mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-30 03:28:16 +00:00 
			
		
		
		
	nand_dt_init() is still using fdtdec_xx() interface. If OF_LIVE flag is enabled, dt property can't be get anymore. Updating all fdtdec_xx() interface to ofnode_xx() to solve this issue. For doing this, node parameter type must be ofnode. First idea was to convert "node" parameter to ofnode type inside nand_dt_init() using offset_to_ofnode(node). But offset_to_ofnode() is not bijective, in case OF_LIVE flag is enabled, it performs an assert(). So, this leads to update nand_chip struct flash_node field from int to ofnode and to update all nand_dt_init() callers. Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
		
			
				
	
	
		
			1859 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1859 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
 | |
|  * Copyright (C) 2015 Roy Spliet <r.spliet@ultimaker.com>
 | |
|  *
 | |
|  * Derived from:
 | |
|  *	https://github.com/yuq/sunxi-nfc-mtd
 | |
|  *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
 | |
|  *
 | |
|  *	https://github.com/hno/Allwinner-Info
 | |
|  *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
 | |
|  *
 | |
|  *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
 | |
|  *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <fdtdec.h>
 | |
| #include <malloc.h>
 | |
| #include <memalign.h>
 | |
| #include <nand.h>
 | |
| #include <asm/global_data.h>
 | |
| #include <dm/device_compat.h>
 | |
| #include <dm/devres.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/err.h>
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/rawnand.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <asm/gpio.h>
 | |
| #include <asm/arch/clock.h>
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| #define NFC_REG_CTL		0x0000
 | |
| #define NFC_REG_ST		0x0004
 | |
| #define NFC_REG_INT		0x0008
 | |
| #define NFC_REG_TIMING_CTL	0x000C
 | |
| #define NFC_REG_TIMING_CFG	0x0010
 | |
| #define NFC_REG_ADDR_LOW	0x0014
 | |
| #define NFC_REG_ADDR_HIGH	0x0018
 | |
| #define NFC_REG_SECTOR_NUM	0x001C
 | |
| #define NFC_REG_CNT		0x0020
 | |
| #define NFC_REG_CMD		0x0024
 | |
| #define NFC_REG_RCMD_SET	0x0028
 | |
| #define NFC_REG_WCMD_SET	0x002C
 | |
| #define NFC_REG_IO_DATA		0x0030
 | |
| #define NFC_REG_ECC_CTL		0x0034
 | |
| #define NFC_REG_ECC_ST		0x0038
 | |
| #define NFC_REG_DEBUG		0x003C
 | |
| #define NFC_REG_ECC_ERR_CNT(x)	((0x0040 + (x)) & ~0x3)
 | |
| #define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
 | |
| #define NFC_REG_SPARE_AREA	0x00A0
 | |
| #define NFC_REG_PAT_ID		0x00A4
 | |
| #define NFC_RAM0_BASE		0x0400
 | |
| #define NFC_RAM1_BASE		0x0800
 | |
| 
 | |
| /* define bit use in NFC_CTL */
 | |
| #define NFC_EN			BIT(0)
 | |
| #define NFC_RESET		BIT(1)
 | |
| #define NFC_BUS_WIDTH_MSK	BIT(2)
 | |
| #define NFC_BUS_WIDTH_8		(0 << 2)
 | |
| #define NFC_BUS_WIDTH_16	(1 << 2)
 | |
| #define NFC_RB_SEL_MSK		BIT(3)
 | |
| #define NFC_RB_SEL(x)		((x) << 3)
 | |
| #define NFC_CE_SEL_MSK		(0x7 << 24)
 | |
| #define NFC_CE_SEL(x)		((x) << 24)
 | |
| #define NFC_CE_CTL		BIT(6)
 | |
| #define NFC_PAGE_SHIFT_MSK	(0xf << 8)
 | |
| #define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
 | |
| #define NFC_SAM			BIT(12)
 | |
| #define NFC_RAM_METHOD		BIT(14)
 | |
| #define NFC_DEBUG_CTL		BIT(31)
 | |
| 
 | |
| /* define bit use in NFC_ST */
 | |
| #define NFC_RB_B2R		BIT(0)
 | |
| #define NFC_CMD_INT_FLAG	BIT(1)
 | |
| #define NFC_DMA_INT_FLAG	BIT(2)
 | |
| #define NFC_CMD_FIFO_STATUS	BIT(3)
 | |
| #define NFC_STA			BIT(4)
 | |
| #define NFC_NATCH_INT_FLAG	BIT(5)
 | |
| #define NFC_RB_STATE(x)		BIT(x + 8)
 | |
| 
 | |
| /* define bit use in NFC_INT */
 | |
| #define NFC_B2R_INT_ENABLE	BIT(0)
 | |
| #define NFC_CMD_INT_ENABLE	BIT(1)
 | |
| #define NFC_DMA_INT_ENABLE	BIT(2)
 | |
| #define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
 | |
| 				 NFC_CMD_INT_ENABLE | \
 | |
| 				 NFC_DMA_INT_ENABLE)
 | |
| 
 | |
| /* define bit use in NFC_TIMING_CTL */
 | |
| #define NFC_TIMING_CTL_EDO	BIT(8)
 | |
| 
 | |
| /* define NFC_TIMING_CFG register layout */
 | |
| #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)		\
 | |
| 	(((tWB) & 0x3) | (((tADL) & 0x3) << 2) |		\
 | |
| 	(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |		\
 | |
| 	(((tCAD) & 0x7) << 8))
 | |
| 
 | |
| /* define bit use in NFC_CMD */
 | |
| #define NFC_CMD_LOW_BYTE_MSK	0xff
 | |
| #define NFC_CMD_HIGH_BYTE_MSK	(0xff << 8)
 | |
| #define NFC_CMD(x)		(x)
 | |
| #define NFC_ADR_NUM_MSK		(0x7 << 16)
 | |
| #define NFC_ADR_NUM(x)		(((x) - 1) << 16)
 | |
| #define NFC_SEND_ADR		BIT(19)
 | |
| #define NFC_ACCESS_DIR		BIT(20)
 | |
| #define NFC_DATA_TRANS		BIT(21)
 | |
| #define NFC_SEND_CMD1		BIT(22)
 | |
| #define NFC_WAIT_FLAG		BIT(23)
 | |
| #define NFC_SEND_CMD2		BIT(24)
 | |
| #define NFC_SEQ			BIT(25)
 | |
| #define NFC_DATA_SWAP_METHOD	BIT(26)
 | |
| #define NFC_ROW_AUTO_INC	BIT(27)
 | |
| #define NFC_SEND_CMD3		BIT(28)
 | |
| #define NFC_SEND_CMD4		BIT(29)
 | |
| #define NFC_CMD_TYPE_MSK	(0x3 << 30)
 | |
| #define NFC_NORMAL_OP		(0 << 30)
 | |
| #define NFC_ECC_OP		(1 << 30)
 | |
| #define NFC_PAGE_OP		(2 << 30)
 | |
| 
 | |
| /* define bit use in NFC_RCMD_SET */
 | |
| #define NFC_READ_CMD_MSK	0xff
 | |
| #define NFC_RND_READ_CMD0_MSK	(0xff << 8)
 | |
| #define NFC_RND_READ_CMD1_MSK	(0xff << 16)
 | |
| 
 | |
| /* define bit use in NFC_WCMD_SET */
 | |
| #define NFC_PROGRAM_CMD_MSK	0xff
 | |
| #define NFC_RND_WRITE_CMD_MSK	(0xff << 8)
 | |
| #define NFC_READ_CMD0_MSK	(0xff << 16)
 | |
| #define NFC_READ_CMD1_MSK	(0xff << 24)
 | |
| 
 | |
| /* define bit use in NFC_ECC_CTL */
 | |
| #define NFC_ECC_EN		BIT(0)
 | |
| #define NFC_ECC_PIPELINE	BIT(3)
 | |
| #define NFC_ECC_EXCEPTION	BIT(4)
 | |
| #define NFC_ECC_BLOCK_SIZE_MSK	BIT(5)
 | |
| #define NFC_ECC_BLOCK_512	(1 << 5)
 | |
| #define NFC_RANDOM_EN		BIT(9)
 | |
| #define NFC_RANDOM_DIRECTION	BIT(10)
 | |
| #define NFC_ECC_MODE_MSK	(0xf << 12)
 | |
| #define NFC_ECC_MODE(x)		((x) << 12)
 | |
| #define NFC_RANDOM_SEED_MSK	(0x7fff << 16)
 | |
| #define NFC_RANDOM_SEED(x)	((x) << 16)
 | |
| 
 | |
| /* define bit use in NFC_ECC_ST */
 | |
| #define NFC_ECC_ERR(x)		BIT(x)
 | |
| #define NFC_ECC_PAT_FOUND(x)	BIT(x + 16)
 | |
| #define NFC_ECC_ERR_CNT(b, x)	(((x) >> ((b) * 8)) & 0xff)
 | |
| 
 | |
| #define NFC_DEFAULT_TIMEOUT_MS	1000
 | |
| 
 | |
| #define NFC_SRAM_SIZE		1024
 | |
| 
 | |
| #define NFC_MAX_CS		7
 | |
| 
 | |
| /*
 | |
|  * Ready/Busy detection type: describes the Ready/Busy detection modes
 | |
|  *
 | |
|  * @RB_NONE:	no external detection available, rely on STATUS command
 | |
|  *		and software timeouts
 | |
|  * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
 | |
|  *		pin of the NAND flash chip must be connected to one of the
 | |
|  *		native NAND R/B pins (those which can be muxed to the NAND
 | |
|  *		Controller)
 | |
|  * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
 | |
|  *		pin of the NAND flash chip must be connected to a GPIO capable
 | |
|  *		pin.
