbox_mem(ptr))
 | 
						|
		return (phys_addr_t)((uint8_t *)ptr - gd->arch.ram_buf);
 | 
						|
 | 
						|
	mentry = find_tag(ptr);
 | 
						|
	if (!mentry) {
 | 
						|
		/* Abort so that gdb can be used here */
 | 
						|
		printf("%s: Cannot map sandbox address %p (SDRAM from 0 to %lx)\n",
 | 
						|
		       __func__, ptr, (ulong)gd->ram_size);
 | 
						|
		os_abort();
 | 
						|
	}
 | 
						|
	log_debug("Used map from %p to %lx\n", ptr, mentry->tag);
 | 
						|
 | 
						|
	return mentry->tag;
 | 
						|
}
 | 
						|
 | 
						|
void *map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags)
 | 
						|
{
 | 
						|
#if defined(CONFIG_PCI) && !defined(CONFIG_XPL_BUILD)
 | 
						|
	unsigned long plen = len;
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	map_dev = NULL;
 | 
						|
	if (enable_pci_map && !pci_map_physmem(paddr, &len, &map_dev, &ptr)) {
 | 
						|
		if (plen != len) {
 | 
						|
			printf("%s: Warning: partial map at %x, wanted %lx, got %lx\n",
 | 
						|
			       __func__, (uint)paddr, len, plen);
 | 
						|
		}
 | 
						|
		map_len = len;
 | 
						|
		log_debug("pci map %lx -> %p\n", (ulong)paddr, ptr);
 | 
						|
		return ptr;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return phys_to_virt(paddr);
 | 
						|
}
 | 
						|
 | 
						|
void unmap_physmem(const void *ptr, unsigned long flags)
 | 
						|
{
 | 
						|
	struct sandbox_mapmem_entry *mentry;
 | 
						|
 | 
						|
#ifdef CONFIG_PCI
 | 
						|
	if (map_dev) {
 | 
						|
		pci_unmap_physmem(ptr, map_len, map_dev);
 | 
						|
		map_dev = NULL;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* If it is in emulated RAM, we didn't create a tag, so nothing to do */
 | 
						|
	if (is_in_sandbox_mem(ptr))
 | 
						|
		return;
 | 
						|
 | 
						|
	mentry = find_tag(ptr);
 | 
						|
	if (mentry) {
 | 
						|
		if (!--mentry->refcnt) {
 | 
						|
			list_del(&mentry->sibling_node);
 | 
						|
			log_debug("Removed map from %p to %lx\n", ptr,
 | 
						|
				  (ulong)mentry->tag);
 | 
						|
			free(mentry);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		log_warning("Address not mapped: %p\n", ptr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t map_to_sysmem(const void *ptr)
 | 
						|
{
 | 
						|
	struct sandbox_mapmem_entry *mentry;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If it is in emulated RAM, don't bother creating a tag. Just return
 | 
						|
	 * the offset into the RAM buffer.
 | 
						|
	 */
 | 
						|
	if (is_in_sandbox_mem(ptr))
 | 
						|
		return (u8 *)ptr - gd->arch.ram_buf;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * See if there is an existing tag with this pointer. If not, set up a
 | 
						|
	 * new one.
 | 
						|
	 */
 | 
						|
	mentry = find_tag(ptr);
 | 
						|
	if (!mentry) {
 | 
						|
		struct sandbox_state *state = state_get_current();
 | 
						|
 | 
						|
		mentry = malloc(sizeof(*mentry));
 | 
						|
		if (!mentry) {
 | 
						|
			printf("%s: Error: Out of memory\n", __func__);
 | 
						|
			os_exit(ENOMEM);
 | 
						|
		}
 | 
						|
		mentry->tag = state->next_tag++;
 | 
						|
		mentry->ptr = (void *)ptr;
 | 
						|
		mentry->refcnt = 0;
 | 
						|
		list_add_tail(&mentry->sibling_node, &state->mapmem_head);
 | 
						|
		log_debug("Added map from %p to %lx\n", ptr,
 | 
						|
			  (ulong)mentry->tag);
 | 
						|
	}
 | 
						|
 | 
						|
	mentry->refcnt++;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Return the tag as the address to use. A later call to map_sysmem()
 | 
						|
	 * will return ptr
 | 
						|
	 */
 | 
						|
	return mentry->tag;
 | 
						|
}
 | 
						|
 | 
						|
void sandbox_map_list(void)
 | 
						|
{
 | 
						|
	struct sandbox_mapmem_entry *mentry;
 | 
						|
	struct sandbox_state *state = state_get_current();
 | 
						|
 | 
						|
	printf("Sandbox memory-mapping\n");
 | 
						|
	printf("%8s  %16s  %6s\n", "Addr", "Mapping", "Refcnt");
 | 
						|
	list_for_each_entry(mentry, &state->mapmem_head, sibling_node) {
 | 
						|
		printf("%8lx  %p  %6d\n", mentry->tag, mentry->ptr,
 | 
						|
		       mentry->refcnt);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
unsigned long sandbox_read(const void *addr, enum sandboxio_size_t size)
 | 
						|
{
 | 
						|
	struct sandbox_state *state = state_get_current();
 | 
						|
 | 
						|
	if (!state->allow_memio)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	switch (size) {
 | 
						|
	case SB_SIZE_8:
 | 
						|
		return *(u8 *)addr;
 | 
						|
	case SB_SIZE_16:
 | 
						|
		return *(u16 *)addr;
 | 
						|
	case SB_SIZE_32:
 | 
						|
		return *(u32 *)addr;
 | 
						|
	case SB_SIZE_64:
 | 
						|
