mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-11-03 21:48:15 +00:00 
			
		
		
		
	Add a bootdev for NVMe so that these devices can be used with standard boot. Signed-off-by: Simon Glass <sjg@chromium.org>
		
			
				
	
	
		
			930 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			930 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0+
 | 
						|
/*
 | 
						|
 * Copyright (C) 2017 NXP Semiconductors
 | 
						|
 * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <common.h>
 | 
						|
#include <blk.h>
 | 
						|
#include <bootdev.h>
 | 
						|
#include <cpu_func.h>
 | 
						|
#include <dm.h>
 | 
						|
#include <errno.h>
 | 
						|
#include <log.h>
 | 
						|
#include <malloc.h>
 | 
						|
#include <memalign.h>
 | 
						|
#include <time.h>
 | 
						|
#include <dm/device-internal.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
#include "nvme.h"
 | 
						|
 | 
						|
#define NVME_Q_DEPTH		2
 | 
						|
#define NVME_AQ_DEPTH		2
 | 
						|
#define NVME_SQ_SIZE(depth)	(depth * sizeof(struct nvme_command))
 | 
						|
#define NVME_CQ_SIZE(depth)	(depth * sizeof(struct nvme_completion))
 | 
						|
#define NVME_CQ_ALLOCATION	ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
 | 
						|
				      ARCH_DMA_MINALIGN)
 | 
						|
#define ADMIN_TIMEOUT		60
 | 
						|
#define IO_TIMEOUT		30
 | 
						|
#define MAX_PRP_POOL		512
 | 
						|
 | 
						|
static int nvme_wait_csts(struct nvme_dev *dev, u32 mask, u32 val)
 | 
						|
{
 | 
						|
	int timeout;
 | 
						|
	ulong start;
 | 
						|
 | 
						|
	/* Timeout field in the CAP register is in 500 millisecond units */
 | 
						|
	timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
 | 
						|
 | 
						|
	start = get_timer(0);
 | 
						|
	while (get_timer(start) < timeout) {
 | 
						|
		if ((readl(&dev->bar->csts) & mask) == val)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return -ETIME;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
 | 
						|
			   int total_len, u64 dma_addr)
 | 
						|
{
 | 
						|
	u32 page_size = dev->page_size;
 | 
						|
	int offset = dma_addr & (page_size - 1);
 | 
						|
	u64 *prp_pool;
 | 
						|
	int length = total_len;
 | 
						|
	int i, nprps;
 | 
						|
	u32 prps_per_page = page_size >> 3;
 | 
						|
	u32 num_pages;
 | 
						|
 | 
						|
	length -= (page_size - offset);
 | 
						|
 | 
						|
	if (length <= 0) {
 | 
						|
		*prp2 = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (length)
 | 
						|
		dma_addr += (page_size - offset);
 | 
						|
 | 
						|
	if (length <= page_size) {
 | 
						|
		*prp2 = dma_addr;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	nprps = DIV_ROUND_UP(length, page_size);
 | 
						|
	num_pages = DIV_ROUND_UP(nprps - 1, prps_per_page - 1);
 | 
						|
 | 
						|
	if (nprps > dev->prp_entry_num) {
 | 
						|
		free(dev->prp_pool);
 | 
						|
		/*
 | 
						|
		 * Always increase in increments of pages.  It doesn't waste
 | 
						|
		 * much memory and reduces the number of allocations.
 | 
						|
		 */
 | 
						|
		dev->prp_pool = memalign(page_size, num_pages * page_size);
 | 
						|
		if (!dev->prp_pool) {
 | 
						|
			printf("Error: malloc prp_pool fail\n");
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
		dev->prp_entry_num = num_pages * (prps_per_page - 1) + 1;
 | 
						|
	}
 | 
						|
 | 
						|
	prp_pool = dev->prp_pool;
 | 
						|
	i = 0;
 | 
						|
	while (nprps) {
 | 
						|
		if ((i == (prps_per_page - 1)) && nprps > 1) {
 | 
						|
			*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
 | 
						|
					page_size);
 | 
						|
			i = 0;
 | 
						|
			prp_pool += page_size;
 | 
						|
		}
 | 
						|
		*(prp_pool + i++) = cpu_to_le64(dma_addr);
 | 
						|
		dma_addr += page_size;
 | 
						|
		nprps--;
 | 
						|
	}
 | 
						|
	*prp2 = (ulong)dev->prp_pool;
 | 
						|
 | 
						|
	flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
 | 
						|
			   num_pages * page_size);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static __le16 nvme_get_cmd_id(void)
 | 
						|
{
 | 
						|
	static unsigned short cmdid;
 | 
						|
 | 
						|
	return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
 | 
						|
}
 | 
						|
 | 
						|
static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Single CQ entries are always smaller than a cache line, so we
 | 
						|
	 * can't invalidate them individually. However CQ entries are
 | 
						|
	 * read only by the CPU, so it's safe to always invalidate all of them,
 | 
						|
	 * as the cache line should never become dirty.
