mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-25 01:58:13 +01:00 
			
		
		
		
	This follows the example of RISC-V where <asm/global_data.h> includes <asm/u-boot.h> directly as "gd" includes a reference to bd_info already and so the first must include the second anyhow. We then remove <asm/u-boot.h> from all of the places which include references to "gd" an so have <asm/global_data.h> already. Signed-off-by: Tom Rini <trini@konsulko.com>
		
			
				
	
	
		
			945 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			945 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * (C) Copyright 2006-2007 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * (C) Copyright 2006
 | |
|  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 | |
|  *
 | |
|  * Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
 | |
|  * (C) Copyright 2003 Motorola Inc.
 | |
|  * Xianghua Xiao (X.Xiao@motorola.com)
 | |
|  */
 | |
| 
 | |
| #ifndef CONFIG_MPC83XX_SDRAM
 | |
| 
 | |
| #include <cpu_func.h>
 | |
| #include <log.h>
 | |
| #include <time.h>
 | |
| #include <vsprintf.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/io.h>
 | |
| #include <i2c.h>
 | |
| #include <spd.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <spd_sdram.h>
 | |
| #include <asm/bitops.h>
 | |
| #include <asm/global_data.h>
 | |
| #include <linux/delay.h>
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| void board_add_ram_info(int use_default)
 | |
| {
 | |
| 	volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
 | |
| 	volatile ddr83xx_t *ddr = &immap->ddr;
 | |
| 	char buf[32];
 | |
| 
 | |
| 	printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK)
 | |
| 			   >> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1);
 | |
| 
 | |
| #if defined(CONFIG_ARCH_MPC8308) || defined(CONFIG_ARCH_MPC831X)
 | |
| 	if ((ddr->sdram_cfg & SDRAM_CFG_DBW_MASK) == SDRAM_CFG_DBW_16)
 | |
| 		puts(", 16-bit");
 | |
| 	else if ((ddr->sdram_cfg & SDRAM_CFG_DBW_MASK) == SDRAM_CFG_DBW_32)
 | |
| 		puts(", 32-bit");
 | |
| 	else
 | |
| 		puts(", unknown width");
 | |
| #else
 | |
| 	if (ddr->sdram_cfg & SDRAM_CFG_32_BE)
 | |
| 		puts(", 32-bit");
 | |
| 	else
 | |
| 		puts(", 64-bit");
 | |
| #endif
 | |
| 
 | |
| 	if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN)
 | |
| 		puts(", ECC on");
 | |
| 	else
 | |
| 		puts(", ECC off");
 | |
| 
 | |
| 	printf(", %s MHz)", strmhz(buf, gd->mem_clk));
 | |
| 
 | |
| #if defined(CONFIG_SYS_LB_SDRAM) && defined(CFG_SYS_LBC_SDRAM_SIZE)
 | |
| 	puts("\nSDRAM: ");
 | |
| 	print_size (CFG_SYS_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SPD_EEPROM
 | |
| #ifndef	CFG_SYS_READ_SPD
 | |
| #define CFG_SYS_READ_SPD	i2c_read
 | |
| #endif
 | |
| #ifndef SPD_EEPROM_OFFSET
 | |
| #define SPD_EEPROM_OFFSET	0
 | |
| #endif
 | |
| #ifndef SPD_EEPROM_ADDR_LEN
 | |
| #define SPD_EEPROM_ADDR_LEN     1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Convert picoseconds into clock cycles (rounding up if needed).
 | |
|  */
 | |
| int
 | |
| picos_to_clk(int picos)
 | |
| {
 | |
| 	unsigned int mem_bus_clk;
 | |
| 	int clks;
 | |
| 
 | |
| 	mem_bus_clk = gd->mem_clk >> 1;
 | |
| 	clks = picos / (1000000000 / (mem_bus_clk / 1000));
 | |
| 	if (picos % (1000000000 / (mem_bus_clk / 1000)) != 0)
 | |
| 		clks++;
 | |
| 
 | |
| 	return clks;
 | |
| }
 | |
| 
 | |
| unsigned int banksize(unsigned char row_dens)
 | |
| {
 | |
| 	return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
 | |
| }
 | |
| 
 | |
| int read_spd(uint addr)
 | |
| {
 | |
| 	return ((int) addr);
 | |
| }
 | |
| 
 | |
| #undef SPD_DEBUG
 | |
| #ifdef SPD_DEBUG
 | |
| static void spd_debug(spd_eeprom_t *spd)
 | |
| {
 | |
| 	printf ("\nDIMM type:       %-18.18s\n", spd->mpart);
 | |
| 	printf ("SPD size:        %d\n", spd->info_size);
 | |
| 	printf ("EEPROM size:     %d\n", 1 << spd->chip_size);
 | |