 | |
|  */
 | |
| enum sunxi_nand_rb_type {
 | |
| 	RB_NONE,
 | |
| 	RB_NATIVE,
 | |
| 	RB_GPIO,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Ready/Busy structure: stores information related to Ready/Busy detection
 | |
|  *
 | |
|  * @type:	the Ready/Busy detection mode
 | |
|  * @info:	information related to the R/B detection mode. Either a gpio
 | |
|  *		id or a native R/B id (those supported by the NAND controller).
 | |
|  */
 | |
| struct sunxi_nand_rb {
 | |
| 	enum sunxi_nand_rb_type type;
 | |
| 	union {
 | |
| 		struct gpio_desc gpio;
 | |
| 		int nativeid;
 | |
| 	} info;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Chip Select structure: stores information related to NAND Chip Select
 | |
|  *
 | |
|  * @cs:		the NAND CS id used to communicate with a NAND Chip
 | |
|  * @rb:		the Ready/Busy description
 | |
|  */
 | |
| struct sunxi_nand_chip_sel {
 | |
| 	u8 cs;
 | |
| 	struct sunxi_nand_rb rb;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * sunxi HW ECC infos: stores information related to HW ECC support
 | |
|  *
 | |
|  * @mode:	the sunxi ECC mode field deduced from ECC requirements
 | |
|  * @layout:	the OOB layout depending on the ECC requirements and the
 | |
|  *		selected ECC mode
 | |
|  */
 | |
| struct sunxi_nand_hw_ecc {
 | |
| 	int mode;
 | |
| 	struct nand_ecclayout layout;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * NAND chip structure: stores NAND chip device related information
 | |
|  *
 | |
|  * @node:		used to store NAND chips into a list
 | |
|  * @nand:		base NAND chip structure
 | |
|  * @mtd:		base MTD structure
 | |
|  * @clk_rate:		clk_rate required for this NAND chip
 | |
|  * @timing_cfg		TIMING_CFG register value for this NAND chip
 | |
|  * @selected:		current active CS
 | |
|  * @nsels:		number of CS lines required by the NAND chip
 | |
|  * @sels:		array of CS lines descriptions
 | |
|  */
 | |
| struct sunxi_nand_chip {
 | |
| 	struct list_head node;
 | |
| 	struct nand_chip nand;
 | |
| 	unsigned long clk_rate;
 | |
| 	u32 timing_cfg;
 | |
| 	u32 timing_ctl;
 | |
| 	int selected;
 | |
| 	int addr_cycles;
 | |
| 	u32 addr[2];
 | |
| 	int cmd_cycles;
 | |
| 	u8 cmd[2];
 | |
| 	int nsels;
 | |
| 	struct sunxi_nand_chip_sel sels[0];
 | |
| };
 | |
| 
 | |
| static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
 | |
| {
 | |
| 	return container_of(nand, struct sunxi_nand_chip, nand);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NAND Controller structure: stores sunxi NAND controller information
 | |
|  *
 | |
|  * @controller:		base controller structure
 | |
|  * @dev:		parent device (used to print error messages)
 | |
|  * @regs:		NAND controller registers
 | |
|  * @ahb_clk:		NAND Controller AHB clock
 | |
|  * @mod_clk:		NAND Controller mod clock
 | |
|  * @assigned_cs:	bitmask describing already assigned CS lines
 | |
|  * @clk_rate:		NAND controller current clock rate
 | |
|  * @chips:		a list containing all the NAND chips attached to
 | |
|  *			this NAND controller
 | |
|  * @complete:		a completion object used to wait for NAND
 | |
|  *			controller events
 | |
|  */
 | |
| struct sunxi_nfc {
 | |
| 	struct nand_hw_control controller;
 | |
| 	struct device *dev;
 | |
| 	void __iomem *regs;
 | |
| 	struct clk *ahb_clk;
 | |
| 	struct clk *mod_clk;
 | |
| 	unsigned long assigned_cs;
 | |
| 	unsigned long clk_rate;
 | |
| 	struct list_head chips;
 | |
| };
 | |
| 
 | |
| static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
 | |
| {
 | |
| 	return container_of(ctrl, struct sunxi_nfc, controller);
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_set_clk_rate(unsigned long hz)
 | |
| {
 | |
| 	struct sunxi_ccm_reg *const ccm =
 | |
| 	(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
 | |
| 	int div_m, div_n;
 | |
| 
 | |
| 	div_m = (clock_get_pll6() + hz - 1) / hz;
 | |
| 	for (div_n = 0; div_n < 3 && div_m > 16; div_n++) {
 | |
| 		if (div_m % 2)
 | |
| 			div_m++;
 | |
| 		div_m >>= 1;
 | |
| 	}
 | |
| 	if (div_m > 16)
 | |
| 		div_m = 16;
 | |
| 
 | |
| 	/* config mod clock */
 | |
| 	writel(CCM_NAND_CTRL_ENABLE | CCM_NAND_CTRL_PLL6 |
 | |
| 	       CCM_NAND_CTRL_N(div_n) | CCM_NAND_CTRL_M(div_m),
 | |
| 	       &ccm->nand0_clk_cfg);
 | |
| 
 | |
| 	/* gate on nand clock */
 | |
| 	setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_NAND0));
 | |
| #ifdef CONFIG_MACH_SUN9I
 | |
| 	setbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA));
 | |
| #else
 | |
| 	setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
 | |
| 			      unsigned int timeout_ms)
 | |
| {
 | |
| 	unsigned int timeout_ticks;
 | |
| 	u32 time_start, status;
 | |
| 	int ret = -ETIMEDOUT;
 | |
| 
 | |
| 	if (!timeout_ms)
 | |
| 		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
 | |
| 
 | |
| 	timeout_ticks = (timeout_ms * CONFIG_SYS_HZ) / 1000;
 | |
| 
 | |
| 	time_start = get_timer(0);
 | |
| 
 | |
| 	do {
 | |
| 		status = readl(nfc->regs + NFC_REG_ST);
 | |
| 		if ((status & flags) == flags) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		udelay(1);
 | |
| 	} while (get_timer(time_start) < timeout_ticks);
 | |
| 
 | |
| 	writel(status & flags, nfc->regs + NFC_REG_ST);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
 | |
| {
 | |
| 	unsigned long timeout = (CONFIG_SYS_HZ *
 | |
| 				 NFC_DEFAULT_TIMEOUT_MS) / 1000;
 | |
| 	u32 time_start;
 | |
| 
 | |
| 	time_start = get_timer(0);
 | |
| 	do {
 | |
| 		if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
 | |
| 			return 0;
 | |
| 	} while (get_timer(time_start) < timeout);
 | |
| 
 | |
| 	dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
 | |
| {
 | |
| 	unsigned long timeout = (CONFIG_SYS_HZ *
 | |
| 				 NFC_DEFAULT_TIMEOUT_MS) / 1000;
 | |
| 	u32 time_start;
 | |
| 
 | |
| 	writel(0, nfc->regs + NFC_REG_ECC_CTL);
 | |
| 	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
 | |
| 
 | |
| 	time_start = get_timer(0);
 | |
| 	do {
 | |
| 		if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
 | |
| 			return 0;
 | |
| 	} while (get_timer(time_start) < timeout);
 | |
| 
 | |
| 	dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | |
| 	struct sunxi_nand_rb *rb;
 | |
| 	unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (sunxi_nand->selected < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
 | |
| 
 | |
| 	switch (rb->type) {
 | |
| 	case RB_NATIVE:
 | |