 | 
						|
	 */
 | 
						|
	ulong start = (ulong)&nvmeq->cqes[0];
 | 
						|
	ulong stop = start + NVME_CQ_ALLOCATION;
 | 
						|
 | 
						|
	invalidate_dcache_range(start, stop);
 | 
						|
 | 
						|
	return readw(&(nvmeq->cqes[index].status));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
 | 
						|
 *
 | 
						|
 * @nvmeq:	The queue to use
 | 
						|
 * @cmd:	The command to send
 | 
						|
 */
 | 
						|
static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 | 
						|
{
 | 
						|
	struct nvme_ops *ops;
 | 
						|
	u16 tail = nvmeq->sq_tail;
 | 
						|
 | 
						|
	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 | 
						|
	flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
 | 
						|
			   (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
 | 
						|
 | 
						|
	ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
 | 
						|
	if (ops && ops->submit_cmd) {
 | 
						|
		ops->submit_cmd(nvmeq, cmd);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (++tail == nvmeq->q_depth)
 | 
						|
		tail = 0;
 | 
						|
	writel(tail, nvmeq->q_db);
 | 
						|
	nvmeq->sq_tail = tail;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
 | 
						|
				struct nvme_command *cmd,
 | 
						|
				u32 *result, unsigned timeout)
 | 
						|
{
 | 
						|
	struct nvme_ops *ops;
 | 
						|
	u16 head = nvmeq->cq_head;
 | 
						|
	u16 phase = nvmeq->cq_phase;
 | 
						|
	u16 status;
 | 
						|
	ulong start_time;
 | 
						|
	ulong timeout_us = timeout * 100000;
 | 
						|
 | 
						|
	cmd->common.command_id = nvme_get_cmd_id();
 | 
						|
	nvme_submit_cmd(nvmeq, cmd);
 | 
						|
 | 
						|
	start_time = timer_get_us();
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		status = nvme_read_completion_status(nvmeq, head);
 | 
						|
		if ((status & 0x01) == phase)
 | 
						|
			break;
 | 
						|
		if (timeout_us > 0 && (timer_get_us() - start_time)
 | 
						|
		    >= timeout_us)
 | 
						|
			return -ETIMEDOUT;
 | 
						|
	}
 | 
						|
 | 
						|
	ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
 | 
						|
	if (ops && ops->complete_cmd)
 | 
						|
		ops->complete_cmd(nvmeq, cmd);
 | 
						|
 | 
						|
	status >>= 1;
 | 
						|
	if (status) {
 | 
						|
		printf("ERROR: status = %x, phase = %d, head = %d\n",
 | 
						|
		       status, phase, head);
 | 
						|
		status = 0;
 | 
						|
		if (++head == nvmeq->q_depth) {
 | 
						|
			head = 0;
 | 
						|
			phase = !phase;
 | 
						|
		}
 | 
						|
		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 | 
						|
		nvmeq->cq_head = head;
 | 
						|
		nvmeq->cq_phase = phase;
 | 
						|
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	if (result)
 | 
						|
		*result = readl(&(nvmeq->cqes[head].result));
 | 
						|
 | 
						|
	if (++head == nvmeq->q_depth) {
 | 
						|
		head = 0;
 | 
						|
		phase = !phase;
 | 
						|
	}
 | 
						|
	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 | 
						|
	nvmeq->cq_head = head;
 | 
						|
	nvmeq->cq_phase = phase;
 | 
						|
 | 
						|
	return status;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
 | 
						|
				 u32 *result)
 | 
						|
{
 | 
						|
	return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
 | 
						|
				    result, ADMIN_TIMEOUT);
 | 
						|
}
 | 
						|
 | 
						|
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
 | 
						|
					   int qid, int depth)
 | 
						|
{
 | 
						|
	struct nvme_ops *ops;
 | 
						|
	struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
 | 
						|
	if (!nvmeq)
 | 
						|
		return NULL;
 | 
						|
	memset(nvmeq, 0, sizeof(*nvmeq));
 | 
						|
 | 
						|
	nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
 | 
						|
	if (!nvmeq->cqes)
 | 
						|
		goto free_nvmeq;
 | 
						|
	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
 | 
						|
 | 
						|
	nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
