mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-31 20:18:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1039 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1039 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
 | |
|  * Rohit Choraria <rohitkc@ti.com>
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <log.h>
 | |
| #include <asm/io.h>
 | |
| #include <linux/errno.h>
 | |
| #include <asm/arch/mem.h>
 | |
| #include <linux/mtd/omap_gpmc.h>
 | |
| #include <linux/mtd/nand_ecc.h>
 | |
| #include <linux/bch.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <nand.h>
 | |
| #include <linux/mtd/omap_elm.h>
 | |
| 
 | |
| #define BADBLOCK_MARKER_LENGTH	2
 | |
| #define SECTOR_BYTES		512
 | |
| #define ECCCLEAR		(0x1 << 8)
 | |
| #define ECCRESULTREG1		(0x1 << 0)
 | |
| /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 | |
| #define BCH4_BIT_PAD		4
 | |
| 
 | |
| #ifdef CONFIG_BCH
 | |
| static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
 | |
| 				0x97, 0x79, 0xe5, 0x24, 0xb5};
 | |
| #endif
 | |
| static uint8_t cs_next;
 | |
| static __maybe_unused struct nand_ecclayout omap_ecclayout;
 | |
| 
 | |
| #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
 | |
| static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
 | |
| 	{ CONFIG_NAND_OMAP_GPMC_WSCFG };
 | |
| #else
 | |
| /* wscfg is preset to zero since its a static variable */
 | |
| static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Driver configurations
 | |
|  */
 | |
| struct omap_nand_info {
 | |
| 	struct bch_control *control;
 | |
| 	enum omap_ecc ecc_scheme;
 | |
| 	uint8_t cs;
 | |
| 	uint8_t ws;		/* wait status pin (0,1) */
 | |
| };
 | |
| 
 | |
| /* We are wasting a bit of memory but al least we are safe */
 | |
| static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
 | |
| 
 | |
| /*
 | |
|  * omap_nand_hwcontrol - Set the address pointers corretly for the
 | |
|  *			following address/data/command operation
 | |
|  */
 | |
| static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
 | |
| 				uint32_t ctrl)
 | |
| {
 | |
| 	register struct nand_chip *this = mtd_to_nand(mtd);
 | |
| 	struct omap_nand_info *info = nand_get_controller_data(this);
 | |
| 	int cs = info->cs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Point the IO_ADDR to DATA and ADDRESS registers instead
 | |
| 	 * of chip address
 | |
| 	 */
 | |
| 	switch (ctrl) {
 | |
| 	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
 | |
| 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
 | |
| 		break;
 | |
| 	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
 | |
| 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
 | |
| 		break;
 | |
| 	case NAND_CTRL_CHANGE | NAND_NCE:
 | |
| 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE)
 | |
| 		writeb(cmd, this->IO_ADDR_W);
 | |
| }
 | |
| 
 | |
| /* Check wait pin as dev ready indicator */
 | |
| static int omap_dev_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	register struct nand_chip *this = mtd_to_nand(mtd);
 | |
| 	struct omap_nand_info *info = nand_get_controller_data(this);
 | |
| 	return gpmc_cfg->status & (1 << (8 + info->ws));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * gen_true_ecc - This function will generate true ECC value, which
 | |
|  * can be used when correcting data read from NAND flash memory core
 | |
|  *
 | |
|  * @ecc_buf:	buffer to store ecc code
 | |
|  *
 | |
|  * @return:	re-formatted ECC value
 | |
|  */
 | |
| static uint32_t gen_true_ecc(uint8_t *ecc_buf)
 | |
| {
 | |
| 	return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
 | |
| 		((ecc_buf[2] & 0x0F) << 8);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_correct_data - Compares the ecc read from nand spare area with ECC
 | |
|  * registers values and corrects one bit error if it has occurred
 | |
|  * Further details can be had from OMAP TRM and the following selected links:
 | |
|  * http://en.wikipedia.org/wiki/Hamming_code
 | |
|  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
 | |
|  *
 | |
|  * @mtd:		 MTD device structure
 | |
|  * @dat:		 page data
 | |
|  * @read_ecc:		 ecc read from nand flash
 | |
|  * @calc_ecc:		 ecc read from ECC registers
 | |
|  *
 | |
|  * @return 0 if data is OK or corrected, else returns -1
 | |
|  */
 | |
| static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
 | |
| 				uint8_t *read_ecc, uint8_t *calc_ecc)
 | |
| {
 | |
| 	uint32_t orig_ecc, new_ecc, res, hm;
 | |
| 	uint16_t parity_bits, byte;
 | |
| 	uint8_t bit;
 | |
| 
 | |
| 	/* Regenerate the orginal ECC */
 | |
| 	orig_ecc = gen_true_ecc(read_ecc);
 | |
| 	new_ecc = gen_true_ecc(calc_ecc);
 | |
| 	/* Get the XOR of real ecc */
 | |
| 	res = orig_ecc ^ new_ecc;
 | |
| 	if (res) {
 | |
| 		/* Get the hamming width */
 | |
| 		hm = hweight32(res);
 | |
| 		/* Single bit errors can be corrected! */
 | |
| 		if (hm == 12) {
 | |
| 			/* Correctable data! */
 | |
| 			parity_bits = res >> 16;
 | |
| 			bit = (parity_bits & 0x7);
 | |
| 			byte = (parity_bits >> 3) & 0x1FF;
 | |
| 			/* Flip the bit to correct */
 | |
| 			dat[byte] ^= (0x1 << bit);
 | |
| 		} else if (hm == 1) {
 | |
| 			printf("Error: Ecc is wrong\n");
 | |
| 			/* ECC itself is corrupted */
 | |
| 			return 2;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * hm distance != parity pairs OR one, could mean 2 bit
 | |
| 			 * error OR potentially be on a blank page..