| 	printf ("Memory type:     %d\n", spd->mem_type);
 | |
| 	printf ("Row addr:        %d\n", spd->nrow_addr);
 | |
| 	printf ("Column addr:     %d\n", spd->ncol_addr);
 | |
| 	printf ("# of rows:       %d\n", spd->nrows);
 | |
| 	printf ("Row density:     %d\n", spd->row_dens);
 | |
| 	printf ("# of banks:      %d\n", spd->nbanks);
 | |
| 	printf ("Data width:      %d\n",
 | |
| 			256 * spd->dataw_msb + spd->dataw_lsb);
 | |
| 	printf ("Chip width:      %d\n", spd->primw);
 | |
| 	printf ("Refresh rate:    %02X\n", spd->refresh);
 | |
| 	printf ("CAS latencies:   %02X\n", spd->cas_lat);
 | |
| 	printf ("Write latencies: %02X\n", spd->write_lat);
 | |
| 	printf ("tRP:             %d\n", spd->trp);
 | |
| 	printf ("tRCD:            %d\n", spd->trcd);
 | |
| 	printf ("\n");
 | |
| }
 | |
| #endif /* SPD_DEBUG */
 | |
| 
 | |
| long int spd_sdram()
 | |
| {
 | |
| 	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
 | |
| 	volatile ddr83xx_t *ddr = &immap->ddr;
 | |
| 	volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
 | |
| 	spd_eeprom_t spd;
 | |
| 	unsigned int n_ranks;
 | |
| 	unsigned int odt_rd_cfg, odt_wr_cfg;
 | |
| 	unsigned char twr_clk, twtr_clk;
 | |
| 	unsigned int sdram_type;
 | |
| 	unsigned int memsize;
 | |
| 	unsigned int law_size;
 | |
| 	unsigned char caslat, caslat_ctrl;
 | |
| 	unsigned int trfc, trfc_clk, trfc_low;
 | |
| 	unsigned int trcd_clk, trtp_clk;
 | |
| 	unsigned char cke_min_clk;
 | |
| 	unsigned char add_lat, wr_lat;
 | |
| 	unsigned char wr_data_delay;
 | |
| 	unsigned char four_act;
 | |
| 	unsigned char cpo;
 | |
| 	unsigned char burstlen;
 | |
| 	unsigned char odt_cfg, mode_odt_enable;
 | |
| 	unsigned int max_bus_clk;
 | |
| 	unsigned int max_data_rate, effective_data_rate;
 | |
| 	unsigned int ddrc_clk;
 | |
| 	unsigned int refresh_clk;
 | |
| 	unsigned int sdram_cfg;
 | |
| 	unsigned int ddrc_ecc_enable;
 | |
| 	unsigned int pvr = get_pvr();
 | |
| 
 | |
| 	/*
 | |
| 	 * First disable the memory controller (could be enabled
 | |
| 	 * by the debugger)
 | |
| 	 */
 | |
| 	clrsetbits_be32(&ddr->sdram_cfg, SDRAM_CFG_MEM_EN, 0);
 | |
| 	sync();
 | |
| 	isync();
 | |
| 
 | |
| 	/* Read SPD parameters with I2C */
 | |
| 	CFG_SYS_READ_SPD(SPD_EEPROM_ADDRESS, SPD_EEPROM_OFFSET,
 | |
| 		SPD_EEPROM_ADDR_LEN, (uchar *) &spd, sizeof(spd));
 | |
| #ifdef SPD_DEBUG
 | |
| 	spd_debug(&spd);
 | |
| #endif
 | |
| 	/* Check the memory type */
 | |
| 	if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) {
 | |
| 		debug("DDR: Module mem type is %02X\n", spd.mem_type);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the number of physical bank */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		n_ranks = spd.nrows;
 | |
| 	} else {
 | |
| 		n_ranks = (spd.nrows & 0x7) + 1;
 | |
| 	}
 | |
| 
 | |
| 	if (n_ranks > 2) {
 | |
| 		printf("DDR: The number of physical bank is %02X\n", n_ranks);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if the number of row of the module is in the range of DDRC */
 | |
| 	if (spd.nrow_addr < 12 || spd.nrow_addr > 15) {
 | |
| 		printf("DDR: Row number is out of range of DDRC, row=%02X\n",
 | |
| 							 spd.nrow_addr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if the number of col of the module is in the range of DDRC */
 | |
| 	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
 | |
| 		printf("DDR: Col number is out of range of DDRC, col=%02X\n",
 | |
| 							 spd.ncol_addr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| #ifdef CFG_SYS_DDRCDR_VALUE
 | |
| 	/*
 | |
| 	 * Adjust DDR II IO voltage biasing.  It just makes it work.
 | |
| 	 */
 | |
| 	if(spd.mem_type == SPD_MEMTYPE_DDR2) {
 | |
| 		immap->sysconf.ddrcdr = CFG_SYS_DDRCDR_VALUE;
 | |
| 	}
 | |
| 	udelay(50000);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * ODT configuration recommendation from DDR Controller Chapter.