| 		ret = !!(readl(nfc->regs + NFC_REG_ST) &
 | |
| 			 NFC_RB_STATE(rb->info.nativeid));
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
 | |
| 		ret = !!(readl(nfc->regs + NFC_REG_ST) &
 | |
| 			 NFC_RB_STATE(rb->info.nativeid));
 | |
| 		break;
 | |
| 	case RB_GPIO:
 | |
| 		ret = dm_gpio_get_value(&rb->info.gpio);
 | |
| 		break;
 | |
| 	case RB_NONE:
 | |
| 	default:
 | |
| 		ret = 0;
 | |
| 		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | |
| 	struct sunxi_nand_chip_sel *sel;
 | |
| 	u32 ctl;
 | |
| 
 | |
| 	if (chip > 0 && chip >= sunxi_nand->nsels)
 | |
| 		return;
 | |
| 
 | |
| 	if (chip == sunxi_nand->selected)
 | |
| 		return;
 | |
| 
 | |
| 	ctl = readl(nfc->regs + NFC_REG_CTL) &
 | |
| 	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
 | |
| 
 | |
| 	if (chip >= 0) {
 | |
| 		sel = &sunxi_nand->sels[chip];
 | |
| 
 | |
| 		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
 | |
| 		       NFC_PAGE_SHIFT(nand->page_shift - 10);
 | |
| 		if (sel->rb.type == RB_NONE) {
 | |
| 			nand->dev_ready = NULL;
 | |
| 		} else {
 | |
| 			nand->dev_ready = sunxi_nfc_dev_ready;
 | |
| 			if (sel->rb.type == RB_NATIVE)
 | |
| 				ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
 | |
| 		}
 | |
| 
 | |
| 		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
 | |
| 
 | |
| 		if (nfc->clk_rate != sunxi_nand->clk_rate) {
 | |
| 			sunxi_nfc_set_clk_rate(sunxi_nand->clk_rate);
 | |
| 			nfc->clk_rate = sunxi_nand->clk_rate;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
 | |
| 	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
 | |
| 	writel(ctl, nfc->regs + NFC_REG_CTL);
 | |
| 
 | |
| 	sunxi_nand->selected = chip;
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | |
| 	int ret;
 | |
| 	int cnt;
 | |
| 	int offs = 0;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	while (len > offs) {
 | |
| 		cnt = min(len - offs, NFC_SRAM_SIZE);
 | |
| 
 | |
| 		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		writel(cnt, nfc->regs + NFC_REG_CNT);
 | |
| 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
 | |
| 		writel(tmp, nfc->regs + NFC_REG_CMD);
 | |
| 
 | |
| 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		if (buf)
 | |
| 			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
 | |
| 				      cnt);
 | |
| 		offs += cnt;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 | |
| 				int len)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | |
| 	int ret;
 | |
| 	int cnt;
 | |
| 	int offs = 0;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	while (len > offs) {
 | |
| 		cnt = min(len - offs, NFC_SRAM_SIZE);
 | |
| 
 | |
| 		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		writel(cnt, nfc->regs + NFC_REG_CNT);
 | |
| 		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
 | |
| 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
 | |
| 		      NFC_ACCESS_DIR;
 | |
| 		writel(tmp, nfc->regs + NFC_REG_CMD);
 | |
| 
 | |
| 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		offs += cnt;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	uint8_t ret;
 | |
| 
 | |
| 	sunxi_nfc_read_buf(mtd, &ret, 1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
 | |
| 			       unsigned int ctrl)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 | |
| 	int ret;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	if (ctrl & NAND_CTRL_CHANGE) {
 | |
| 		tmp = readl(nfc->regs + NFC_REG_CTL);
 | |
| 		if (ctrl & NAND_NCE)
 | |
| 			tmp |= NFC_CE_CTL;
 | |
| 		else
 | |
| 			tmp &= ~NFC_CE_CTL;
 | |
| 		writel(tmp, nfc->regs + NFC_REG_CTL);
 | |
| 	}
 | |
| 
 | |
| 	if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
 | |
| 	    !(ctrl & (NAND_CLE | NAND_ALE))) {
 | |
| 		u32 cmd = 0;
 | |
| 
 | |
| 		if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
 | |
| 			return;
 | |
| 
 | |
| 		if (sunxi_nand->cmd_cycles--)
 | |
| 			cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];
 | |
| 
 | |
| 		if (sunxi_nand->cmd_cycles--) {
 | |
| 			cmd |= NFC_SEND_CMD2;
 | |
| 			writel(sunxi_nand->cmd[1],
 | |
| 			       nfc->regs + NFC_REG_RCMD_SET);
 | |
| 		}
 | |
| 
 | |
| 		sunxi_nand->cmd_cycles = 0;
 | |
| 
 | |
| 		if (sunxi_nand->addr_cycles) {
 | |
| 			cmd |= NFC_SEND_ADR |
 | |
| 			       NFC_ADR_NUM(sunxi_nand->addr_cycles);
 | |
| 			writel(sunxi_nand->addr[0],
 | |
| 			       nfc->regs + NFC_REG_ADDR_LOW);
 | |
| 		}
 | |
| 
 | |
| 		if (sunxi_nand->addr_cycles > 4)
 | |
| 			writel(sunxi_nand->addr[1],
 | |
| 			       nfc->regs + NFC_REG_ADDR_HIGH);
 | |
| 
 | |
| 		writel(cmd, nfc->regs + NFC_REG_CMD);
 | |
| 		sunxi_nand->addr[0] = 0;
 | |
| 		sunxi_nand->addr[1] = 0;
 | |
| 		sunxi_nand->addr_cycles = 0;
 | |
| 		sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (ctrl & NAND_CLE) {
 | |
| 		sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
 | |
| 	} else if (ctrl & NAND_ALE) {
 | |
| 		sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
 | |
| 				dat << ((sunxi_nand->addr_cycles % 4) * 8);
 | |
| 		sunxi_nand->addr_cycles++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* These seed values have been extracted from Allwinner's BSP */
 | |
| static const u16 sunxi_nfc_randomizer_page_seeds[] = {
 | |
| 	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
 | |
| 	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
 | |
| 	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
 | |
| 	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
 | |
| 	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
 | |
| 	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
 | |
| 	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
 | |
| 	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
 | |
| 	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
 | |
| 	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
 | |
| 	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
 | |
| 	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
 | |
| 	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
 | |
| 	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
 | |
| 	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
 | |
| 	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
 | |
|  * have been generated using
 | |
|  * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
 | |
|  * the randomizer engine does internally before de/scrambling OOB data.