 | |
| 			 * orig_ecc: contains spare area data from nand flash.
 | |
| 			 * new_ecc: generated ecc while reading data area.
 | |
| 			 * Note: if the ecc = 0, all data bits from which it was
 | |
| 			 * generated are 0xFF.
 | |
| 			 * The 3 byte(24 bits) ecc is generated per 512byte
 | |
| 			 * chunk of a page. If orig_ecc(from spare area)
 | |
| 			 * is 0xFF && new_ecc(computed now from data area)=0x0,
 | |
| 			 * this means that data area is 0xFF and spare area is
 | |
| 			 * 0xFF. A sure sign of a erased page!
 | |
| 			 */
 | |
| 			if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
 | |
| 				return 0;
 | |
| 			printf("Error: Bad compare! failed\n");
 | |
| 			/* detected 2 bit error */
 | |
| 			return -EBADMSG;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
 | |
|  * @mtd:	MTD device structure
 | |
|  * @mode:	Read/Write mode
 | |
|  */
 | |
| __maybe_unused
 | |
| static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
 | |
| {
 | |
| 	struct nand_chip	*nand	= mtd_to_nand(mtd);
 | |
| 	struct omap_nand_info	*info	= nand_get_controller_data(nand);
 | |
| 	unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
 | |
| 	unsigned int ecc_algo = 0;
 | |
| 	unsigned int bch_type = 0;
 | |
| 	unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
 | |
| 	u32 ecc_size_config_val = 0;
 | |
| 	u32 ecc_config_val = 0;
 | |
| 	int cs = info->cs;
 | |
| 
 | |
| 	/* configure GPMC for specific ecc-scheme */
 | |
| 	switch (info->ecc_scheme) {
 | |
| 	case OMAP_ECC_HAM1_CODE_SW:
 | |
| 		return;
 | |
| 	case OMAP_ECC_HAM1_CODE_HW:
 | |
| 		ecc_algo = 0x0;
 | |
| 		bch_type = 0x0;
 | |
| 		bch_wrapmode = 0x00;
 | |
| 		eccsize0 = 0xFF;
 | |
| 		eccsize1 = 0xFF;
 | |
| 		break;
 | |
| 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 | |
| 	case OMAP_ECC_BCH8_CODE_HW:
 | |
| 		ecc_algo = 0x1;
 | |
| 		bch_type = 0x1;
 | |
| 		if (mode == NAND_ECC_WRITE) {
 | |
| 			bch_wrapmode = 0x01;
 | |
| 			eccsize0 = 0;  /* extra bits in nibbles per sector */
 | |
| 			eccsize1 = 28; /* OOB bits in nibbles per sector */
 | |
| 		} else {
 | |
| 			bch_wrapmode = 0x01;
 | |
| 			eccsize0 = 26; /* ECC bits in nibbles per sector */
 | |
| 			eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
 | |
| 		}
 | |
| 		break;
 | |
| 	case OMAP_ECC_BCH16_CODE_HW:
 | |
| 		ecc_algo = 0x1;
 | |
| 		bch_type = 0x2;
 | |
| 		if (mode == NAND_ECC_WRITE) {
 | |
| 			bch_wrapmode = 0x01;
 | |
| 			eccsize0 = 0;  /* extra bits in nibbles per sector */
 | |
| 			eccsize1 = 52; /* OOB bits in nibbles per sector */
 | |
| 		} else {
 | |
| 			bch_wrapmode = 0x01;
 | |
| 			eccsize0 = 52; /* ECC bits in nibbles per sector */
 | |
| 			eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Clear ecc and enable bits */
 | |
| 	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
 | |
| 	/* Configure ecc size for BCH */
 | |
| 	ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
 | |
| 	writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
 | |
| 
 | |
| 	/* Configure device details for BCH engine */
 | |
| 	ecc_config_val = ((ecc_algo << 16)	| /* HAM1 | BCHx */
 | |
| 			(bch_type << 12)	| /* BCH4/BCH8/BCH16 */
 | |
| 			(bch_wrapmode << 8)	| /* wrap mode */
 | |
| 			(dev_width << 7)	| /* bus width */
 | |
| 			(0x0 << 4)		| /* number of sectors */
 | |
| 			(cs <<  1)		| /* ECC CS */
 | |
| 			(0x1));			  /* enable ECC */
 | |
| 	writel(ecc_config_val, &gpmc_cfg->ecc_config);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  omap_calculate_ecc - Read ECC result
 | |
|  *  @mtd:	MTD structure
 | |
|  *  @dat:	unused
 | |
|  *  @ecc_code:	ecc_code buffer
 | |
|  *  Using noninverted ECC can be considered ugly since writing a blank
 | |
|  *  page ie. padding will clear the ECC bytes. This is no problem as
 | |
|  *  long nobody is trying to write data on the seemingly unused page.