 | |
| 	 */
 | |
| 	odt_rd_cfg = 0;			/* Never assert ODT */
 | |
| 	odt_wr_cfg = 0;			/* Never assert ODT */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
 | |
| 		odt_wr_cfg = 1;		/* Assert ODT on writes to CSn */
 | |
| 	}
 | |
| 
 | |
| 	/* Setup DDR chip select register */
 | |
| #ifdef CONFIG_SYS_83XX_DDR_USES_CS0
 | |
| 	ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
 | |
| 	ddr->cs_config[0] = ( 1 << 31
 | |
| 			    | (odt_rd_cfg << 20)
 | |
| 			    | (odt_wr_cfg << 16)
 | |
| 			    | ((spd.nbanks == 8 ? 1 : 0) << 14)
 | |
| 			    | ((spd.nrow_addr - 12) << 8)
 | |
| 			    | (spd.ncol_addr - 8) );
 | |
| 	debug("\n");
 | |
| 	debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
 | |
| 	debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);
 | |
| 
 | |
| 	if (n_ranks == 2) {
 | |
| 		ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
 | |
| 				  | ((banksize(spd.row_dens) >> 23) - 1) );
 | |
| 		ddr->cs_config[1] = ( 1<<31
 | |
| 				    | (odt_rd_cfg << 20)
 | |
| 				    | (odt_wr_cfg << 16)
 | |
| 				    | ((spd.nbanks == 8 ? 1 : 0) << 14)
 | |
| 				    | ((spd.nrow_addr - 12) << 8)
 | |
| 				    | (spd.ncol_addr - 8) );
 | |
| 		debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
 | |
| 		debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
 | |
| 	}
 | |
| 
 | |
| #else
 | |
| 	ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
 | |
| 	ddr->cs_config[2] = ( 1 << 31
 | |
| 			    | (odt_rd_cfg << 20)
 | |
| 			    | (odt_wr_cfg << 16)
 | |
| 			    | ((spd.nbanks == 8 ? 1 : 0) << 14)
 | |
| 			    | ((spd.nrow_addr - 12) << 8)
 | |
| 			    | (spd.ncol_addr - 8) );
 | |
| 	debug("\n");
 | |
| 	debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
 | |
| 	debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);
 | |
| 
 | |
| 	if (n_ranks == 2) {
 | |
| 		ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
 | |
| 				  | ((banksize(spd.row_dens) >> 23) - 1) );
 | |
| 		ddr->cs_config[3] = ( 1<<31
 | |
| 				    | (odt_rd_cfg << 20)
 | |
| 				    | (odt_wr_cfg << 16)
 | |
| 				    | ((spd.nbanks == 8 ? 1 : 0) << 14)
 | |
| 				    | ((spd.nrow_addr - 12) << 8)
 | |
| 				    | (spd.ncol_addr - 8) );
 | |
| 		debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
 | |
| 		debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out memory size in Megabytes.
 | |
| 	 */
 | |
| 	memsize = n_ranks * banksize(spd.row_dens) / 0x100000;
 | |
| 
 | |
| 	/*
 | |
| 	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
 | |
| 	 */
 | |
| 	law_size = 19 + __ilog2(memsize);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up LAWBAR for all of DDR.
 | |
| 	 */
 | |
| 	ecm->bar = CFG_SYS_SDRAM_BASE & 0xfffff000;
 | |
| 	ecm->ar  = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
 | |
| 	debug("DDR:bar=0x%08x\n", ecm->bar);
 | |
| 	debug("DDR:ar=0x%08x\n", ecm->ar);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the largest CAS by locating the highest 1 bit
 | |
| 	 * in the spd.cas_lat field.  Translate it to a DDR
 | |
| 	 * controller field value:
 | |
| 	 *
 | |
| 	 *	CAS Lat	DDR I	DDR II	Ctrl
 | |
| 	 *	Clocks	SPD Bit	SPD Bit	Value
 | |
| 	 *	-------	-------	-------	-----
 | |
| 	 *	1.0	0		0001
 | |
| 	 *	1.5	1		0010
 | |
| 	 *	2.0	2	2	0011
 | |
| 	 *	2.5	3		0100
 | |
| 	 *	3.0	4	3	0101
 | |
| 	 *	3.5	5		0110
 | |
| 	 *	4.0	6	4	0111
 | |
| 	 *	4.5			1000
 | |
| 	 *	5.0		5	1001
 | |
| 	 */
 | |
| 	caslat = __ilog2(spd.cas_lat);
 | |
| 	if ((spd.mem_type == SPD_MEMTYPE_DDR)
 | |
| 	    && (caslat > 6)) {
 | |
| 		printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
 | |
| 		return 0;
 | |
| 	} else if (spd.mem_type == SPD_MEMTYPE_DDR2
 | |
| 		   && (caslat < 2 || caslat > 5)) {
 | |
| 		printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
 | |
| 		       spd.cas_lat);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	debug("DDR: caslat SPD bit is %d\n", caslat);
 | |
| 
 | |
| 	max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
 | |
| 			+ (spd.clk_cycle & 0x0f));
 | |
| 	max_data_rate = max_bus_clk * 2;
 | |
| 
 | |