 | |
|  *
 | |
|  * Those tables are statically defined to avoid calculating randomizer state
 | |
|  * at runtime.
 | |
|  */
 | |
| static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
 | |
| 	0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
 | |
| 	0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
 | |
| 	0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
 | |
| 	0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
 | |
| 	0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
 | |
| 	0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
 | |
| 	0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
 | |
| 	0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
 | |
| 	0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
 | |
| 	0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
 | |
| 	0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
 | |
| 	0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
 | |
| 	0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
 | |
| 	0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
 | |
| 	0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
 | |
| 	0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
 | |
| };
 | |
| 
 | |
| static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
 | |
| 	0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
 | |
| 	0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
 | |
| 	0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
 | |
| 	0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
 | |
| 	0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
 | |
| 	0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
 | |
| 	0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
 | |
| 	0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
 | |
| 	0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
 | |
| 	0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
 | |
| 	0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
 | |
| 	0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
 | |
| 	0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
 | |
| 	0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
 | |
| 	0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
 | |
| 	0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
 | |
| };
 | |
| 
 | |
| static u16 sunxi_nfc_randomizer_step(u16 state, int count)
 | |
| {
 | |
| 	state &= 0x7fff;
 | |
| 
 | |
| 	/*
 | |
| 	 * This loop is just a simple implementation of a Fibonacci LFSR using
 | |
| 	 * the x16 + x15 + 1 polynomial.
 | |
| 	 */
 | |
| 	while (count--)
 | |
| 		state = ((state >> 1) |
 | |
| 			 (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;
 | |
| 
 | |
| 	return state;
 | |
| }
 | |
| 
 | |
| static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
 | |
| {
 | |
| 	const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
 | |
| 	int mod = mtd->erasesize / mtd->writesize;
 | |
| 
 | |
| 	if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
 | |
| 		mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);
 | |
| 
 | |
| 	if (ecc) {
 | |
| 		if (mtd->ecc_step_size == 512)
 | |
| 			seeds = sunxi_nfc_randomizer_ecc512_seeds;
 | |
| 		else
 | |
| 			seeds = sunxi_nfc_randomizer_ecc1024_seeds;
 | |
| 	}
 | |
| 
 | |
| 	return seeds[page % mod];
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
 | |
| 					int page, bool ecc)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 | |
| 	u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
 | |
| 	u16 state;
 | |
| 
 | |
| 	if (!(nand->options & NAND_NEED_SCRAMBLING))
 | |
| 		return;
 | |
| 
 | |
| 	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
 | |
| 	state = sunxi_nfc_randomizer_state(mtd, page, ecc);
 | |
| 	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
 | |
| 	writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 | |
| 
 | |
| 	if (!(nand->options & NAND_NEED_SCRAMBLING))
 | |
| 		return;
 | |
| 
 | |
| 	writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
 | |
| 	       nfc->regs + NFC_REG_ECC_CTL);
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 | |
| 
 | |
| 	if (!(nand->options & NAND_NEED_SCRAMBLING))
 | |
| 		return;
 | |
| 
 | |
| 	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
 | |
| 	       nfc->regs + NFC_REG_ECC_CTL);
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
 | |
| {
 | |
| 	u16 state = sunxi_nfc_randomizer_state(mtd, page, true);
 | |
| 
 | |
| 	bbm[0] ^= state;
 | |
| 	bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
 | |
| 					   const uint8_t *buf, int len,
 | |
| 					   bool ecc, int page)
 | |
| {
 | |
| 	sunxi_nfc_randomizer_config(mtd, page, ecc);
 | |
| 	sunxi_nfc_randomizer_enable(mtd);
 | |
| 	sunxi_nfc_write_buf(mtd, buf, len);
 | |
| 	sunxi_nfc_randomizer_disable(mtd);
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
 | |
| 					  int len, bool ecc, int page)
 | |
| {
 | |
| 	sunxi_nfc_randomizer_config(mtd, page, ecc);
 | |
| 	sunxi_nfc_randomizer_enable(mtd);
 | |
| 	sunxi_nfc_read_buf(mtd, buf, len);
 | |
| 	sunxi_nfc_randomizer_disable(mtd);
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 | |
| 	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
 | |
| 	u32 ecc_ctl;
 | |
| 
 | |
| 	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
 | |
| 	ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
 | |
| 		     NFC_ECC_BLOCK_SIZE_MSK);
 | |
| 	ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;
 | |
| 
 | |
| 	if (nand->ecc.size == 512)
 | |
| 		ecc_ctl |= NFC_ECC_BLOCK_512;
 | |
| 
 | |
| 	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 | |
| 
 | |
| 	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
 | |
| 	       nfc->regs + NFC_REG_ECC_CTL);
 | |
| }
 | |
| 
 | |
| static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
 | |
| {
 | |
| 	buf[0] = user_data;
 | |
| 	buf[1] = user_data >> 8;
 | |
| 	buf[2] = user_data >> 16;
 | |
| 	buf[3] = user_data >> 24;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
 | |
| 				       u8 *data, int data_off,
 | |
| 				       u8 *oob, int oob_off,
 | |
| 				       int *cur_off,
 | |
| 				       unsigned int *max_bitflips,
 | |
| 				       bool bbm, int page)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 | |
| 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 | |
| 	int raw_mode = 0;
 | |
| 	u32 status;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (*cur_off != data_off)
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
 | |
| 
 | |
| 	sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
 | |
| 
 | |
| 	if (data_off + ecc->size != oob_off)
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
 | |
| 
 | |
| 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sunxi_nfc_randomizer_enable(mtd);
 | |
| 	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
 | |
| 	       nfc->regs + NFC_REG_CMD);
 | |
| 
 | |
| 	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | |
| 	sunxi_nfc_randomizer_disable(mtd);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*cur_off = oob_off + ecc->bytes + 4;
 | |
| 
 | |
| 	status = readl(nfc->regs + NFC_REG_ECC_ST);
 | |
| 	if (status & NFC_ECC_PAT_FOUND(0)) {
 | |
| 		u8 pattern = 0xff;
 | |
| 
 | |
| 		if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1)))
 | |
| 			pattern = 0x0;
 | |
| 
 | |
| 		memset(data, pattern, ecc->size);
 | |
| 		memset(oob, pattern, ecc->bytes + 4);
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));
 | |
| 
 | |
| 	memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
 | |
| 
 | |
| 	nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
 | |
| 	sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4, true, page);
 | |
| 
 | |
| 	if (status & NFC_ECC_ERR(0)) {
 | |
| 		/*
 | |
| 		 * Re-read the data with the randomizer disabled to identify
 | |
| 		 * bitflips in erased pages.