 | |
|  *  Reading an erased page will produce an ECC mismatch between
 | |
|  *  generated and read ECC bytes that has to be dealt with separately.
 | |
|  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
 | |
|  *  is used, the result of read will be 0x0 while the ECC offsets of the
 | |
|  *  spare area will be 0xFF which will result in an ECC mismatch.
 | |
|  */
 | |
| static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
 | |
| 				uint8_t *ecc_code)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct omap_nand_info *info = nand_get_controller_data(chip);
 | |
| 	const uint32_t *ptr;
 | |
| 	uint32_t val = 0;
 | |
| 	int8_t i = 0, j;
 | |
| 
 | |
| 	switch (info->ecc_scheme) {
 | |
| 	case OMAP_ECC_HAM1_CODE_HW:
 | |
| 		val = readl(&gpmc_cfg->ecc1_result);
 | |
| 		ecc_code[0] = val & 0xFF;
 | |
| 		ecc_code[1] = (val >> 16) & 0xFF;
 | |
| 		ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
 | |
| 		break;
 | |
| #ifdef CONFIG_BCH
 | |
| 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 | |
| #endif
 | |
| 	case OMAP_ECC_BCH8_CODE_HW:
 | |
| 		ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
 | |
| 		val = readl(ptr);
 | |
| 		ecc_code[i++] = (val >>  0) & 0xFF;
 | |
| 		ptr--;
 | |
| 		for (j = 0; j < 3; j++) {
 | |
| 			val = readl(ptr);
 | |
| 			ecc_code[i++] = (val >> 24) & 0xFF;
 | |
| 			ecc_code[i++] = (val >> 16) & 0xFF;
 | |
| 			ecc_code[i++] = (val >>  8) & 0xFF;
 | |
| 			ecc_code[i++] = (val >>  0) & 0xFF;
 | |
| 			ptr--;
 | |
| 		}
 | |
| 		break;
 | |
| 	case OMAP_ECC_BCH16_CODE_HW:
 | |
| 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
 | |
| 		ecc_code[i++] = (val >>  8) & 0xFF;
 | |
| 		ecc_code[i++] = (val >>  0) & 0xFF;
 | |
| 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
 | |
| 		ecc_code[i++] = (val >> 24) & 0xFF;
 | |
| 		ecc_code[i++] = (val >> 16) & 0xFF;
 | |
| 		ecc_code[i++] = (val >>  8) & 0xFF;
 | |
| 		ecc_code[i++] = (val >>  0) & 0xFF;
 | |
| 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
 | |
| 		ecc_code[i++] = (val >> 24) & 0xFF;
 | |
| 		ecc_code[i++] = (val >> 16) & 0xFF;
 | |
| 		ecc_code[i++] = (val >>  8) & 0xFF;
 | |
| 		ecc_code[i++] = (val >>  0) & 0xFF;
 | |
| 		for (j = 3; j >= 0; j--) {
 | |
| 			val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
 | |
| 									);
 | |
| 			ecc_code[i++] = (val >> 24) & 0xFF;
 | |
| 			ecc_code[i++] = (val >> 16) & 0xFF;
 | |
| 			ecc_code[i++] = (val >>  8) & 0xFF;
 | |
| 			ecc_code[i++] = (val >>  0) & 0xFF;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	/* ECC scheme specific syndrome customizations */
 | |
| 	switch (info->ecc_scheme) {
 | |
| 	case OMAP_ECC_HAM1_CODE_HW:
 | |
| 		break;
 | |
| #ifdef CONFIG_BCH
 | |
| 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 | |
| 
 | |
| 		for (i = 0; i < chip->ecc.bytes; i++)
 | |
| 			*(ecc_code + i) = *(ecc_code + i) ^
 | |
| 						bch8_polynomial[i];
 | |
| 		break;
 | |
| #endif
 | |
| 	case OMAP_ECC_BCH8_CODE_HW:
 | |
| 		ecc_code[chip->ecc.bytes - 1] = 0x00;
 | |
| 		break;
 | |
| 	case OMAP_ECC_BCH16_CODE_HW:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
 | |
| 
 | |
| #define PREFETCH_CONFIG1_CS_SHIFT	24
 | |
| #define PREFETCH_FIFOTHRESHOLD_MAX	0x40
 | |
| #define PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
 | |
| #define PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
 | |
| #define PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
 | |
| #define ENABLE_PREFETCH			(1 << 7)
 | |
| 
 | |
| /**
 | |
|  * omap_prefetch_enable - configures and starts prefetch transfer
 | |
|  * @fifo_th: fifo threshold to be used for read/ write
 | |
|  * @count: number of bytes to be transferred
 | |
|  * @is_write: prefetch read(0) or write post(1) mode
 | |
|  * @cs: chip select to use
 | |
|  */
 | |
| static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
 | |
| {
 | |
| 	uint32_t val;
 | |
| 
 | |
| 	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (readl(&gpmc_cfg->prefetch_control))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Set the amount of bytes to be prefetched */
 | |
| 	writel(count, &gpmc_cfg->prefetch_config2);
 | |
| 
 | |
| 	val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
 | |
| 		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