| 	debug("DDR:Module maximum data rate is: %d MHz\n", max_data_rate);
 | |
| 
 | |
| 	ddrc_clk = gd->mem_clk / 1000000;
 | |
| 	effective_data_rate = 0;
 | |
| 
 | |
| 	if (max_data_rate >= 460) { /* it is DDR2-800, 667, 533 */
 | |
| 		if (spd.cas_lat & 0x08)
 | |
| 			caslat = 3;
 | |
| 		else
 | |
| 			caslat = 4;
 | |
| 		if (ddrc_clk <= 460 && ddrc_clk > 350)
 | |
| 			effective_data_rate = 400;
 | |
| 		else if (ddrc_clk <=350 && ddrc_clk > 280)
 | |
| 			effective_data_rate = 333;
 | |
| 		else if (ddrc_clk <= 280 && ddrc_clk > 230)
 | |
| 			effective_data_rate = 266;
 | |
| 		else
 | |
| 			effective_data_rate = 200;
 | |
| 	} else if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */
 | |
| 		if (ddrc_clk <= 460 && ddrc_clk > 350) {
 | |
| 			/* DDR controller clk at 350~460 */
 | |
| 			effective_data_rate = 400; /* 5ns */
 | |
| 			caslat = caslat;
 | |
| 		} else if (ddrc_clk <= 350 && ddrc_clk > 280) {
 | |
| 			/* DDR controller clk at 280~350 */
 | |
| 			effective_data_rate = 333; /* 6ns */
 | |
| 			if (spd.clk_cycle2 == 0x60)
 | |
| 				caslat = caslat - 1;
 | |
| 			else
 | |
| 				caslat = caslat;
 | |
| 		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
 | |
| 			/* DDR controller clk at 230~280 */
 | |
| 			effective_data_rate = 266; /* 7.5ns */
 | |
| 			if (spd.clk_cycle3 == 0x75)
 | |
| 				caslat = caslat - 2;
 | |
| 			else if (spd.clk_cycle2 == 0x75)
 | |
| 				caslat = caslat - 1;
 | |
| 			else
 | |
| 				caslat = caslat;
 | |
| 		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
 | |
| 			/* DDR controller clk at 90~230 */
 | |
| 			effective_data_rate = 200; /* 10ns */
 | |
| 			if (spd.clk_cycle3 == 0xa0)
 | |
| 				caslat = caslat - 2;
 | |
| 			else if (spd.clk_cycle2 == 0xa0)
 | |
| 				caslat = caslat - 1;
 | |
| 			else
 | |
| 				caslat = caslat;
 | |
| 		}
 | |
| 	} else if (max_data_rate >= 323) { /* it is DDR 333 */
 | |
| 		if (ddrc_clk <= 350 && ddrc_clk > 280) {
 | |
| 			/* DDR controller clk at 280~350 */
 | |
| 			effective_data_rate = 333; /* 6ns */
 | |
| 			caslat = caslat;
 | |
| 		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
 | |
| 			/* DDR controller clk at 230~280 */
 | |
| 			effective_data_rate = 266; /* 7.5ns */
 | |
| 			if (spd.clk_cycle2 == 0x75)
 | |
| 				caslat = caslat - 1;
 | |
| 			else
 | |
| 				caslat = caslat;
 | |
| 		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
 | |
| 			/* DDR controller clk at 90~230 */
 | |
| 			effective_data_rate = 200; /* 10ns */
 | |
| 			if (spd.clk_cycle3 == 0xa0)
 | |
| 				caslat = caslat - 2;
 | |
| 			else if (spd.clk_cycle2 == 0xa0)
 | |
| 				caslat = caslat - 1;
 | |
| 			else
 | |
| 				caslat = caslat;
 | |
| 		}
 | |
| 	} else if (max_data_rate >= 256) { /* it is DDR 266 */
 | |
| 		if (ddrc_clk <= 350 && ddrc_clk > 280) {
 | |
| 			/* DDR controller clk at 280~350 */
 | |
| 			printf("DDR: DDR controller freq is more than "
 | |
| 				"max data rate of the module\n");
 | |
| 			return 0;
 | |
| 		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
 | |
| 			/* DDR controller clk at 230~280 */
 | |
| 			effective_data_rate = 266; /* 7.5ns */
 | |
| 			caslat = caslat;
 | |
| 		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
 | |
| 			/* DDR controller clk at 90~230 */
 | |
| 			effective_data_rate = 200; /* 10ns */
 | |
| 			if (spd.clk_cycle2 == 0xa0)
 | |
| 				caslat = caslat - 1;
 | |
| 		}
 | |
| 	} else if (max_data_rate >= 190) { /* it is DDR 200 */
 | |
| 		if (ddrc_clk <= 350 && ddrc_clk > 230) {
 | |
| 			/* DDR controller clk at 230~350 */
 | |
| 			printf("DDR: DDR controller freq is more than "
 | |
| 				"max data rate of the module\n");
 | |
| 			return 0;
 | |
| 		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
 | |
| 			/* DDR controller clk at 90~230 */
 | |
| 			effective_data_rate = 200; /* 10ns */
 | |
| 			caslat = caslat;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	debug("DDR:Effective data rate is: %dMHz\n", effective_data_rate);
 | |
| 	debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);
 | |
| 
 | |
| 	/*
 | |
| 	 * Errata DDR6 work around: input enable 2 cycles earlier.