 | |
| 		 */
 | |
| 		if (nand->options & NAND_NEED_SCRAMBLING) {
 | |
| 			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
 | |
| 			nand->read_buf(mtd, data, ecc->size);
 | |
| 			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
 | |
| 			nand->read_buf(mtd, oob, ecc->bytes + 4);
 | |
| 		}
 | |
| 
 | |
| 		ret = nand_check_erased_ecc_chunk(data,	ecc->size,
 | |
| 						  oob, ecc->bytes + 4,
 | |
| 						  NULL, 0, ecc->strength);
 | |
| 		if (ret >= 0)
 | |
| 			raw_mode = 1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The engine protects 4 bytes of OOB data per chunk.
 | |
| 		 * Retrieve the corrected OOB bytes.
 | |
| 		 */
 | |
| 		sunxi_nfc_user_data_to_buf(readl(nfc->regs +
 | |
| 						 NFC_REG_USER_DATA(0)),
 | |
| 					   oob);
 | |
| 
 | |
| 		/* De-randomize the Bad Block Marker. */
 | |
| 		if (bbm && nand->options & NAND_NEED_SCRAMBLING)
 | |
| 			sunxi_nfc_randomize_bbm(mtd, page, oob);
 | |
| 	}
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		mtd->ecc_stats.failed++;
 | |
| 	} else {
 | |
| 		mtd->ecc_stats.corrected += ret;
 | |
| 		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
 | |
| 	}
 | |
| 
 | |
| 	return raw_mode;
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
 | |
| 					    u8 *oob, int *cur_off,
 | |
| 					    bool randomize, int page)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 | |
| 	int offset = ((ecc->bytes + 4) * ecc->steps);
 | |
| 	int len = mtd->oobsize - offset;
 | |
| 
 | |
| 	if (len <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (*cur_off != offset)
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
 | |
| 			      offset + mtd->writesize, -1);
 | |
| 
 | |
| 	if (!randomize)
 | |
| 		sunxi_nfc_read_buf(mtd, oob + offset, len);
 | |
| 	else
 | |
| 		sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
 | |
| 					      false, page);
 | |
| 
 | |
| 	*cur_off = mtd->oobsize + mtd->writesize;
 | |
| }
 | |
| 
 | |
| static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
 | |
| {
 | |
| 	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
 | |
| 					const u8 *data, int data_off,
 | |
| 					const u8 *oob, int oob_off,
 | |
| 					int *cur_off, bool bbm,
 | |
| 					int page)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 | |
| 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (data_off != *cur_off)
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
 | |
| 
 | |
| 	sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
 | |
| 
 | |
| 	/* Fill OOB data in */
 | |
| 	if ((nand->options & NAND_NEED_SCRAMBLING) && bbm) {
 | |
| 		u8 user_data[4];
 | |
| 
 | |
| 		memcpy(user_data, oob, 4);
 | |
| 		sunxi_nfc_randomize_bbm(mtd, page, user_data);
 | |
| 		writel(sunxi_nfc_buf_to_user_data(user_data),
 | |
| 		       nfc->regs + NFC_REG_USER_DATA(0));
 | |
| 	} else {
 | |
| 		writel(sunxi_nfc_buf_to_user_data(oob),
 | |
| 		       nfc->regs + NFC_REG_USER_DATA(0));
 | |
| 	}
 | |
| 
 | |
| 	if (data_off + ecc->size != oob_off)
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
 | |
| 
 | |
| 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sunxi_nfc_randomizer_enable(mtd);
 | |
| 	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
 | |
| 	       NFC_ACCESS_DIR | NFC_ECC_OP,
 | |
| 	       nfc->regs + NFC_REG_CMD);
 | |
| 
 | |
| 	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 | |
| 	sunxi_nfc_randomizer_disable(mtd);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*cur_off = oob_off + ecc->bytes + 4;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
 | |
| 					     u8 *oob, int *cur_off,
 | |
| 					     int page)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 | |
| 	int offset = ((ecc->bytes + 4) * ecc->steps);
 | |
| 	int len = mtd->oobsize - offset;
 | |
| 
 | |
| 	if (len <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (*cur_off != offset)
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_RNDIN,
 | |
| 			      offset + mtd->writesize, -1);
 | |
| 
 | |
| 	sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
 | |
| 
 | |
| 	*cur_off = mtd->oobsize + mtd->writesize;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
 | |
| 				      struct nand_chip *chip, uint8_t *buf,
 | |
| 				      int oob_required, int page)
 | |
| {
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 	unsigned int max_bitflips = 0;
 | |
| 	int ret, i, cur_off = 0;
 | |
| 	bool raw_mode = false;
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_enable(mtd);
 | |
| 
 | |
| 	for (i = 0; i < ecc->steps; i++) {
 | |
| 		int data_off = i * ecc->size;
 | |
| 		int oob_off = i * (ecc->bytes + 4);
 | |
| 		u8 *data = buf + data_off;
 | |
| 		u8 *oob = chip->oob_poi + oob_off;
 | |
| 
 | |
| 		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
 | |
| 						  oob_off + mtd->writesize,
 | |
| 						  &cur_off, &max_bitflips,
 | |
| 						  !i, page);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		else if (ret)
 | |
| 			raw_mode = true;
 | |
| 	}
 | |
| 
 | |
| 	if (oob_required)
 | |
| 		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
 | |
| 						!raw_mode, page);
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_disable(mtd);
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
 | |
| 					 struct nand_chip *chip,
 | |
| 					 uint32_t data_offs, uint32_t readlen,
 | |
| 					 uint8_t *bufpoi, int page)
 | |
| {
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 	int ret, i, cur_off = 0;
 | |
| 	unsigned int max_bitflips = 0;
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_enable(mtd);
 | |
| 
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 | |
| 	for (i = data_offs / ecc->size;
 | |
| 	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
 | |
| 		int data_off = i * ecc->size;
 | |
| 		int oob_off = i * (ecc->bytes + 4);
 | |
| 		u8 *data = bufpoi + data_off;
 | |
| 		u8 *oob = chip->oob_poi + oob_off;
 | |
| 
 | |
| 		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
 | |
| 			oob, oob_off + mtd->writesize,
 | |
| 			&cur_off, &max_bitflips, !i, page);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_disable(mtd);
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
 | |
| 				       struct nand_chip *chip,
 | |
| 				       const uint8_t *buf, int oob_required,
 | |
| 				       int page)
 | |
| {
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 	int ret, i, cur_off = 0;
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_enable(mtd);
 | |
| 
 | |
| 	for (i = 0; i < ecc->steps; i++) {
 | |
| 		int data_off = i * ecc->size;
 | |
| 		int oob_off = i * (ecc->bytes + 4);
 | |
| 		const u8 *data = buf + data_off;
 | |
| 		const u8 *oob = chip->oob_poi + oob_off;
 | |
| 
 | |
| 		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
 | |
| 						   oob_off + mtd->writesize,
 | |
| 						   &cur_off, !i, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
 | |
| 		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
 | |
| 						 &cur_off, page);