 | 
						|
	if (!nvmeq->sq_cmds)
 | 
						|
		goto free_queue;
 | 
						|
	memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
 | 
						|
 | 
						|
	nvmeq->dev = dev;
 | 
						|
 | 
						|
	nvmeq->cq_head = 0;
 | 
						|
	nvmeq->cq_phase = 1;
 | 
						|
	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
 | 
						|
	nvmeq->q_depth = depth;
 | 
						|
	nvmeq->qid = qid;
 | 
						|
	dev->queue_count++;
 | 
						|
	dev->queues[qid] = nvmeq;
 | 
						|
 | 
						|
	ops = (struct nvme_ops *)dev->udev->driver->ops;
 | 
						|
	if (ops && ops->setup_queue)
 | 
						|
		ops->setup_queue(nvmeq);
 | 
						|
 | 
						|
	return nvmeq;
 | 
						|
 | 
						|
 free_queue:
 | 
						|
	free((void *)nvmeq->cqes);
 | 
						|
 free_nvmeq:
 | 
						|
	free(nvmeq);
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
 | 
						|
{
 | 
						|
	struct nvme_command c;
 | 
						|
 | 
						|
	memset(&c, 0, sizeof(c));
 | 
						|
	c.delete_queue.opcode = opcode;
 | 
						|
	c.delete_queue.qid = cpu_to_le16(id);
 | 
						|
 | 
						|
	return nvme_submit_admin_cmd(dev, &c, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
 | 
						|
{
 | 
						|
	return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
 | 
						|
{
 | 
						|
	return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_enable_ctrl(struct nvme_dev *dev)
 | 
						|
{
 | 
						|
	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
 | 
						|
	dev->ctrl_config |= NVME_CC_ENABLE;
 | 
						|
	writel(dev->ctrl_config, &dev->bar->cc);
 | 
						|
 | 
						|
	return nvme_wait_csts(dev, NVME_CSTS_RDY, NVME_CSTS_RDY);
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_disable_ctrl(struct nvme_dev *dev)
 | 
						|
{
 | 
						|
	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
 | 
						|
	dev->ctrl_config &= ~NVME_CC_ENABLE;
 | 
						|
	writel(dev->ctrl_config, &dev->bar->cc);
 | 
						|
 | 
						|
	return nvme_wait_csts(dev, NVME_CSTS_RDY, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_shutdown_ctrl(struct nvme_dev *dev)
 | 
						|
{
 | 
						|
	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
 | 
						|
	dev->ctrl_config |= NVME_CC_SHN_NORMAL;
 | 
						|
	writel(dev->ctrl_config, &dev->bar->cc);
 | 
						|
 | 
						|
	return nvme_wait_csts(dev, NVME_CSTS_SHST_MASK, NVME_CSTS_SHST_CMPLT);
 | 
						|
}
 | 
						|
 | 
						|
static void nvme_free_queue(struct nvme_queue *nvmeq)
 | 
						|
{
 | 
						|
	free((void *)nvmeq->cqes);
 | 
						|
	free(nvmeq->sq_cmds);
 | 
						|
	free(nvmeq);
 | 
						|
}
 | 
						|
 | 
						|
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = dev->queue_count - 1; i >= lowest; i--) {
 | 
						|
		struct nvme_queue *nvmeq = dev->queues[i];
 | 
						|
		dev->queue_count--;
 | 
						|
		dev->queues[i] = NULL;
 | 
						|
		nvme_free_queue(nvmeq);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
 | 
						|
{
 | 
						|
	struct nvme_dev *dev = nvmeq->dev;
 | 
						|
 | 
						|
	nvmeq->sq_tail = 0;
 | 
						|
	nvmeq->cq_head = 0;
 | 
						|
	nvmeq->cq_phase = 1;
 | 
						|
	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
 | 
						|
	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
 | 
						|
	flush_dcache_range((ulong)nvmeq->cqes,
 | 
						|
			   (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
 | 
						|
	dev->online_queues++;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_configure_admin_queue(struct nvme_dev *dev)
 | 
						|
{
 | 
						|
	int result;
 | 
						|
	u32 aqa;
 | 
						|
	u64 cap = dev->cap;
 | 
						|
	struct nvme_queue *nvmeq;
 | 
						|
	/* most architectures use 4KB as the page size */
 | 
						|
	unsigned page_shift = 12;
 | 
						|
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
 | 
						|
	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
 | 
						|
 | 
						|
	if (page_shift < dev_page_min) {
 | 