 | |
| 	 * including MPC834X Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
 | |
| 	 */
 | |
| 	if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){
 | |
| 		if (caslat == 2)
 | |
| 			ddr->debug_reg = 0x201c0000; /* CL=2 */
 | |
| 		else if (caslat == 3)
 | |
| 			ddr->debug_reg = 0x202c0000; /* CL=2.5 */
 | |
| 		else if (caslat == 4)
 | |
| 			ddr->debug_reg = 0x202c0000; /* CL=3.0 */
 | |
| 
 | |
| 		sync();
 | |
| 
 | |
| 		debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert caslat clocks to DDR controller value.
 | |
| 	 * Force caslat_ctrl to be DDR Controller field-sized.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		caslat_ctrl = (caslat + 1) & 0x07;
 | |
| 	} else {
 | |
| 		caslat_ctrl =  (2 * caslat - 1) & 0x0f;
 | |
| 	}
 | |
| 
 | |
| 	debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
 | |
| 	debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
 | |
| 	      caslat, caslat_ctrl);
 | |
| 
 | |
| 	/*
 | |
| 	 * Timing Config 0.
 | |
| 	 * Avoid writing for DDR I.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
 | |
| 		unsigned char taxpd_clk = 8;		/* By the book. */
 | |
| 		unsigned char tmrd_clk = 2;		/* By the book. */
 | |
| 		unsigned char act_pd_exit = 2;		/* Empirical? */
 | |
| 		unsigned char pre_pd_exit = 6;		/* Empirical? */
 | |
| 
 | |
| 		ddr->timing_cfg_0 = (0
 | |
| 			| ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */
 | |
| 			| ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */
 | |
| 			| ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */
 | |
| 			| ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */
 | |
| 			);
 | |
| 		debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
 | |
| 	 * use conservative value.
 | |
| 	 * For DDR II, they are bytes 36 and 37, in quarter nanos.
 | |
| 	 */
 | |
| 
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		twr_clk = 3;	/* Clocks */
 | |
| 		twtr_clk = 1;	/* Clocks */
 | |
| 	} else {
 | |
| 		twr_clk = picos_to_clk(spd.twr * 250);
 | |
| 		twtr_clk = picos_to_clk(spd.twtr * 250);
 | |
| 		if (twtr_clk < 2)
 | |
| 			twtr_clk = 2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate Trfc, in picos.
 | |
| 	 * DDR I:  Byte 42 straight up in ns.
 | |
| 	 * DDR II: Byte 40 and 42 swizzled some, in ns.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		trfc = spd.trfc * 1000;		/* up to ps */
 | |
| 	} else {
 | |
| 		unsigned int byte40_table_ps[8] = {
 | |
| 			0,
 | |
| 			250,
 | |
| 			330,
 | |
| 			500,
 | |
| 			660,
 | |
| 			750,
 | |
| 			0,
 | |
| 			0
 | |
| 		};
 | |
| 
 | |
| 		trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
 | |
| 			+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
 | |
| 	}
 | |
| 	trfc_clk = picos_to_clk(trfc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Trcd, Byte 29, from quarter nanos to ps and clocks.
 | |
| 	 */
 | |
| 	trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert trfc_clk to DDR controller fields.  DDR I should
 | |
| 	 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
 | |
| 	 * 83xx controller has an extended REFREC field of three bits.
 | |
| 	 * The controller automatically adds 8 clocks to this value,
 | |
| 	 * so preadjust it down 8 first before splitting it up.
 | |
| 	 */
 | |
| 	trfc_low = (trfc_clk - 8) & 0xf;
 | |
| 
 | |
| 	ddr->timing_cfg_1 =
 | |
| 	    (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |	/* PRETOACT */
 | |
| 	     ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */
 | |
| 	     (trcd_clk << 20 ) |				/* ACTTORW */
 | |
| 	     (caslat_ctrl << 16 ) |				/* CASLAT */
 | |
| 	     (trfc_low << 12 ) |				/* REFEC */
 | |
| 	     ((twr_clk & 0x07) << 8) |				/* WRRREC */
 | |
| 	     ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) |	/* ACTTOACT */
 | |
| 	     ((twtr_clk & 0x07) << 0)				/* WRTORD */
 | |
| 	    );
 | |
| 
 | |
| 	/*
 | |
| 	 * Additive Latency
 | |
| 	 * For DDR I, 0.
 | |
| 	 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
 | |
| 	 * which comes from Trcd, and also note that:
 | |
| 	 *	add_lat + caslat must be >= 4
 | |
| 	 */
 | |
| 	add_lat = 0;
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2
 | |
| 	    && (odt_wr_cfg || odt_rd_cfg)
 | |
| 	    && (caslat < 4)) {
 | |
| 		add_lat = 4 - caslat;
 | |
| 		if ((add_lat + caslat) < 4) {
 | |
| 			add_lat = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Write Data Delay
 | |
| 	 * Historically 0x2 == 4/8 clock delay.