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_disable(mtd);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd,
 | |
| 					  struct nand_chip *chip,
 | |
| 					  u32 data_offs, u32 data_len,
 | |
| 					  const u8 *buf, int oob_required,
 | |
| 					  int page)
 | |
| {
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 	int ret, i, cur_off = 0;
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_enable(mtd);
 | |
| 
 | |
| 	for (i = data_offs / ecc->size;
 | |
| 	     i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
 | |
| 		int data_off = i * ecc->size;
 | |
| 		int oob_off = i * (ecc->bytes + 4);
 | |
| 		const u8 *data = buf + data_off;
 | |
| 		const u8 *oob = chip->oob_poi + oob_off;
 | |
| 
 | |
| 		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
 | |
| 						   oob_off + mtd->writesize,
 | |
| 						   &cur_off, !i, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_disable(mtd);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
 | |
| 					       struct nand_chip *chip,
 | |
| 					       uint8_t *buf, int oob_required,
 | |
| 					       int page)
 | |
| {
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 	unsigned int max_bitflips = 0;
 | |
| 	int ret, i, cur_off = 0;
 | |
| 	bool raw_mode = false;
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_enable(mtd);
 | |
| 
 | |
| 	for (i = 0; i < ecc->steps; i++) {
 | |
| 		int data_off = i * (ecc->size + ecc->bytes + 4);
 | |
| 		int oob_off = data_off + ecc->size;
 | |
| 		u8 *data = buf + (i * ecc->size);
 | |
| 		u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
 | |
| 
 | |
| 		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
 | |
| 						  oob_off, &cur_off,
 | |
| 						  &max_bitflips, !i, page);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		else if (ret)
 | |
| 			raw_mode = true;
 | |
| 	}
 | |
| 
 | |
| 	if (oob_required)
 | |
| 		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
 | |
| 						!raw_mode, page);
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_disable(mtd);
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
 | |
| 						struct nand_chip *chip,
 | |
| 						const uint8_t *buf,
 | |
| 						int oob_required, int page)
 | |
| {
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 	int ret, i, cur_off = 0;
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_enable(mtd);
 | |
| 
 | |
| 	for (i = 0; i < ecc->steps; i++) {
 | |
| 		int data_off = i * (ecc->size + ecc->bytes + 4);
 | |
| 		int oob_off = data_off + ecc->size;
 | |
| 		const u8 *data = buf + (i * ecc->size);
 | |
| 		const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
 | |
| 
 | |
| 		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
 | |
| 						   oob, oob_off, &cur_off,
 | |
| 						   false, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
 | |
| 		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
 | |
| 						 &cur_off, page);
 | |
| 
 | |
| 	sunxi_nfc_hw_ecc_disable(mtd);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const s32 tWB_lut[] = {6, 12, 16, 20};
 | |
| static const s32 tRHW_lut[] = {4, 8, 12, 20};
 | |
| 
 | |
| static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
 | |
| 		u32 clk_period)
 | |
| {
 | |
| 	u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < lut_size; i++) {
 | |
| 		if (clk_cycles <= lut[i])
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	/* Doesn't fit */
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| #define sunxi_nand_lookup_timing(l, p, c) \
 | |
| 			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
 | |
| 
 | |
| static int sunxi_nand_chip_set_timings(struct sunxi_nfc *nfc,
 | |
| 				       struct sunxi_nand_chip *chip,
 | |
| 				       const struct nand_sdr_timings *timings)
 | |
| {
 | |
| 	u32 min_clk_period = 0;
 | |
| 	s32 tWB, tADL, tWHR, tRHW, tCAD;
 | |
| 
 | |
| 	/* T1 <=> tCLS */
 | |
| 	if (timings->tCLS_min > min_clk_period)
 | |
| 		min_clk_period = timings->tCLS_min;
 | |
| 
 | |
| 	/* T2 <=> tCLH */
 | |
| 	if (timings->tCLH_min > min_clk_period)
 | |
| 		min_clk_period = timings->tCLH_min;
 | |
| 
 | |
| 	/* T3 <=> tCS */
 | |
| 	if (timings->tCS_min > min_clk_period)
 | |
| 		min_clk_period = timings->tCS_min;
 | |
| 
 | |
| 	/* T4 <=> tCH */
 | |
| 	if (timings->tCH_min > min_clk_period)
 | |
| 		min_clk_period = timings->tCH_min;
 | |
| 
 | |
| 	/* T5 <=> tWP */
 | |
| 	if (timings->tWP_min > min_clk_period)
 | |
| 		min_clk_period = timings->tWP_min;
 | |
| 
 | |
| 	/* T6 <=> tWH */
 | |
| 	if (timings->tWH_min > min_clk_period)
 | |
| 		min_clk_period = timings->tWH_min;
 | |
| 
 | |
| 	/* T7 <=> tALS */
 | |
| 	if (timings->tALS_min > min_clk_period)
 | |
| 		min_clk_period = timings->tALS_min;
 | |
| 
 | |
| 	/* T8 <=> tDS */
 | |
| 	if (timings->tDS_min > min_clk_period)
 | |
| 		min_clk_period = timings->tDS_min;
 | |
| 
 | |
| 	/* T9 <=> tDH */
 | |
| 	if (timings->tDH_min > min_clk_period)
 | |
| 		min_clk_period = timings->tDH_min;
 | |
| 
 | |
| 	/* T10 <=> tRR */
 | |
| 	if (timings->tRR_min > (min_clk_period * 3))
 | |
| 		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
 | |
| 
 | |
| 	/* T11 <=> tALH */
 | |
| 	if (timings->tALH_min > min_clk_period)
 | |
| 		min_clk_period = timings->tALH_min;
 | |
| 
 | |
| 	/* T12 <=> tRP */
 | |
| 	if (timings->tRP_min > min_clk_period)
 | |
| 		min_clk_period = timings->tRP_min;
 | |
| 
 | |
| 	/* T13 <=> tREH */
 | |
| 	if (timings->tREH_min > min_clk_period)
 | |
| 		min_clk_period = timings->tREH_min;
 | |
| 
 | |
| 	/* T14 <=> tRC */
 | |
| 	if (timings->tRC_min > (min_clk_period * 2))
 | |
| 		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
 | |
| 
 | |
| 	/* T15 <=> tWC */
 | |
| 	if (timings->tWC_min > (min_clk_period * 2))
 | |
| 		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
 | |
| 
 | |
| 	/* T16 - T19 + tCAD */
 | |
| 	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
 | |
| 					min_clk_period);
 | |
| 	if (tWB < 0) {
 | |
| 		dev_err(nfc->dev, "unsupported tWB\n");
 | |
| 		return tWB;
 | |
| 	}
 | |
| 
 | |
| 	tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
 | |
| 	if (tADL > 3) {
 | |
| 		dev_err(nfc->dev, "unsupported tADL\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
 | |
| 	if (tWHR > 3) {
 | |
| 		dev_err(nfc->dev, "unsupported tWHR\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
 | |
| 					min_clk_period);
 | |
| 	if (tRHW < 0) {
 | |
| 		dev_err(nfc->dev, "unsupported tRHW\n");
 | |
| 		return tRHW;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: according to ONFI specs this value only applies for DDR NAND,
 | |
| 	 * but Allwinner seems to set this to 0x7. Mimic them for now.
 | |
| 	 */
 | |
| 	tCAD = 0x7;
 | |
| 
 | |
| 	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
 | |
| 	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
 | |
| 
 | |
| 	/*
 | |
| 	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
 | |
| 	 * output cycle timings shall be used if the host drives tRC less than
 | |
| 	 * 30 ns.