						|
		debug("Device minimum page size (%u) too large for host (%u)\n",
 | 
						|
		      1 << dev_page_min, 1 << page_shift);
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
 | 
						|
	if (page_shift > dev_page_max) {
 | 
						|
		debug("Device maximum page size (%u) smaller than host (%u)\n",
 | 
						|
		      1 << dev_page_max, 1 << page_shift);
 | 
						|
		page_shift = dev_page_max;
 | 
						|
	}
 | 
						|
 | 
						|
	result = nvme_disable_ctrl(dev);
 | 
						|
	if (result < 0)
 | 
						|
		return result;
 | 
						|
 | 
						|
	nvmeq = dev->queues[NVME_ADMIN_Q];
 | 
						|
	if (!nvmeq) {
 | 
						|
		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
 | 
						|
		if (!nvmeq)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	aqa = nvmeq->q_depth - 1;
 | 
						|
	aqa |= aqa << 16;
 | 
						|
 | 
						|
	dev->page_size = 1 << page_shift;
 | 
						|
 | 
						|
	dev->ctrl_config = NVME_CC_CSS_NVM;
 | 
						|
	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
 | 
						|
	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
 | 
						|
	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
 | 
						|
 | 
						|
	writel(aqa, &dev->bar->aqa);
 | 
						|
	nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
 | 
						|
	nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
 | 
						|
 | 
						|
	result = nvme_enable_ctrl(dev);
 | 
						|
	if (result)
 | 
						|
		goto free_nvmeq;
 | 
						|
 | 
						|
	nvmeq->cq_vector = 0;
 | 
						|
 | 
						|
	nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
 | 
						|
 | 
						|
	return result;
 | 
						|
 | 
						|
 free_nvmeq:
 | 
						|
	nvme_free_queues(dev, 0);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
 | 
						|
			    struct nvme_queue *nvmeq)
 | 
						|
{
 | 
						|
	struct nvme_command c;
 | 
						|
	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
 | 
						|
 | 
						|
	memset(&c, 0, sizeof(c));
 | 
						|
	c.create_cq.opcode = nvme_admin_create_cq;
 | 
						|
	c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
 | 
						|
	c.create_cq.cqid = cpu_to_le16(qid);
 | 
						|
	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 | 
						|
	c.create_cq.cq_flags = cpu_to_le16(flags);
 | 
						|
	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
 | 
						|
 | 
						|
	return nvme_submit_admin_cmd(dev, &c, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
 | 
						|
			    struct nvme_queue *nvmeq)
 | 
						|
{
 | 
						|
	struct nvme_command c;
 | 
						|
	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
 | 
						|
 | 
						|
	memset(&c, 0, sizeof(c));
 | 
						|
	c.create_sq.opcode = nvme_admin_create_sq;
 | 
						|
	c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
 | 
						|
	c.create_sq.sqid = cpu_to_le16(qid);
 | 
						|
	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 | 
						|
	c.create_sq.sq_flags = cpu_to_le16(flags);
 | 
						|
	c.create_sq.cqid = cpu_to_le16(qid);
 | 
						|
 | 
						|
	return nvme_submit_admin_cmd(dev, &c, NULL);
 | 
						|
}
 | 
						|
 | 
						|
int nvme_identify(struct nvme_dev *dev, unsigned nsid,
 | 
						|
		  unsigned cns, dma_addr_t dma_addr)
 | 
						|
{
 | 
						|
	struct nvme_command c;
 | 
						|
	u32 page_size = dev->page_size;
 | 
						|
	int offset = dma_addr & (page_size - 1);
 | 
						|
	int length = sizeof(struct nvme_id_ctrl);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	memset(&c, 0, sizeof(c));
 | 
						|
	c.identify.opcode = nvme_admin_identify;
 | 
						|
	c.identify.nsid = cpu_to_le32(nsid);
 | 
						|
	c.identify.prp1 = cpu_to_le64(dma_addr);
 | 
						|
 | 
						|
	length -= (page_size - offset);
 | 
						|
	if (length <= 0) {
 | 
						|
		c.identify.prp2 = 0;
 | 
						|
	} else {
 | 
						|
		dma_addr += (page_size - offset);
 | 
						|
		c.identify.prp2 = cpu_to_le64(dma_addr);
 | 
						|
	}
 | 
						|
 | 
						|
	c.identify.cns = cpu_to_le32(cns);
 | 
						|
 | 
						|
	invalidate_dcache_range(dma_addr,
 | 
						|
				dma_addr + sizeof(struct nvme_id_ctrl));
 | 
						|
 | 
						|
	ret = nvme_submit_admin_cmd(dev, &c, NULL);
 | 
						|
	if (!ret)
 | 
						|
		invalidate_dcache_range(dma_addr,
 | 
						|
					dma_addr + sizeof(struct nvme_id_ctrl));
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
 | 
						|
		      dma_addr_t dma_addr, u32 *result)
 | 
						|
{
 | 
						|
	struct nvme_command c;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	memset(&c, 0, sizeof(c));
 | 
						|
	c.features.opcode = nvme_admin_get_features;
 | 
						|
	c.features.nsid = cpu_to_le32(nsid);
 | 
						|
	c.features.prp1 = cpu_to_le64(dma_addr);
 | 
						|
	c.features.fid = cpu_to_le32(fid);
 | 
						|
 | 
						|
	ret = nvme_submit_admin_cmd(dev, &c, result);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * TODO: Add some cache invalidation when a DMA buffer is involved
 | 
						|
	 * in the request, here and before the command gets submitted. The
 | 
						|
	 * buffer size varies by feature, also some features use a different
 | 
						|
	 * field in the command packet to hold the buffer address.
 | 
						|
	 * Section 5.21.1 (Set Features command) in the NVMe specification
 | 
						|
	 * details the buffer requirements for each feature.
 | 
						|
	 *
 | 
						|
	 * At the moment there is no user of this function.
 | 
						|
	 */
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
 | 
						|
		      dma_addr_t dma_addr, u32 *result)
 | 
						|
{
 | 
						|
	struct nvme_command c;
 | 
						|
 | 
						|
	memset(&c, 0, sizeof(c));
 | 
						|
	c.features.opcode = nvme_admin_set_features;
 | 
						|
	c.features.prp1 = cpu_to_le64(dma_addr);
 | 
						|
	c.features.fid = cpu_to_le32(fid);
 | 
						|
	c.features.dword11 = cpu_to_le32(dword11);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
 | 
						|
	 * involved in the request. The buffer size varies by feature, also
 | 
						|
	 * some features use a different field in the command packet to hold
 | 
						|
	 * the buffer address. Section 5.21.1 (Set Features command) in the
 | 
						|
	 * NVMe specification details the buffer requirements for each
 | 
						|
	 * feature.
 | 
						|
	 * At the moment the only user of this function is not using
 | 
						|
	 * any DMA buffer at all.
 | 
						|
	 */
 | 
						|
 | 
						|
	return nvme_submit_admin_cmd(dev, &c, result);
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
 | 
						|
{
 | 
						|
	struct nvme_dev *dev = nvmeq->dev;
 | 
						|
	int result;
 | 
						|
 | 
						|
	nvmeq->cq_vector = qid - 1;
 | 
						|
	result = nvme_alloc_cq(dev, qid, nvmeq);
 | 
						|
	if (result < 0)
 | 
						|
		goto release_cq;
 | 
						|
 | 
						|
	result = nvme_alloc_sq(dev, qid, nvmeq);
 | 
						|
	if (result < 0)
 | 
						|
		goto release_sq;
 | 
						|
 | 
						|
	nvme_init_queue(nvmeq, qid);
 | 
						|
 | 
						|
	return result;
 | 
						|
 | 
						|
 release_sq:
 | 
						|
	nvme_delete_sq(dev, qid);
 | 
						|
 release_cq:
 | 
						|
	nvme_delete_cq(dev, qid);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_set_queue_count(struct nvme_dev *dev, int count)
 | 
						|
{
 | 
						|
	int status;
 | 
						|
	u32 result;
 | 
						|
	u32 q_count = (count - 1) | ((count - 1) << 16);
 | 
						|
 | 
						|
	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
 | 
						|
			q_count, 0, &result);
 | 
						|
 | 
						|
	if (status < 0)
 | 
						|
		return status;
 | 
						|
	if (status > 1)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return min(result & 0xffff, result >> 16) + 1;
 | 
						|
}
 | 
						|
 | 
						|
static void nvme_create_io_queues(struct nvme_dev *dev)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = dev->queue_count; i <= dev->max_qid; i++)
 | 
						|
		if (!nvme_alloc_queue(dev, i, dev->q_depth))
 | 
						|
			break;
 | 
						|
 | 
						|
	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
 | 
						|
		if (nvme_create_queue(dev->queues[i], i))
 | 
						|
			break;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_setup_io_queues(struct nvme_dev *dev)
 | 
						|
{
 | 
						|
	int nr_io_queues;
 | 
						|
	int result;
 | 
						|
 | 
						|
	nr_io_queues = 1;
 | 
						|
	result = nvme_set_queue_count(dev, nr_io_queues);
 | 
						|
	if (result <= 0)
 | 
						|
		return result;
 | 
						|
 | 
						|
	dev->max_qid = nr_io_queues;
 | 
						|
 | 
						|
	/* Free previously allocated queues */
 | 
						|
	nvme_free_queues(dev, nr_io_queues + 1);
 | 
						|
	nvme_create_io_queues(dev);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_get_info_from_identify(struct nvme_dev *dev)
 | 
						|
{
 | 
						|
	struct nvme_id_ctrl *ctrl;
 | 
						|
	int ret;
 | 
						|
	int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
 | 
						|
 | 
						|
	ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
 | 
						|
	if (!ctrl)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
 | 
						|
	if (ret) {
 | 
						|
		free(ctrl);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	dev->nn = le32_to_cpu(ctrl->nn);
 | 
						|
	dev->vwc = ctrl->vwc;
 | 
						|
	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
 | 
						|
	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
 | 
						|
	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
 | 
						|
	if (ctrl->mdts)
 | 
						|
		dev->max_transfer_shift = (ctrl->mdts + shift);
 | 
						|
	else {
 | 
						|
		/*
 | 
						|
		 * Maximum Data Transfer Size (MDTS) field indicates the maximum
 | 
						|
		 * data transfer size between the host and the controller. The
 | 
						|
		 * host should not submit a command that exceeds this transfer
 | 
						|
		 * size. The value is in units of the minimum memory page size
 | 
						|
		 * and is reported as a power of two (2^n).
 | 
						|
		 *
 | 
						|
		 * The spec also says: a value of 0h indicates no restrictions
 | 
						|
		 * on transfer size. But in nvme_blk_read/write() below we have
 | 
						|
		 * the following algorithm for maximum number of logic blocks
 | 
						|
		 * per transfer:
 | 
						|
		 *
 | 
						|
		 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
 | 
						|
		 *
 | 
						|
		 * In order for lbas not to overflow, the maximum number is 15
 | 
						|
		 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
 | 
						|
		 * Let's use 20 which provides 1MB size.
 | 
						|
		 */
 | 
						|
		dev->max_transfer_shift = 20;
 | 
						|
	}
 | 
						|
 | 
						|
	free(ctrl);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
 | 
						|
{
 | 
						|
	struct nvme_ns *ns = dev_get_priv(udev);
 | 
						|
 | 
						|
	if (ns_id)
 | 
						|
		*ns_id = ns->ns_id;
 | 
						|
	if (eui64)
 | 
						|
		memcpy(eui64, ns->eui64, sizeof(ns->eui64));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int nvme_scan_namespace(void)
 | 
						|
{
 | 
						|
	struct uclass *uc;
 | 
						|
	struct udevice *dev;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = uclass_get(UCLASS_NVME, &uc);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	uclass_foreach_dev(dev, uc) {
 | 
						|
		ret = device_probe(dev);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int nvme_blk_probe(struct udevice *udev)
 | 
						|
{
 | 
						|
	struct nvme_dev *ndev = dev_get_priv(udev->parent);
 | 
						|
	struct blk_desc *desc = dev_get_uclass_plat(udev);
 | 
						|
	struct nvme_ns *ns = dev_get_priv(udev);
 | 
						|
	u8 flbas;
 | 
						|
	struct nvme_id_ns *id;
 | 
						|
 | 
						|
	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
 | 
						|
	if (!id)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ns->dev = ndev;
 | 
						|
	/* extract the namespace id from the block device name */
 | 
						|
	ns->ns_id = trailing_strtol(udev->name);
 | 
						|
	if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
 | 
						|
		free(id);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
 | 
						|
	flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
 | 
						|
	ns->flbas = flbas;
 | 
						|
	ns->lba_shift = id->lbaf[flbas].ds;
 | 
						|
	list_add(&ns->list, &ndev->namespaces);
 | 
						|
 | 
						|
	desc->lba = le64_to_cpu(id->nsze);
 | 
						|
	desc->log2blksz = ns->lba_shift;
 | 
						|
	desc->blksz = 1 << ns->lba_shift;
 | 
						|
	desc->bdev = udev;
 | 
						|
	memcpy(desc->vendor, ndev->vendor, sizeof(ndev->vendor));
 | 
						|
	memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
 | 
						|
	memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
 | 
						|
 | 
						|
	free(id);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
 | 
						|
			 lbaint_t blkcnt, void *buffer, bool read)
 | 
						|
{
 | 
						|
	struct nvme_ns *ns = dev_get_priv(udev);
 | 
						|
	struct nvme_dev *dev = ns->dev;
 | 
						|
	struct nvme_command c;
 | 
						|
	struct blk_desc *desc = dev_get_uclass_plat(udev);
 | 
						|
	int status;
 | 
						|
	u64 prp2;
 | 
						|
	u64 total_len = blkcnt << desc->log2blksz;
 | 
						|
	u64 temp_len = total_len;
 | 
						|
	uintptr_t temp_buffer = (uintptr_t)buffer;
 | 
						|
 | 
						|
	u64 slba = blknr;
 | 
						|
	u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
 | 
						|
	u64 total_lbas = blkcnt;
 | 
						|
 | 
						|
	flush_dcache_range((unsigned long)buffer,
 | 
						|
			   (unsigned long)buffer + total_len);
 | 
						|
 | 
						|
	c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
 | 
						|
	c.rw.flags = 0;
 | 
						|
	c.rw.nsid = cpu_to_le32(ns->ns_id);
 | 
						|
	c.rw.control = 0;
 | 
						|
	c.rw.dsmgmt = 0;
 | 
						|
	c.rw.reftag = 0;
 | 
						|
	c.rw.apptag = 0;
 | 
						|
	c.rw.appmask = 0;
 | 
						|
	c.rw.metadata = 0;
 | 
						|
 | 
						|
	while (total_lbas) {
 | 
						|
		if (total_lbas < lbas) {
 | 
						|
			lbas = (u16)total_lbas;
 | 
						|
			total_lbas = 0;
 | 
						|
		} else {
 | 
						|
			total_lbas -= lbas;
 | 
						|
		}
 | 
						|
 | 
						|
		if (nvme_setup_prps(dev, &prp2,
 | 
						|
				    lbas << ns->lba_shift, temp_buffer))
 | 
						|
			return -EIO;
 | 
						|
		c.rw.slba = cpu_to_le64(slba);
 | 
						|
		slba += lbas;
 | 
						|
		c.rw.length = cpu_to_le16(lbas - 1);
 | 
						|
		c.rw.prp1 = cpu_to_le64(temp_buffer);
 | 
						|
		c.rw.prp2 = cpu_to_le64(prp2);
 | 
						|
		status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
 | 
						|
				&c, NULL, IO_TIMEOUT);
 | 
						|
		if (status)
 | 
						|
			break;
 | 
						|
		temp_len -= (u32)lbas << ns->lba_shift;
 | 
						|
		temp_buffer += lbas << ns->lba_shift;
 | 
						|
	}
 | 
						|
 | 
						|
	if (read)
 | 
						|
		invalidate_dcache_range((unsigned long)buffer,
 | 
						|
					(unsigned long)buffer + total_len);
 | 
						|
 | 
						|
	return (total_len - temp_len) >> desc->log2blksz;
 | 
						|
}
 | 
						|
 | 
						|
static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
 | 
						|
			   lbaint_t blkcnt, void *buffer)
 | 
						|
{
 | 
						|
	return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
 | 
						|
}
 | 
						|
 | 
						|
static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
 | 
						|
			    lbaint_t blkcnt, const void *buffer)
 | 
						|
{
 | 
						|
	return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
 | 
						|
}
 | 
						|
 | 
						|
static const struct blk_ops nvme_blk_ops = {
 | 
						|
	.read	= nvme_blk_read,
 | 
						|
	.write	= nvme_blk_write,
 | 
						|
};
 | 
						|
 | 
						|
U_BOOT_DRIVER(nvme_blk) = {
 | 
						|
	.name	= "nvme-blk",
 | 
						|
	.id	= UCLASS_BLK,
 | 
						|
	.probe	= nvme_blk_probe,
 | 
						|
	.ops	= &nvme_blk_ops,
 | 
						|
	.priv_auto	= sizeof(struct nvme_ns),
 | 
						|
};
 | 
						|
 | 
						|
int nvme_init(struct udevice *udev)
 | 
						|
{
 | 
						|
	struct nvme_dev *ndev = dev_get_priv(udev);
 | 
						|
	struct nvme_id_ns *id;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ndev->udev = udev;
 | 
						|
	INIT_LIST_HEAD(&ndev->namespaces);
 | 
						|
	if (readl(&ndev->bar->csts) == -1) {
 | 
						|
		ret = -ENODEV;
 | 
						|
		printf("Error: %s: Out of memory!\n", udev->name);
 | 
						|
		goto free_nvme;
 | 
						|
	}
 | 
						|
 | 
						|
	ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
 | 
						|
	if (!ndev->queues) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		printf("Error: %s: Out of memory!\n", udev->name);
 | 
						|
		goto free_nvme;
 | 
						|
	}
 | 
						|
	memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
 | 
						|
 | 
						|
	ndev->cap = nvme_readq(&ndev->bar->cap);
 | 
						|
	ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
 | 
						|
	ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
 | 
						|
	ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
 | 
						|
 | 
						|
	ret = nvme_configure_admin_queue(ndev);
 | 
						|
	if (ret)
 | 
						|
		goto free_queue;
 | 
						|
 | 
						|
	/* Allocate after the page size is known */
 | 
						|
	ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
 | 
						|
	if (!ndev->prp_pool) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		printf("Error: %s: Out of memory!\n", udev->name);
 | 
						|
		goto free_nvme;
 | 
						|
	}
 | 
						|
	ndev->prp_entry_num = MAX_PRP_POOL >> 3;
 | 
						|
 | 
						|
	ret = nvme_setup_io_queues(ndev);
 | 
						|
	if (ret)
 | 
						|
		goto free_queue;
 | 
						|
 | 
						|
	nvme_get_info_from_identify(ndev);
 | 
						|
 | 
						|
	/* Create a blk device for each namespace */
 | 
						|
 | 
						|
	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
 | 
						|
	if (!id) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto free_queue;
 | 
						|
	}
 | 
						|
 | 
						|
	for (int i = 1; i <= ndev->nn; i++) {
 | 
						|
		struct udevice *ns_udev;
 | 
						|
		char name[20];
 | 
						|
 | 
						|
		memset(id, 0, sizeof(*id));
 | 
						|
		if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
 | 
						|
			ret = -EIO;
 | 
						|
			goto free_id;
 | 
						|
		}
 | 
						|
 | 
						|
		/* skip inactive namespace */
 | 
						|
		if (!id->nsze)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Encode the namespace id to the device name so that
 | 
						|
		 * we can extract it when doing the probe.
 | 
						|
		 */
 | 
						|
		sprintf(name, "blk#%d", i);
 | 
						|
 | 
						|
		/* The real blksz and size will be set by nvme_blk_probe() */
 | 
						|
		ret = blk_create_devicef(udev, "nvme-blk", name, UCLASS_NVME,
 | 
						|
					 -1, 512, 0, &ns_udev);
 | 
						|
		if (ret)
 | 
						|
			goto free_id;
 | 
						|
 | 
						|
		ret = bootdev_setup_sibling_blk(ns_udev, "nvme_bootdev");
 | 
						|
		if (ret)
 | 
						|
			return log_msg_ret("bootdev", ret);
 | 
						|
 | 
						|
		ret = blk_probe_or_unbind(ns_udev);
 | 
						|
		if (ret)
 | 
						|
			goto free_id;
 | 
						|
	}
 | 
						|
 | 
						|
	free(id);
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_id:
 | 
						|
	free(id);
 | 
						|
free_queue:
 | 
						|
	free((void *)ndev->queues);
 | 
						|
free_nvme:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int nvme_shutdown(struct udevice *udev)
 | 
						|
{
 | 
						|
	struct nvme_dev *ndev = dev_get_priv(udev);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = nvme_shutdown_ctrl(ndev);
 | 
						|
	if (ret < 0) {
 | 
						|
		printf("Error: %s: Shutdown timed out!\n", udev->name);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return nvme_disable_ctrl(ndev);
 | 
						|
}
 |