 | |
| 	 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
 | |
| 	 */
 | |
| 	wr_data_delay = 2;
 | |
| #ifdef CONFIG_SYS_DDR_WRITE_DATA_DELAY
 | |
| 	wr_data_delay = CONFIG_SYS_DDR_WRITE_DATA_DELAY;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Write Latency
 | |
| 	 * Read to Precharge
 | |
| 	 * Minimum CKE Pulse Width.
 | |
| 	 * Four Activate Window
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		/*
 | |
| 		 * This is a lie.  It should really be 1, but if it is
 | |
| 		 * set to 1, bits overlap into the old controller's
 | |
| 		 * otherwise unused ACSM field.  If we leave it 0, then
 | |
| 		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
 | |
| 		 */
 | |
| 		wr_lat = 0;
 | |
| 
 | |
| 		trtp_clk = 2;		/* By the book. */
 | |
| 		cke_min_clk = 1;	/* By the book. */
 | |
| 		four_act = 1;		/* By the book. */
 | |
| 
 | |
| 	} else {
 | |
| 		wr_lat = caslat - 1;
 | |
| 
 | |
| 		/* Convert SPD value from quarter nanos to picos. */
 | |
| 		trtp_clk = picos_to_clk(spd.trtp * 250);
 | |
| 		if (trtp_clk < 2)
 | |
| 			trtp_clk = 2;
 | |
| 		trtp_clk += add_lat;
 | |
| 
 | |
| 		cke_min_clk = 3;	/* By the book. */
 | |
| 		four_act = picos_to_clk(37500);	/* By the book. 1k pages? */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Empirically set ~MCAS-to-preamble override for DDR 2.
 | |
| 	 * Your mileage will vary.
 | |
| 	 */
 | |
| 	cpo = 0;
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
 | |
| #ifdef CONFIG_SYS_DDR_CPO
 | |
| 		cpo = CONFIG_SYS_DDR_CPO;
 | |
| #else
 | |
| 		if (effective_data_rate == 266) {
 | |
| 			cpo = 0x4;		/* READ_LAT + 1/2 */
 | |
| 		} else if (effective_data_rate == 333) {
 | |
| 			cpo = 0x6;		/* READ_LAT + 1 */
 | |
| 		} else if (effective_data_rate == 400) {
 | |
| 			cpo = 0x7;		/* READ_LAT + 5/4 */
 | |
| 		} else {
 | |
| 			/* Automatic calibration */
 | |
| 			cpo = 0x1f;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	ddr->timing_cfg_2 = (0
 | |
| 		| ((add_lat & 0x7) << 28)		/* ADD_LAT */
 | |
| 		| ((cpo & 0x1f) << 23)			/* CPO */
 | |
| 		| ((wr_lat & 0x7) << 19)		/* WR_LAT */
 | |
| 		| ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */
 | |
| 		| ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */
 | |
| 		| ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */
 | |
| 		| ((four_act & 0x1f) << 0)		/* FOUR_ACT */
 | |
| 		);
 | |
| 
 | |
| 	debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
 | |
| 	debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
 | |
| 
 | |
| 	/* Check DIMM data bus width */
 | |
| 	if (spd.dataw_lsb < 64) {
 | |
| 		if (spd.mem_type == SPD_MEMTYPE_DDR)
 | |
| 			burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
 | |
| 		else
 | |
| 			burstlen = 0x02; /* 32 bit data bus, burst len is 4 */
 | |
| 		debug("\n   DDR DIMM: data bus width is 32 bit");
 | |
| 	} else {
 | |
| 		burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
 | |
| 		debug("\n   DDR DIMM: data bus width is 64 bit");
 | |
| 	}
 | |
| 
 | |
| 	/* Is this an ECC DDR chip? */
 | |
| 	if (spd.config == 0x02)
 | |
| 		debug(" with ECC\n");
 | |
| 	else
 | |
| 		debug(" without ECC\n");
 | |
| 
 | |
| 	/* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
 | |
| 	   Burst type is sequential
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		switch (caslat) {
 | |
| 		case 1:
 | |
| 			ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		mode_odt_enable = 0x0;                  /* Default disabled */
 | |
| 		if (odt_wr_cfg || odt_rd_cfg) {
 | |
| 			/*
 | |
| 			 * Bits 6 and 2 in Extended MRS(1)
 | |
| 			 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
 | |
| 			 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
 | |
| 			 */
 | |
| 			mode_odt_enable = 0x40;         /* 150 Ohm */
 | |
| 		}
 | |
| 
 | |
| 		ddr->sdram_mode =
 | |
| 			(0
 | |
| 			 | (1 << (16 + 10))             /* DQS Differential disable */
 | |
| #ifdef CFG_SYS_DDR_MODE_WEAK
 | |
| 			 | (1 << (16 + 1))		/* weak driver (~60%) */
 | |
| #endif
 | |
| 			 | (add_lat << (16 + 3))        /* Additive Latency in EMRS1 */
 | |
| 			 | (mode_odt_enable << 16)      /* ODT Enable in EMRS1 */
 | |
| 			 | ((twr_clk - 1) << 9)         /* Write Recovery Autopre */
 | |
| 			 | (caslat << 4)                /* caslat */
 | |
| 			 | (burstlen << 0)              /* Burst length */
 | |
| 			);
 | |
| 	}
 | |
| 	debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear EMRS2 and EMRS3.