 | |
| 	 */
 | |
| 	chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
 | |
| 
 | |
| 	/* Convert min_clk_period from picoseconds to nanoseconds */
 | |
| 	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert min_clk_period into a clk frequency, then get the
 | |
| 	 * appropriate rate for the NAND controller IP given this formula
 | |
| 	 * (specified in the datasheet):
 | |
| 	 * nand clk_rate = min_clk_rate
 | |
| 	 */
 | |
| 	chip->clk_rate = 1000000000L / min_clk_period;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_nand_chip_init_timings(struct sunxi_nfc *nfc,
 | |
| 					struct sunxi_nand_chip *chip)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&chip->nand);
 | |
| 	const struct nand_sdr_timings *timings;
 | |
| 	int ret;
 | |
| 	int mode;
 | |
| 
 | |
| 	mode = onfi_get_async_timing_mode(&chip->nand);
 | |
| 	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
 | |
| 		mode = chip->nand.onfi_timing_mode_default;
 | |
| 	} else {
 | |
| 		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
 | |
| 		int i;
 | |
| 
 | |
| 		mode = fls(mode) - 1;
 | |
| 		if (mode < 0)
 | |
| 			mode = 0;
 | |
| 
 | |
| 		feature[0] = mode;
 | |
| 		for (i = 0; i < chip->nsels; i++) {
 | |
| 			chip->nand.select_chip(mtd, i);
 | |
| 			ret = chip->nand.onfi_set_features(mtd,
 | |
| 						&chip->nand,
 | |
| 						ONFI_FEATURE_ADDR_TIMING_MODE,
 | |
| 						feature);
 | |
| 			chip->nand.select_chip(mtd, -1);
 | |
| 			if (ret && ret != -ENOTSUPP)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	timings = onfi_async_timing_mode_to_sdr_timings(mode);
 | |
| 	if (IS_ERR(timings))
 | |
| 		return PTR_ERR(timings);
 | |
| 
 | |
| 	return sunxi_nand_chip_set_timings(nfc, chip, timings);
 | |
| }
 | |
| 
 | |
| static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
 | |
| 					      struct nand_ecc_ctrl *ecc)
 | |
| {
 | |
| 	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
 | |
| 	struct sunxi_nand_hw_ecc *data;
 | |
| 	struct nand_ecclayout *layout;
 | |
| 	int nsectors;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	data = kzalloc(sizeof(*data), GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (ecc->size != 512 && ecc->size != 1024)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Prefer 1k ECC chunk over 512 ones */
 | |
| 	if (ecc->size == 512 && mtd->writesize > 512) {
 | |
| 		ecc->size = 1024;
 | |
| 		ecc->strength *= 2;
 | |
| 	}
 | |
| 
 | |
| 	/* Add ECC info retrieval from DT */
 | |
| 	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
 | |
| 		if (ecc->strength <= strengths[i]) {
 | |
| 			/*
 | |
| 			 * Update ecc->strength value with the actual strength
 | |
| 			 * that will be used by the ECC engine.
 | |
| 			 */
 | |
| 			ecc->strength = strengths[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (i >= ARRAY_SIZE(strengths)) {
 | |
| 		dev_err(mtd->dev, "unsupported strength\n");
 | |
| 		ret = -ENOTSUPP;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	data->mode = i;
 | |
| 
 | |
| 	/* HW ECC always request ECC bytes for 1024 bytes blocks */
 | |
| 	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
 | |
| 
 | |
| 	/* HW ECC always work with even numbers of ECC bytes */
 | |
| 	ecc->bytes = ALIGN(ecc->bytes, 2);
 | |
| 
 | |
| 	layout = &data->layout;
 | |
| 	nsectors = mtd->writesize / ecc->size;
 | |
| 
 | |
| 	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	layout->eccbytes = (ecc->bytes * nsectors);
 | |
| 
 | |
| 	ecc->layout = layout;
 | |
| 	ecc->priv = data;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	kfree(data);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
 | |
| {
 | |
| 	kfree(ecc->priv);
 | |
| }
 | |
| #endif /* __UBOOT__ */
 | |
| 
 | |
| static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
 | |
| 				       struct nand_ecc_ctrl *ecc)
 | |
| {
 | |
| 	struct nand_ecclayout *layout;
 | |
| 	int nsectors;
 | |
| 	int i, j;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
 | |
| 	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
 | |
| 	ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
 | |
| 	ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
 | |
| 	layout = ecc->layout;
 | |
| 	nsectors = mtd->writesize / ecc->size;
 | |
| 
 | |
| 	for (i = 0; i < nsectors; i++) {
 | |
| 		if (i) {
 | |
| 			layout->oobfree[i].offset =
 | |
| 				layout->oobfree[i - 1].offset +
 | |
| 				layout->oobfree[i - 1].length +
 | |
| 				ecc->bytes;
 | |
| 			layout->oobfree[i].length = 4;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The first 2 bytes are used for BB markers, hence we
 | |
| 			 * only have 2 bytes available in the first user data
 | |
| 			 * section.
 | |
| 			 */
 | |
| 			layout->oobfree[i].length = 2;
 | |
| 			layout->oobfree[i].offset = 2;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < ecc->bytes; j++)
 | |
| 			layout->eccpos[(ecc->bytes * i) + j] =
 | |
| 					layout->oobfree[i].offset +
 | |
| 					layout->oobfree[i].length + j;
 | |
| 	}
 | |
| 
 | |
| 	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
 | |
| 		layout->oobfree[nsectors].offset =
 | |
| 				layout->oobfree[nsectors - 1].offset +
 | |
| 				layout->oobfree[nsectors - 1].length +
 | |
| 				ecc->bytes;
 | |
| 		layout->oobfree[nsectors].length = mtd->oobsize -
 | |
| 				((ecc->bytes + 4) * nsectors);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
 | |
| 						struct nand_ecc_ctrl *ecc)
 | |
| {
 | |
| 	struct nand_ecclayout *layout;
 | |
| 	int nsectors;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ecc->prepad = 4;
 | |
| 	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
 | |
| 	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
 | |
| 
 | |
| 	layout = ecc->layout;
 | |
| 	nsectors = mtd->writesize / ecc->size;
 | |
| 
 | |
| 	for (i = 0; i < (ecc->bytes * nsectors); i++)
 | |
| 		layout->eccpos[i] = i;
 | |
| 
 | |
| 	layout->oobfree[0].length = mtd->oobsize - i;
 | |
| 	layout->oobfree[0].offset = i;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
 | |
| {
 | |
| 	switch (ecc->mode) {
 | |
| 	case NAND_ECC_HW:
 | |
| 	case NAND_ECC_HW_SYNDROME:
 | |
| 		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
 | |
| 		break;
 | |
| 	case NAND_ECC_NONE:
 | |
| 		kfree(ecc->layout);
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| #endif /* __UBOOT__ */
 | |
| 
 | |
| static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!ecc->size) {
 | |
| 		ecc->size = nand->ecc_step_ds;
 | |
| 		ecc->strength = nand->ecc_strength_ds;
 | |
| 	}
 | |
| 
 | |
| 	if (!ecc->size || !ecc->strength)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (ecc->mode) {
 | |
| 	case NAND_ECC_SOFT_BCH:
 | |
| 		break;
 | |
| 	case NAND_ECC_HW:
 | |
| 		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		break;
 | |
| 	case NAND_ECC_HW_SYNDROME:
 | |
| 		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		break;
 | |
| 	case NAND_ECC_NONE:
 | |
| 		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
 | |
| 		if (!ecc->layout)
 | |
| 			return -ENOMEM;
 | |
| 		ecc->layout->oobfree[0].length = mtd->oobsize;
 | |