 | |
| 	writel(val, &gpmc_cfg->prefetch_config1);
 | |
| 
 | |
| 	/*  Start the prefetch engine */
 | |
| 	writel(1, &gpmc_cfg->prefetch_control);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_prefetch_reset - disables and stops the prefetch engine
 | |
|  */
 | |
| static void omap_prefetch_reset(void)
 | |
| {
 | |
| 	writel(0, &gpmc_cfg->prefetch_control);
 | |
| 	writel(0, &gpmc_cfg->prefetch_config1);
 | |
| }
 | |
| 
 | |
| static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
 | |
| {
 | |
| 	int ret;
 | |
| 	uint32_t cnt;
 | |
| 	struct omap_nand_info *info = nand_get_controller_data(chip);
 | |
| 
 | |
| 	ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	do {
 | |
| 		int i;
 | |
| 
 | |
| 		cnt = readl(&gpmc_cfg->prefetch_status);
 | |
| 		cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
 | |
| 
 | |
| 		for (i = 0; i < cnt / 4; i++) {
 | |
| 			*buf++ = readl(CONFIG_SYS_NAND_BASE);
 | |
| 			len -= 4;
 | |
| 		}
 | |
| 	} while (len);
 | |
| 
 | |
| 	omap_prefetch_reset();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 
 | |
| 	if (chip->options & NAND_BUSWIDTH_16)
 | |
| 		nand_read_buf16(mtd, buf, len);
 | |
| 	else
 | |
| 		nand_read_buf(mtd, buf, len);
 | |
| }
 | |
| 
 | |
| static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
 | |
| {
 | |
| 	int ret;
 | |
| 	uint32_t head, tail;
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the destination buffer is unaligned, start with reading
 | |
| 	 * the overlap byte-wise.
 | |
| 	 */
 | |
| 	head = ((uint32_t) buf) % 4;
 | |
| 	if (head) {
 | |
| 		omap_nand_read(mtd, buf, head);
 | |
| 		buf += head;
 | |
| 		len -= head;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
 | |
| 	 * If there's a residue, care for it byte-wise afterwards.
 | |
| 	 */
 | |
| 	tail = len % 4;
 | |
| 
 | |
| 	ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
 | |
| 	if (ret < 0) {
 | |
| 		/* fallback in case the prefetch engine is busy */
 | |
| 		omap_nand_read(mtd, buf, len);
 | |
| 	} else if (tail) {
 | |
| 		buf += len - tail;
 | |
| 		omap_nand_read(mtd, buf, tail);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
 | |
| 
 | |
| #ifdef CONFIG_NAND_OMAP_ELM
 | |
| /*
 | |
|  * omap_reverse_list - re-orders list elements in reverse order [internal]
 | |
|  * @list:	pointer to start of list
 | |
|  * @length:	length of list
 | |
| */
 | |
| static void omap_reverse_list(u8 *list, unsigned int length)
 | |
| {
 | |
| 	unsigned int i, j;
 | |
| 	unsigned int half_length = length / 2;
 | |
| 	u8 tmp;
 | |
| 	for (i = 0, j = length - 1; i < half_length; i++, j--) {
 | |
| 		tmp = list[i];
 | |
| 		list[i] = list[j];
 | |
| 		list[j] = tmp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_correct_data_bch - Compares the ecc read from nand spare area
 | |
|  * with ECC registers values and corrects one bit error if it has occurred
 | |
|  *
 | |
|  * @mtd:	MTD device structure
 | |
|  * @dat:	page data
 | |
|  * @read_ecc:	ecc read from nand flash (ignored)
 | |
|  * @calc_ecc:	ecc read from ECC registers
 | |
|  *
 | |
|  * @return 0 if data is OK or corrected, else returns -1
 | |
|  */
 | |
| static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
 | |
| 				uint8_t *read_ecc, uint8_t *calc_ecc)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct omap_nand_info *info = nand_get_controller_data(chip);
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 	uint32_t error_count = 0, error_max;
 | |
| 	uint32_t error_loc[ELM_MAX_ERROR_COUNT];
 | |
| 	enum bch_level bch_type;
 | |
| 	uint32_t i, ecc_flag = 0;
 | |
| 	uint8_t count;
 | |
| 	uint32_t byte_pos, bit_pos;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* check calculated ecc */
 | |
| 	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
 | |
| 		if (calc_ecc[i] != 0x00)
 | |
| 			ecc_flag = 1;
 | |
| 	}
 | |
| 	if (!ecc_flag)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* check for whether its a erased-page */
 | |
| 	ecc_flag = 0;
 | |
| 	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
 | |
| 		if (read_ecc[i] != 0xff)
 | |
| 			ecc_flag = 1;
 | |
| 	}
 | |
| 	if (!ecc_flag)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * while reading ECC result we read it in big endian.