		return *(u64 *)addr;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void sandbox_write(void *addr, unsigned int val, enum sandboxio_size_t size)
 | 
						|
{
 | 
						|
	struct sandbox_state *state = state_get_current();
 | 
						|
 | 
						|
	if (!state->allow_memio)
 | 
						|
		return;
 | 
						|
 | 
						|
	switch (size) {
 | 
						|
	case SB_SIZE_8:
 | 
						|
		*(u8 *)addr = val;
 | 
						|
		break;
 | 
						|
	case SB_SIZE_16:
 | 
						|
		*(u16 *)addr = val;
 | 
						|
		break;
 | 
						|
	case SB_SIZE_32:
 | 
						|
		*(u32 *)addr = val;
 | 
						|
		break;
 | 
						|
	case SB_SIZE_64:
 | 
						|
		*(u64 *)addr = val;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void sandbox_set_enable_memio(bool enable)
 | 
						|
{
 | 
						|
	struct sandbox_state *state = state_get_current();
 | 
						|
 | 
						|
	state->allow_memio = enable;
 | 
						|
}
 | 
						|
 | 
						|
void sandbox_set_enable_pci_map(int enable)
 | 
						|
{
 | 
						|
	enable_pci_map = enable;
 | 
						|
}
 | 
						|
 | 
						|
void dcache_enable(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void dcache_disable(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
int dcache_status(void)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
void flush_dcache_range(unsigned long start, unsigned long stop)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void invalidate_dcache_range(unsigned long start, unsigned long stop)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * setup_auto_tree() - Set up a basic device tree to allow sandbox to work
 | 
						|
 *
 | 
						|
 * This is used when no device tree is provided. It creates a simple tree with
 | 
						|
 * just a /binman node.
 | 
						|
 *
 | 
						|
 * @blob: Place to put the created device tree
 | 
						|
 * Returns: 0 on success, -ve FDT error code on failure
 | 
						|
 */
 | 
						|
static int setup_auto_tree(void *blob)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = fdt_create_empty_tree(blob, 256);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	/* Create a /binman node in case CONFIG_BINMAN is enabled */
 | 
						|
	err = fdt_add_subnode(blob, 0, "binman");
 | 
						|
	if (err < 0)
 | 
						|
		return err;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int board_fdt_blob_setup(void **fdtp)
 | 
						|
{
 | 
						|
	struct sandbox_state *state = state_get_current();
 | 
						|
	const char *fname = state->fdt_fname;
 | 
						|
	void *blob = NULL;
 | 
						|
	loff_t size;
 | 
						|
	int err;
 | 
						|
	int fd;
 | 
						|
 | 
						|
	if (gd->fdt_blob)
 | 
						|
		return -EEXIST;
 | 
						|
	blob = map_sysmem(CONFIG_SYS_FDT_LOAD_ADDR, 0);
 | 
						|
	if (!state->fdt_fname) {
 | 
						|
		err = setup_auto_tree(blob);
 | 
						|
		if (err) {
 | 
						|
			os_printf("Unable to create empty FDT: %s\n",
 | 
						|
				  fdt_strerror(err));
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		*fdtp = blob;
 | 
						|
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	err = os_get_filesize(fname, &size);
 | 
						|
	if (err < 0) {
 | 
						|
		os_printf("Failed to find FDT file '%s'\n", fname);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
	fd = os_open(fname, OS_O_RDONLY);
 | 
						|
	if (fd < 0) {
 | 
						|
		os_printf("Failed to open FDT file '%s'\n", fname);
 | 
						|
		return -EACCES;
 | 
						|
	}
 | 
						|
 | 
						|
	if (os_read(fd, blob, size) != size) {
 | 
						|
		os_close(fd);
 | 
						|
		os_printf("Failed to read FDT file '%s'\n", fname);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
	os_close(fd);
 | 
						|
 | 
						|
	*fdtp = blob;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
ulong timer_get_boot_us(void)
 | 
						|
{
 | 
						|
	static uint64_t base_count;
 | 
						|
	uint64_t count = os_get_nsec();
 | 
						|
 | 
						|
	if (!base_count)
 | 
						|
		base_count = count;
 | 
						|
 | 
						|
	return (count - base_count) / 1000;
 | 
						|
}
 | 
						|
 | 
						|
int sandbox_load_other_fdt(void **fdtp, int *sizep)
 | 
						|
{
 | 
						|
	const char *orig;
 | 
						|
	int ret, size;
 | 
						|
	void *fdt = *fdtp;
 | 
						|
 | 
						|
	ret = state_load_other_fdt(&orig, &size);
 | 
						|
	if (ret) {
 | 
						|
		log_err("Cannot read other FDT\n");
 | 
						|
		return log_msg_ret("ld", ret);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!*fdtp) {
 | 
						|
		fdt = os_malloc(size);
 | 
						|
		if (!fdt)
 | 
						|
			return log_msg_ret("mem", -ENOMEM);
 | 
						|
		*sizep = size;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(fdt, orig, *sizep);
 | 
						|
	*fdtp = fdt;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 |