| 	case NAND_ECC_SOFT:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_nand_chip_init(int node, struct sunxi_nfc *nfc, int devnum)
 | |
| {
 | |
| 	const struct nand_sdr_timings *timings;
 | |
| 	const void *blob = gd->fdt_blob;
 | |
| 	struct sunxi_nand_chip *chip;
 | |
| 	struct mtd_info *mtd;
 | |
| 	struct nand_chip *nand;
 | |
| 	int nsels;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	u32 cs[8], rb[8];
 | |
| 
 | |
| 	if (!fdt_getprop(blob, node, "reg", &nsels))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nsels /= sizeof(u32);
 | |
| 	if (!nsels || nsels > 8) {
 | |
| 		dev_err(nfc->dev, "invalid reg property size\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	chip = kzalloc(sizeof(*chip) +
 | |
| 		       (nsels * sizeof(struct sunxi_nand_chip_sel)),
 | |
| 		       GFP_KERNEL);
 | |
| 	if (!chip) {
 | |
| 		dev_err(nfc->dev, "could not allocate chip\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	chip->nsels = nsels;
 | |
| 	chip->selected = -1;
 | |
| 
 | |
| 	for (i = 0; i < nsels; i++) {
 | |
| 		cs[i] = -1;
 | |
| 		rb[i] = -1;
 | |
| 	}
 | |
| 
 | |
| 	ret = fdtdec_get_int_array(gd->fdt_blob, node, "reg", cs, nsels);
 | |
| 	if (ret) {
 | |
| 		dev_err(nfc->dev, "could not retrieve reg property: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = fdtdec_get_int_array(gd->fdt_blob, node, "allwinner,rb", rb,
 | |
| 				   nsels);
 | |
| 	if (ret) {
 | |
| 		dev_err(nfc->dev, "could not retrieve reg property: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nsels; i++) {
 | |
| 		int tmp = cs[i];
 | |
| 
 | |
| 		if (tmp > NFC_MAX_CS) {
 | |
| 			dev_err(nfc->dev,
 | |
| 				"invalid reg value: %u (max CS = 7)\n", tmp);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
 | |
| 			dev_err(nfc->dev, "CS %d already assigned\n", tmp);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		chip->sels[i].cs = tmp;
 | |
| 
 | |
| 		tmp = rb[i];
 | |
| 		if (tmp >= 0 && tmp < 2) {
 | |
| 			chip->sels[i].rb.type = RB_NATIVE;
 | |
| 			chip->sels[i].rb.info.nativeid = tmp;
 | |
| 		} else {
 | |
| 			ret = gpio_request_by_name_nodev(offset_to_ofnode(node),
 | |
| 						"rb-gpios", i,
 | |
| 						&chip->sels[i].rb.info.gpio,
 | |
| 						GPIOD_IS_IN);
 | |
| 			if (ret)
 | |
| 				chip->sels[i].rb.type = RB_GPIO;
 | |
| 			else
 | |
| 				chip->sels[i].rb.type = RB_NONE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	timings = onfi_async_timing_mode_to_sdr_timings(0);
 | |
| 	if (IS_ERR(timings)) {
 | |
| 		ret = PTR_ERR(timings);
 | |
| 		dev_err(nfc->dev,
 | |
| 			"could not retrieve timings for ONFI mode 0: %d\n",
 | |
| 			ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = sunxi_nand_chip_set_timings(nfc, chip, timings);
 | |
| 	if (ret) {
 | |
| 		dev_err(nfc->dev, "could not configure chip timings: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	nand = &chip->nand;
 | |
| 	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
 | |
| 	nand->chip_delay = 200;
 | |
| 	nand->controller = &nfc->controller;
 | |
| 	/*
 | |
| 	 * Set the ECC mode to the default value in case nothing is specified
 | |
| 	 * in the DT.
 | |
| 	 */
 | |
| 	nand->ecc.mode = NAND_ECC_HW;
 | |
| 	nand->flash_node = offset_to_ofnode(node);
 | |
| 	nand->select_chip = sunxi_nfc_select_chip;
 | |
| 	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
 | |
| 	nand->read_buf = sunxi_nfc_read_buf;
 | |
| 	nand->write_buf = sunxi_nfc_write_buf;
 | |
| 	nand->read_byte = sunxi_nfc_read_byte;
 | |
| 
 | |
| 	mtd = nand_to_mtd(nand);
 | |
| 	ret = nand_scan_ident(mtd, nsels, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (nand->bbt_options & NAND_BBT_USE_FLASH)
 | |
| 		nand->bbt_options |= NAND_BBT_NO_OOB;
 | |
| 
 | |
| 	if (nand->options & NAND_NEED_SCRAMBLING)
 | |
| 		nand->options |= NAND_NO_SUBPAGE_WRITE;
 | |
| 
 | |
| 	nand->options |= NAND_SUBPAGE_READ;
 | |
| 
 | |
| 	ret = sunxi_nand_chip_init_timings(nfc, chip);
 | |
| 	if (ret) {
 | |
| 		dev_err(nfc->dev, "could not configure chip timings: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = sunxi_nand_ecc_init(mtd, &nand->ecc);
 | |
| 	if (ret) {
 | |
| 		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = nand_scan_tail(mtd);
 | |
| 	if (ret) {
 | |
| 		dev_err(nfc->dev, "nand_scan_tail failed: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = nand_register(devnum, mtd);
 | |
| 	if (ret) {
 | |
| 		dev_err(nfc->dev, "failed to register mtd device: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&chip->node, &nfc->chips);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_nand_chips_init(int node, struct sunxi_nfc *nfc)
 | |
| {
 | |
| 	const void *blob = gd->fdt_blob;
 | |
| 	int nand_node;
 | |
| 	int ret, i = 0;
 | |
| 
 | |
| 	for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0;
 | |
| 	     nand_node = fdt_next_subnode(blob, nand_node))
 | |
| 		i++;
 | |
| 
 | |
| 	if (i > 8) {
 | |
| 		dev_err(nfc->dev, "too many NAND chips: %d (max = 8)\n", i);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	i = 0;
 | |
| 	for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0;
 | |
| 	     nand_node = fdt_next_subnode(blob, nand_node)) {
 | |
| 		ret = sunxi_nand_chip_init(nand_node, nfc, i++);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
 | |
| {
 | |
| 	struct sunxi_nand_chip *chip;
 | |
| 
 | |
| 	while (!list_empty(&nfc->chips)) {
 | |
| 		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
 | |
| 					node);
 | |
| 		nand_release(&chip->mtd);
 | |
| 		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
 | |
| 		list_del(&chip->node);
 | |
| 		kfree(chip);
 | |
| 	}
 | |
| }
 | |
| #endif /* __UBOOT__ */
 | |
| 
 | |
| void sunxi_nand_init(void)
 | |
| {
 | |
| 	const void *blob = gd->fdt_blob;
 | |
| 	struct sunxi_nfc *nfc;
 | |
| 	fdt_addr_t regs;
 | |
| 	int node;
 | |
| 	int ret;
 | |
| 
 | |
| 	nfc = kzalloc(sizeof(*nfc), GFP_KERNEL);
 | |
| 	if (!nfc)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_init(&nfc->controller.lock);
 | |
| 	init_waitqueue_head(&nfc->controller.wq);
 | |
| 	INIT_LIST_HEAD(&nfc->chips);
 | |
| 
 | |
| 	node = fdtdec_next_compatible(blob, 0, COMPAT_SUNXI_NAND);
 | |
| 	if (node < 0) {
 | |
| 		pr_err("unable to find nfc node in device tree\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (!fdtdec_get_is_enabled(blob, node)) {
 | |
| 		pr_err("nfc disabled in device tree\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	regs = fdtdec_get_addr(blob, node, "reg");
 | |
| 	if (regs == FDT_ADDR_T_NONE) {
 | |
| 		pr_err("unable to find nfc address in device tree\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	nfc->regs = (void *)regs;
 | |
| 
 | |
| 	ret = sunxi_nfc_rst(nfc);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	ret = sunxi_nand_chips_init(node, nfc);
 | |
| 	if (ret) {
 | |
| 		dev_err(nfc->dev, "failed to init nand chips\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| err:
 | |
| 	kfree(nfc);
 | |
| }
 | |
| 
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_AUTHOR("Boris BREZILLON");
 | |
| MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
 |