 | |
| 	 */
 | |
| 	ddr->sdram_mode2 = 0;
 | |
| 	debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2);
 | |
| 
 | |
| 	switch (spd.refresh) {
 | |
| 		case 0x00:
 | |
| 		case 0x80:
 | |
| 			refresh_clk = picos_to_clk(15625000);
 | |
| 			break;
 | |
| 		case 0x01:
 | |
| 		case 0x81:
 | |
| 			refresh_clk = picos_to_clk(3900000);
 | |
| 			break;
 | |
| 		case 0x02:
 | |
| 		case 0x82:
 | |
| 			refresh_clk = picos_to_clk(7800000);
 | |
| 			break;
 | |
| 		case 0x03:
 | |
| 		case 0x83:
 | |
| 			refresh_clk = picos_to_clk(31300000);
 | |
| 			break;
 | |
| 		case 0x04:
 | |
| 		case 0x84:
 | |
| 			refresh_clk = picos_to_clk(62500000);
 | |
| 			break;
 | |
| 		case 0x05:
 | |
| 		case 0x85:
 | |
| 			refresh_clk = picos_to_clk(125000000);
 | |
| 			break;
 | |
| 		default:
 | |
| 			refresh_clk = 0x512;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set BSTOPRE to 0x100 for page mode
 | |
| 	 * If auto-charge is used, set BSTOPRE = 0
 | |
| 	 */
 | |
| 	ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
 | |
| 	debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
 | |
| 
 | |
| 	/*
 | |
| 	 * SDRAM Cfg 2
 | |
| 	 */
 | |
| 	odt_cfg = 0;
 | |
| #ifndef CONFIG_NEVER_ASSERT_ODT_TO_CPU
 | |
| 	if (odt_rd_cfg | odt_wr_cfg) {
 | |
| 		odt_cfg = 0x2;		/* ODT to IOs during reads */
 | |
| 	}
 | |
| #endif
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
 | |
| 		ddr->sdram_cfg2 = (0
 | |
| 			    | (0 << 26)	/* True DQS */
 | |
| 			    | (odt_cfg << 21)	/* ODT only read */
 | |
| 			    | (1 << 12)	/* 1 refresh at a time */
 | |
| 			    );
 | |
| 
 | |
| 		debug("DDR: sdram_cfg2  = 0x%08x\n", ddr->sdram_cfg2);
 | |
| 	}
 | |
| 
 | |
| #ifdef CFG_SYS_DDR_SDRAM_CLK_CNTL	/* Optional platform specific value */
 | |
| 	ddr->sdram_clk_cntl = CFG_SYS_DDR_SDRAM_CLK_CNTL;
 | |
| #endif
 | |
| 	debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);
 | |
| 
 | |
| 	sync();
 | |
| 	isync();
 | |
| 
 | |
| 	udelay(600);
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out the settings for the sdram_cfg register. Build up
 | |
| 	 * the value in 'sdram_cfg' before writing since the write into
 | |
| 	 * the register will actually enable the memory controller, and all
 | |
| 	 * settings must be done before enabling.
 | |
| 	 *
 | |
| 	 * sdram_cfg[0]   = 1 (ddr sdram logic enable)
 | |
| 	 * sdram_cfg[1]   = 1 (self-refresh-enable)
 | |
| 	 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
 | |
| 	 *			010 DDR 1 SDRAM
 | |
| 	 *			011 DDR 2 SDRAM
 | |
| 	 * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
 | |
| 	 * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR)
 | |
| 		sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;
 | |
| 	else
 | |
| 		sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR2;
 | |
| 
 | |
| 	sdram_cfg = (0
 | |
| 		     | SDRAM_CFG_MEM_EN		/* DDR enable */
 | |
| 		     | SDRAM_CFG_SREN		/* Self refresh */
 | |
| 		     | sdram_type		/* SDRAM type */
 | |
| 		     );
 | |
| 
 | |
| 	/* sdram_cfg[3] = RD_EN - registered DIMM enable */
 | |
| 	if (spd.mod_attr & 0x02)
 | |
| 		sdram_cfg |= SDRAM_CFG_RD_EN;
 | |
| 
 | |
| 	/* The DIMM is 32bit width */
 | |
| 	if (spd.dataw_lsb < 64) {
 | |
| 		if (spd.mem_type == SPD_MEMTYPE_DDR)
 | |
| 			sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE;
 | |
| 		if (spd.mem_type == SPD_MEMTYPE_DDR2)
 | |
| 			sdram_cfg |= SDRAM_CFG_32_BE;
 | |
| 	}
 | |
| 
 | |
| 	ddrc_ecc_enable = 0;
 | |
| 
 | |
| #if defined(CONFIG_DDR_ECC)
 | |
| 	/* Enable ECC with sdram_cfg[2] */
 | |
| 	if (spd.config == 0x02) {
 | |
| 		sdram_cfg |= 0x20000000;
 | |
| 		ddrc_ecc_enable = 1;
 | |
| 		/* disable error detection */
 | |
| 		ddr->err_disable = ~ECC_ERROR_ENABLE;
 | |
| 		/* set single bit error threshold to maximum value,
 | |
| 		 * reset counter to zero */
 | |
| 		ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
 | |
| 				(0 << ECC_ERROR_MAN_SBEC_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
 | |
| 	debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
 | |
| #endif
 | |
| 	debug("   DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");
 | |
| 
 | |
| 	/* Enable controller, and GO! */
 | |
| 	ddr->sdram_cfg = sdram_cfg;
 | |
| 	sync();
 | |
| 	isync();
 | |
| 	udelay(500);
 | |
| 
 | |
| 	debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
 | |
| 	return memsize; /*in MBytes*/
 | |
| }
 | |
| #endif /* CONFIG_SPD_EEPROM */
 | |
| 
 | |
| #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
 | |
| static inline u32 mftbu(void)
 | |
| {
 | |
| 	u32 rval;
 | |
| 
 | |
| 	asm volatile("mftbu %0" : "=r" (rval));
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static inline u32 mftb(void)
 | |
| {
 | |
| 	u32 rval;
 | |
| 
 | |
| 	asm volatile("mftb %0" : "=r" (rval));
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use timebase counter, get_timer() is not available
 | |
|  * at this point of initialization yet.
 | |
|  */
 | |
| static __inline__ unsigned long get_tbms (void)
 | |
| {
 | |
| 	unsigned long tbl;
 | |
| 	unsigned long tbu1, tbu2;
 | |
| 	unsigned long ms;
 | |
| 	unsigned long long tmp;
 | |
| 
 | |
| 	ulong tbclk = get_tbclk();
 | |
| 
 | |
| 	/* get the timebase ticks */
 | |
| 	do {
 | |
| 		tbu1 = mftbu();
 | |
| 		tbl = mftb();
 | |
| 		tbu2 = mftbu();
 | |
| 	} while (tbu1 != tbu2);
 | |
| 
 | |
| 	/* convert ticks to ms */
 | |
| 	tmp = (unsigned long long)(tbu1);
 | |
| 	tmp = (tmp << 32);
 | |
| 	tmp += (unsigned long long)(tbl);
 | |
| 	ms = tmp/(tbclk/1000);
 | |
| 
 | |
| 	return ms;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize all of memory for ECC, then enable errors.
 | |
|  */
 | |
| void ddr_enable_ecc(unsigned int dram_size)
 | |
| {
 | |
| 	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
 | |
| 	volatile ddr83xx_t *ddr= &immap->ddr;
 | |
| 	unsigned long t_start, t_end;
 | |
| 	register u64 *p;
 | |
| 	register uint size;
 | |
| 	unsigned int pattern[2];
 | |
| 
 | |
| 	icache_enable();
 | |
| 	t_start = get_tbms();
 | |
| 	pattern[0] = 0xdeadbeef;
 | |
| 	pattern[1] = 0xdeadbeef;
 | |
| 
 | |
| 	debug("ddr init: CPU FP write method\n");
 | |
| 	size = dram_size;
 | |
| 	for (p = 0; p < (u64*)(size); p++) {
 | |
| 		ppcDWstore((u32*)p, pattern);
 | |
| 	}
 | |
| 	sync();
 | |
| 
 | |
| 	t_end = get_tbms();
 | |
| 	icache_disable();
 | |
| 
 | |
| 	debug("\nREADY!!\n");
 | |
| 	debug("ddr init duration: %ld ms\n", t_end - t_start);
 | |
| 
 | |
| 	/* Clear All ECC Errors */
 | |
| 	if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
 | |
| 		ddr->err_detect |= ECC_ERROR_DETECT_MME;
 | |
| 	if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
 | |
| 		ddr->err_detect |= ECC_ERROR_DETECT_MBE;
 | |
| 	if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
 | |
| 		ddr->err_detect |= ECC_ERROR_DETECT_SBE;
 | |
| 	if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
 | |
| 		ddr->err_detect |= ECC_ERROR_DETECT_MSE;
 | |
| 
 | |
| 	/* Disable ECC-Interrupts */
 | |
| 	ddr->err_int_en &= ECC_ERR_INT_DISABLE;
 | |
| 
 | |
| 	/* Enable errors for ECC */
 | |
| 	ddr->err_disable &= ECC_ERROR_ENABLE;
 | |
| 
 | |
| 	sync();
 | |
| 	isync();
 | |
| }
 | |
| #endif	/* CONFIG_DDR_ECC */
 | |
| 
 | |
| #endif /* !CONFIG_MPC83XX_SDRAM */
 |