 | |
| 	 * Hence while loading to ELM we have rotate to get the right endian.
 | |
| 	 */
 | |
| 	switch (info->ecc_scheme) {
 | |
| 	case OMAP_ECC_BCH8_CODE_HW:
 | |
| 		bch_type = BCH_8_BIT;
 | |
| 		omap_reverse_list(calc_ecc, ecc->bytes - 1);
 | |
| 		break;
 | |
| 	case OMAP_ECC_BCH16_CODE_HW:
 | |
| 		bch_type = BCH_16_BIT;
 | |
| 		omap_reverse_list(calc_ecc, ecc->bytes);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	/* use elm module to check for errors */
 | |
| 	elm_config(bch_type);
 | |
| 	err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* correct bch error */
 | |
| 	for (count = 0; count < error_count; count++) {
 | |
| 		switch (info->ecc_scheme) {
 | |
| 		case OMAP_ECC_BCH8_CODE_HW:
 | |
| 			/* 14th byte in ECC is reserved to match ROM layout */
 | |
| 			error_max = SECTOR_BYTES + (ecc->bytes - 1);
 | |
| 			break;
 | |
| 		case OMAP_ECC_BCH16_CODE_HW:
 | |
| 			error_max = SECTOR_BYTES + ecc->bytes;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		byte_pos = error_max - (error_loc[count] / 8) - 1;
 | |
| 		bit_pos  = error_loc[count] % 8;
 | |
| 		if (byte_pos < SECTOR_BYTES) {
 | |
| 			dat[byte_pos] ^= 1 << bit_pos;
 | |
| 			debug("nand: bit-flip corrected @data=%d\n", byte_pos);
 | |
| 		} else if (byte_pos < error_max) {
 | |
| 			read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
 | |
| 			debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
 | |
| 								SECTOR_BYTES);
 | |
| 		} else {
 | |
| 			err = -EBADMSG;
 | |
| 			printf("nand: error: invalid bit-flip location\n");
 | |
| 		}
 | |
| 	}
 | |
| 	return (err) ? err : error_count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_page_bch - hardware ecc based page read function
 | |
|  * @mtd:	mtd info structure
 | |
|  * @chip:	nand chip info structure
 | |
|  * @buf:	buffer to store read data
 | |
|  * @oob_required: caller expects OOB data read to chip->oob_poi
 | |
|  * @page:	page number to read
 | |
|  *
 | |
|  */
 | |
| static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	int i, eccsize = chip->ecc.size;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	int eccsteps = chip->ecc.steps;
 | |
| 	uint8_t *p = buf;
 | |
| 	uint8_t *ecc_calc = chip->buffers->ecccalc;
 | |
| 	uint8_t *ecc_code = chip->buffers->ecccode;
 | |
| 	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 	uint32_t data_pos;
 | |
| 	uint32_t oob_pos;
 | |
| 
 | |
| 	data_pos = 0;
 | |
| 	/* oob area start */
 | |
| 	oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
 | |
| 	oob += chip->ecc.layout->eccpos[0];
 | |
| 
 | |
| 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
 | |
| 				oob += eccbytes) {
 | |
| 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
 | |
| 		/* read data */
 | |
| 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
 | |
| 		chip->read_buf(mtd, p, eccsize);
 | |
| 
 | |
| 		/* read respective ecc from oob area */
 | |
| 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
 | |
| 		chip->read_buf(mtd, oob, eccbytes);
 | |
| 		/* read syndrome */
 | |
| 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 | |
| 
 | |
| 		data_pos += eccsize;
 | |
| 		oob_pos += eccbytes;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < chip->ecc.total; i++)
 | |
| 		ecc_code[i] = chip->oob_poi[eccpos[i]];
 | |
| 
 | |
| 	eccsteps = chip->ecc.steps;
 | |
| 	p = buf;
 | |
| 
 | |
| 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 | |
| 		int stat;
 | |
| 
 | |
| 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 | |
| 		if (stat < 0)
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 		else
 | |
| 			mtd->ecc_stats.corrected += stat;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NAND_OMAP_ELM */
 | |
| 
 | |
| /*
 | |
|  * OMAP3 BCH8 support (with BCH library)
 | |
|  */
 | |
| #ifdef CONFIG_BCH
 | |
| /**
 | |
|  * omap_correct_data_bch_sw - Decode received data and correct errors
 | |
|  * @mtd: MTD device structure
 | |
|  * @data: page data
 | |
|  * @read_ecc: ecc read from nand flash
 | |
|  * @calc_ecc: ecc read from HW ECC registers
 | |
|  */
 | |
| static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
 | |
| 				 u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	int i, count;
 | |
| 	/* cannot correct more than 8 errors */
 | |
| 	unsigned int errloc[8];
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct omap_nand_info *info = nand_get_controller_data(chip);
 | |
| 
 | |
| 	count = decode_bch(info->control, NULL, SECTOR_BYTES,
 | |
| 				read_ecc, calc_ecc, NULL, errloc);
 | |
| 	if (count > 0) {
 | |
| 		/* correct errors */
 | |
| 		for (i = 0; i < count; i++) {
 | |
| 			/* correct data only, not ecc bytes */
 | |
| 			if (errloc[i] < SECTOR_BYTES << 3)
 | |
| 				data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
 | |
| 			debug("corrected bitflip %u\n", errloc[i]);
 | |
| #ifdef DEBUG
 | |
| 			puts("read_ecc: ");
 | |
| 			/*
 | |
| 			 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
 | |
| 			 * here!
 | |
| 			 */
 | |
| 			for (i = 0; i < 13; i++)
 | |
| 				printf("%02x ", read_ecc[i]);
 | |
| 			puts("\n");
 | |
| 			puts("calc_ecc: ");
 | |
| 			for (i = 0; i < 13; i++)
 | |
| 				printf("%02x ", calc_ecc[i]);
 | |
| 			puts("\n");
 | |
| #endif
 | |
| 		}
 | |
| 	} else if (count < 0) {
 | |
| 		puts("ecc unrecoverable error\n");
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_free_bch - Release BCH ecc resources
 | |
|  * @mtd: MTD device structure
 | |
|  */
 | |
| static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct omap_nand_info *info = nand_get_controller_data(chip);
 | |
| 
 | |
| 	if (info->control) {
 | |
| 		free_bch(info->control);
 | |
| 		info->control = NULL;
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_BCH */
 | |
| 
 | |
| /**
 | |
|  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
 | |
|  * @nand: NAND chip device structure
 | |
|  * @ecc_scheme: ecc scheme to configure
 | |
|  * @pagesize: number of main-area bytes per page of NAND device
 | |
|  * @oobsize: number of OOB/spare bytes per page of NAND device
 | |
|  */
 | |
| static int omap_select_ecc_scheme(struct nand_chip *nand,
 | |
| 	enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
 | |
| 	struct omap_nand_info	*info		= nand_get_controller_data(nand);
 | |
| 	struct nand_ecclayout	*ecclayout	= &omap_ecclayout;
 | |
| 	int eccsteps = pagesize / SECTOR_BYTES;
 | |
| 	int i;
 | |
| 
 | |
| 	switch (ecc_scheme) {
 | |
| 	case OMAP_ECC_HAM1_CODE_SW:
 | |
| 		debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
 | |
| 		/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
 | |
| 		 * initialized in nand_scan_tail(), so just set ecc.mode */
 | |
| 		info->control		= NULL;
 | |
| 		nand->ecc.mode		= NAND_ECC_SOFT;
 | |
| 		nand->ecc.layout	= NULL;
 | |
| 		nand->ecc.size		= 0;
 | |
| 		break;
 | |
| 
 | |
| 	case OMAP_ECC_HAM1_CODE_HW:
 | |
| 		debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
 | |
| 		/* check ecc-scheme requirements before updating ecc info */
 | |
| 		if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 | |
| 			printf("nand: error: insufficient OOB: require=%d\n", (
 | |
| 				(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		info->control		= NULL;
 | |
| 		/* populate ecc specific fields */
 | |
| 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 | |
| 		nand->ecc.mode		= NAND_ECC_HW;
 | |
| 		nand->ecc.strength	= 1;
 | |
| 		nand->ecc.size		= SECTOR_BYTES;
 | |
| 		nand->ecc.bytes		= 3;
 | |
| 		nand->ecc.hwctl		= omap_enable_hwecc;
 | |
| 		nand->ecc.correct	= omap_correct_data;
 | |
| 		nand->ecc.calculate	= omap_calculate_ecc;
 | |
| 		/* define ecc-layout */
 | |
| 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
 | |
| 		for (i = 0; i < ecclayout->eccbytes; i++) {
 | |
| 			if (nand->options & NAND_BUSWIDTH_16)
 | |
| 				ecclayout->eccpos[i] = i + 2;
 | |
| 			else
 | |
| 				ecclayout->eccpos[i] = i + 1;
 | |
| 		}
 | |
| 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 | |
| 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 | |
| 						BADBLOCK_MARKER_LENGTH;
 | |
| 		break;
 | |
| 
 | |
| 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 | |
| #ifdef CONFIG_BCH
 | |
| 		debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
 | |
| 		/* check ecc-scheme requirements before updating ecc info */
 | |
| 		if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 | |
| 			printf("nand: error: insufficient OOB: require=%d\n", (
 | |
| 				(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		/* check if BCH S/W library can be used for error detection */
 | |
| 		info->control = init_bch(13, 8, 0x201b);
 | |
| 		if (!info->control) {
 | |
| 			printf("nand: error: could not init_bch()\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		/* populate ecc specific fields */
 | |
| 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 | |
| 		nand->ecc.mode		= NAND_ECC_HW;
 | |
| 		nand->ecc.strength	= 8;
 | |
| 		nand->ecc.size		= SECTOR_BYTES;
 | |
| 		nand->ecc.bytes		= 13;
 | |
| 		nand->ecc.hwctl		= omap_enable_hwecc;
 | |
| 		nand->ecc.correct	= omap_correct_data_bch_sw;
 | |
| 		nand->ecc.calculate	= omap_calculate_ecc;
 | |
| 		/* define ecc-layout */
 | |
| 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
 | |
| 		ecclayout->eccpos[0]	= BADBLOCK_MARKER_LENGTH;
 | |
| 		for (i = 1; i < ecclayout->eccbytes; i++) {
 | |
| 			if (i % nand->ecc.bytes)
 | |
| 				ecclayout->eccpos[i] =
 | |
| 						ecclayout->eccpos[i - 1] + 1;
 | |
| 			else
 | |
| 				ecclayout->eccpos[i] =
 | |
| 						ecclayout->eccpos[i - 1] + 2;
 | |
| 		}
 | |
| 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 | |
| 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 | |
| 						BADBLOCK_MARKER_LENGTH;
 | |
| 		break;
 | |
| #else
 | |
| 		printf("nand: error: CONFIG_BCH required for ECC\n");
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 
 | |
| 	case OMAP_ECC_BCH8_CODE_HW:
 | |
| #ifdef CONFIG_NAND_OMAP_ELM
 | |
| 		debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
 | |
| 		/* check ecc-scheme requirements before updating ecc info */
 | |
| 		if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 | |
| 			printf("nand: error: insufficient OOB: require=%d\n", (
 | |
| 				(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		/* intialize ELM for ECC error detection */
 | |
| 		elm_init();
 | |
| 		info->control		= NULL;
 | |
| 		/* populate ecc specific fields */
 | |
| 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 | |
| 		nand->ecc.mode		= NAND_ECC_HW;
 | |
| 		nand->ecc.strength	= 8;
 | |
| 		nand->ecc.size		= SECTOR_BYTES;
 | |
| 		nand->ecc.bytes		= 14;
 | |
| 		nand->ecc.hwctl		= omap_enable_hwecc;
 | |
| 		nand->ecc.correct	= omap_correct_data_bch;
 | |
| 		nand->ecc.calculate	= omap_calculate_ecc;
 | |
| 		nand->ecc.read_page	= omap_read_page_bch;
 | |
| 		/* define ecc-layout */
 | |
| 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
 | |
| 		for (i = 0; i < ecclayout->eccbytes; i++)
 | |
| 			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
 | |
| 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 | |
| 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 | |
| 						BADBLOCK_MARKER_LENGTH;
 | |
| 		break;
 | |
| #else
 | |
| 		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 
 | |
| 	case OMAP_ECC_BCH16_CODE_HW:
 | |
| #ifdef CONFIG_NAND_OMAP_ELM
 | |
| 		debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
 | |
| 		/* check ecc-scheme requirements before updating ecc info */
 | |
| 		if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 | |
| 			printf("nand: error: insufficient OOB: require=%d\n", (
 | |
| 				(26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		/* intialize ELM for ECC error detection */
 | |
| 		elm_init();
 | |
| 		/* populate ecc specific fields */
 | |
| 		nand->ecc.mode		= NAND_ECC_HW;
 | |
| 		nand->ecc.size		= SECTOR_BYTES;
 | |
| 		nand->ecc.bytes		= 26;
 | |
| 		nand->ecc.strength	= 16;
 | |
| 		nand->ecc.hwctl		= omap_enable_hwecc;
 | |
| 		nand->ecc.correct	= omap_correct_data_bch;
 | |
| 		nand->ecc.calculate	= omap_calculate_ecc;
 | |
| 		nand->ecc.read_page	= omap_read_page_bch;
 | |
| 		/* define ecc-layout */
 | |
| 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
 | |
| 		for (i = 0; i < ecclayout->eccbytes; i++)
 | |
| 			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
 | |
| 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 | |
| 		ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
 | |
| 						BADBLOCK_MARKER_LENGTH;
 | |
| 		break;
 | |
| #else
 | |
| 		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 	default:
 | |
| 		debug("nand: error: ecc scheme not enabled or supported\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
 | |
| 	if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
 | |
| 		nand->ecc.layout = ecclayout;
 | |
| 
 | |
| 	info->ecc_scheme = ecc_scheme;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPL_BUILD
 | |
| /*
 | |
|  * omap_nand_switch_ecc - switch the ECC operation between different engines
 | |
|  * (h/w and s/w) and different algorithms (hamming and BCHx)
 | |
|  *
 | |
|  * @hardware		- true if one of the HW engines should be used
 | |
|  * @eccstrength		- the number of bits that could be corrected
 | |
|  *			  (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
 | |
|  */
 | |
| int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
 | |
| {
 | |
| 	struct nand_chip *nand;
 | |
| 	struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!mtd) {
 | |
| 		printf("nand: error: no NAND devices found\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	nand = mtd_to_nand(mtd);
 | |
| 	nand->options |= NAND_OWN_BUFFERS;
 | |
| 	nand->options &= ~NAND_SUBPAGE_READ;
 | |
| 	/* Setup the ecc configurations again */
 | |
| 	if (hardware) {
 | |
| 		if (eccstrength == 1) {
 | |
| 			err = omap_select_ecc_scheme(nand,
 | |
| 					OMAP_ECC_HAM1_CODE_HW,
 | |
| 					mtd->writesize, mtd->oobsize);
 | |
| 		} else if (eccstrength == 8) {
 | |
| 			err = omap_select_ecc_scheme(nand,
 | |
| 					OMAP_ECC_BCH8_CODE_HW,
 | |
| 					mtd->writesize, mtd->oobsize);
 | |
| 		} else if (eccstrength == 16) {
 | |
| 			err = omap_select_ecc_scheme(nand,
 | |
| 					OMAP_ECC_BCH16_CODE_HW,
 | |
| 					mtd->writesize, mtd->oobsize);
 | |
| 		} else {
 | |
| 			printf("nand: error: unsupported ECC scheme\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (eccstrength == 1) {
 | |
| 			err = omap_select_ecc_scheme(nand,
 | |
| 					OMAP_ECC_HAM1_CODE_SW,
 | |
| 					mtd->writesize, mtd->oobsize);
 | |
| 		} else if (eccstrength == 8) {
 | |
| 			err = omap_select_ecc_scheme(nand,
 | |
| 					OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
 | |
| 					mtd->writesize, mtd->oobsize);
 | |
| 		} else {
 | |
| 			printf("nand: error: unsupported ECC scheme\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Update NAND handling after ECC mode switch */
 | |
| 	if (!err)
 | |
| 		err = nand_scan_tail(mtd);
 | |
| 	return err;
 | |
| }
 | |
| #endif /* CONFIG_SPL_BUILD */
 | |
| 
 | |
| /*
 | |
|  * Board-specific NAND initialization. The following members of the
 | |
|  * argument are board-specific:
 | |
|  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
 | |
|  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
 | |
|  * - cmd_ctrl: hardwarespecific function for accesing control-lines
 | |
|  * - waitfunc: hardwarespecific function for accesing device ready/busy line
 | |
|  * - ecc.hwctl: function to enable (reset) hardware ecc generator
 | |
|  * - ecc.mode: mode of ecc, see defines
 | |
|  * - chip_delay: chip dependent delay for transfering data from array to
 | |
|  *   read regs (tR)
 | |
|  * - options: various chip options. They can partly be set to inform
 | |
|  *   nand_scan about special functionality. See the defines for further
 | |
|  *   explanation
 | |
|  */
 | |
| int board_nand_init(struct nand_chip *nand)
 | |
| {
 | |
| 	int32_t gpmc_config = 0;
 | |
| 	int cs = cs_next++;
 | |
| 	int err = 0;
 | |
| 	/*
 | |
| 	 * xloader/Uboot's gpmc configuration would have configured GPMC for
 | |
| 	 * nand type of memory. The following logic scans and latches on to the
 | |
| 	 * first CS with NAND type memory.
 | |
| 	 * TBD: need to make this logic generic to handle multiple CS NAND
 | |
| 	 * devices.
 | |
| 	 */
 | |
| 	while (cs < GPMC_MAX_CS) {
 | |
| 		/* Check if NAND type is set */
 | |
| 		if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
 | |
| 			/* Found it!! */
 | |
| 			break;
 | |
| 		}
 | |
| 		cs++;
 | |
| 	}
 | |
| 	if (cs >= GPMC_MAX_CS) {
 | |
| 		printf("nand: error: Unable to find NAND settings in "
 | |
| 			"GPMC Configuration - quitting\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	gpmc_config = readl(&gpmc_cfg->config);
 | |
| 	/* Disable Write protect */
 | |
| 	gpmc_config |= 0x10;
 | |
| 	writel(gpmc_config, &gpmc_cfg->config);
 | |
| 
 | |
| 	nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
 | |
| 	nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
 | |
| 	omap_nand_info[cs].control = NULL;
 | |
| 	omap_nand_info[cs].cs = cs;
 | |
| 	omap_nand_info[cs].ws = wscfg[cs];
 | |
| 	nand_set_controller_data(nand, &omap_nand_info[cs]);
 | |
| 	nand->cmd_ctrl	= omap_nand_hwcontrol;
 | |
| 	nand->options	|= NAND_NO_PADDING | NAND_CACHEPRG;
 | |
| 	nand->chip_delay = 100;
 | |
| 	nand->ecc.layout = &omap_ecclayout;
 | |
| 
 | |
| 	/* configure driver and controller based on NAND device bus-width */
 | |
| 	gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
 | |
| #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
 | |
| 	nand->options |= NAND_BUSWIDTH_16;
 | |
| 	writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
 | |
| #else
 | |
| 	nand->options &= ~NAND_BUSWIDTH_16;
 | |
| 	writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
 | |
| #endif
 | |
| 	/* select ECC scheme */
 | |
| #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
 | |
| 	err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
 | |
| 			CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
 | |
| #else
 | |
| 	/* pagesize and oobsize are not required to configure sw ecc-scheme */
 | |
| 	err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
 | |
| 			0, 0);
 | |
| #endif
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
 | |
| 	nand->read_buf = omap_nand_read_prefetch;
 | |
| #else
 | |
| 	if (nand->options & NAND_BUSWIDTH_16)
 | |
| 		nand->read_buf = nand_read_buf16;
 | |
| 	else
 | |
| 		nand->read_buf = nand_read_buf;
 | |
| #endif
 | |
| 
 | |
| 	nand->dev_ready = omap_dev_ready;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |