mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-31 12:08:19 +00:00 
			
		
		
		
	e500v2 and newer cores support 1G page sizes. Signed-off-by: Ed Swarthout <Ed.Swarthout@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
		
			
				
	
	
		
			1124 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1124 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2004 Freescale Semiconductor.
 | |
|  * (C) Copyright 2003 Motorola Inc.
 | |
|  * Xianghua Xiao (X.Xiao@motorola.com)
 | |
|  *
 | |
|  * See file CREDITS for list of people who contributed to this
 | |
|  * project.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 of
 | |
|  * the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 | |
|  * MA 02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <asm/processor.h>
 | |
| #include <i2c.h>
 | |
| #include <spd.h>
 | |
| #include <asm/mmu.h>
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
 | |
| extern void dma_init(void);
 | |
| extern uint dma_check(void);
 | |
| extern int dma_xfer(void *dest, uint count, void *src);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPD_EEPROM
 | |
| 
 | |
| #ifndef	CFG_READ_SPD
 | |
| #define CFG_READ_SPD	i2c_read
 | |
| #endif
 | |
| 
 | |
| static unsigned int setup_laws_and_tlbs(unsigned int memsize);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Convert picoseconds into clock cycles (rounding up if needed).
 | |
|  */
 | |
| 
 | |
| int
 | |
| picos_to_clk(int picos)
 | |
| {
 | |
| 	int clks;
 | |
| 
 | |
| 	clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
 | |
| 	if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
 | |
| 		clks++;
 | |
| 	}
 | |
| 
 | |
| 	return clks;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Calculate the Density of each Physical Rank.
 | |
|  * Returned size is in bytes.
 | |
|  *
 | |
|  * Study these table from Byte 31 of JEDEC SPD Spec.
 | |
|  *
 | |
|  *		DDR I	DDR II
 | |
|  *	Bit	Size	Size
 | |
|  *	---	-----	------
 | |
|  *	7 high	512MB	512MB
 | |
|  *	6	256MB	256MB
 | |
|  *	5	128MB	128MB
 | |
|  *	4	 64MB	 16GB
 | |
|  *	3	 32MB	  8GB
 | |
|  *	2	 16MB	  4GB
 | |
|  *	1	  2GB	  2GB
 | |
|  *	0 low	  1GB	  1GB
 | |
|  *
 | |
|  * Reorder Table to be linear by stripping the bottom
 | |
|  * 2 or 5 bits off and shifting them up to the top.
 | |
|  */
 | |
| 
 | |
| unsigned int
 | |
| compute_banksize(unsigned int mem_type, unsigned char row_dens)
 | |
| {
 | |
| 	unsigned int bsize;
 | |
| 
 | |
| 	if (mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		/* Bottom 2 bits up to the top. */
 | |
| 		bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
 | |
| 		debug("DDR: DDR I rank density = 0x%08x\n", bsize);
 | |
| 	} else {
 | |
| 		/* Bottom 5 bits up to the top. */
 | |
| 		bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
 | |
| 		debug("DDR: DDR II rank density = 0x%08x\n", bsize);
 | |
| 	}
 | |
| 	return bsize;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Convert a two-nibble BCD value into a cycle time.
 | |
|  * While the spec calls for nano-seconds, picos are returned.
 | |
|  *
 | |
|  * This implements the tables for bytes 9, 23 and 25 for both
 | |
|  * DDR I and II.  No allowance for distinguishing the invalid
 | |
|  * fields absent for DDR I yet present in DDR II is made.
 | |
|  * (That is, cycle times of .25, .33, .66 and .75 ns are
 | |
|  * allowed for both DDR II and I.)
 | |
|  */
 | |
| 
 | |
| unsigned int
 | |
| convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
 | |
| {
 | |
| 	/*
 | |
| 	 * Table look up the lower nibble, allow DDR I & II.
 | |
| 	 */
 | |
| 	unsigned int tenths_ps[16] = {
 | |
| 		0,
 | |
| 		100,
 | |
| 		200,
 | |
| 		300,
 | |
| 		400,
 | |
| 		500,
 | |
| 		600,
 | |
| 		700,
 | |
| 		800,
 | |
| 		900,
 | |
| 		250,
 | |
| 		330,
 | |
| 		660,
 | |
| 		750,
 | |
| 		0,	/* undefined */
 | |
| 		0	/* undefined */
 | |
| 	};
 | |
| 
 | |
| 	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
 | |
| 	unsigned int tenth_ns = spd_val & 0x0F;
 | |
| 	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
 | |
| 
 | |
| 	return ps;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
 | |
|  * Table from SPD Spec, Byte 12, converted to picoseconds and
 | |
|  * filled in with "default" normal values.
 | |
|  */
 | |
| unsigned int determine_refresh_rate(unsigned int spd_refresh)
 | |
| {
 | |
| 	unsigned int refresh_time_ns[8] = {
 | |
| 		15625000,	/* 0 Normal    1.00x */
 | |
| 		3900000,	/* 1 Reduced    .25x */
 | |
| 		7800000,	/* 2 Extended   .50x */
 | |
| 		31300000,	/* 3 Extended  2.00x */
 | |
| 		62500000,	/* 4 Extended  4.00x */
 | |
| 		125000000,	/* 5 Extended  8.00x */
 | |
| 		15625000,	/* 6 Normal    1.00x  filler */
 | |
| 		15625000,	/* 7 Normal    1.00x  filler */
 | |
| 	};
 | |
| 
 | |
| 	return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
 | |
| }
 | |
| 
 | |
| 
 | |
| long int
 | |
| spd_sdram(void)
 | |
| {
 | |
| 	volatile immap_t *immap = (immap_t *)CFG_IMMR;
 | |
| 	volatile ccsr_ddr_t *ddr = &immap->im_ddr;
 | |
| 	volatile ccsr_gur_t *gur = &immap->im_gur;
 | |
| 	spd_eeprom_t spd;
 | |
| 	unsigned int n_ranks;
 | |
| 	unsigned int rank_density;
 | |
| 	unsigned int odt_rd_cfg, odt_wr_cfg;
 | |
| 	unsigned int odt_cfg, mode_odt_enable;
 | |
| 	unsigned int refresh_clk;
 | |
| #ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
 | |
| 	unsigned char clk_adjust;
 | |
| #endif
 | |
| 	unsigned int dqs_cfg;
 | |
| 	unsigned char twr_clk, twtr_clk, twr_auto_clk;
 | |
| 	unsigned int tCKmin_ps, tCKmax_ps;
 | |
| 	unsigned int max_data_rate, effective_data_rate;
 | |
| 	unsigned int busfreq;
 | |
| 	unsigned sdram_cfg;
 | |
| 	unsigned int memsize;
 | |
| 	unsigned char caslat, caslat_ctrl;
 | |
| 	unsigned int trfc, trfc_clk, trfc_low, trfc_high;
 | |
| 	unsigned int trcd_clk;
 | |
| 	unsigned int trtp_clk;
 | |
| 	unsigned char cke_min_clk;
 | |
| 	unsigned char add_lat;
 | |
| 	unsigned char wr_lat;
 | |
| 	unsigned char wr_data_delay;
 | |
| 	unsigned char four_act;
 | |
| 	unsigned char cpo;
 | |
| 	unsigned char burst_len;
 | |
| 	unsigned int mode_caslat;
 | |
| 	unsigned char sdram_type;
 | |
| 	unsigned char d_init;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read SPD information.
 | |
| 	 */
 | |
| 	CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd));
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for supported memory module types.
 | |
| 	 */
 | |
| 	if (spd.mem_type != SPD_MEMTYPE_DDR &&
 | |
| 	    spd.mem_type != SPD_MEMTYPE_DDR2) {
 | |
| 		printf("Unable to locate DDR I or DDR II module.\n"
 | |
| 		       "    Fundamental memory type is 0x%0x\n",
 | |
| 		       spd.mem_type);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * These test gloss over DDR I and II differences in interpretation
 | |
| 	 * of bytes 3 and 4, but irrelevantly.  Multiple asymmetric banks
 | |
| 	 * are not supported on DDR I; and not encoded on DDR II.
 | |
| 	 *
 | |
| 	 * Also note that the 8548 controller can support:
 | |
| 	 *    12 <= nrow <= 16
 | |
| 	 * and
 | |
| 	 *     8 <= ncol <= 11 (still, for DDR)
 | |
| 	 *     6 <= ncol <=  9 (for FCRAM)
 | |
| 	 */
 | |
| 	if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
 | |
| 		printf("DDR: Unsupported number of Row Addr lines: %d.\n",
 | |
| 		       spd.nrow_addr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
 | |
| 		printf("DDR: Unsupported number of Column Addr lines: %d.\n",
 | |
| 		       spd.ncol_addr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the number of physical banks controlled by
 | |
| 	 * different Chip Select signals.  This is not quite the
 | |
| 	 * same as the number of DIMM modules on the board.  Feh.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		n_ranks = spd.nrows;
 | |
| 	} else {
 | |
| 		n_ranks = (spd.nrows & 0x7) + 1;
 | |
| 	}
 | |
| 
 | |
| 	debug("DDR: number of ranks = %d\n", n_ranks);
 | |
| 
 | |
| 	if (n_ranks > 2) {
 | |
| 		printf("DDR: Only 2 chip selects are supported: %d\n",
 | |
| 		       n_ranks);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust DDR II IO voltage biasing.
 | |
| 	 * Only 8548 rev 1 needs the fix
 | |
| 	 */
 | |
| 	if ((SVR_VER(get_svr()) == SVR_8548_E) &&
 | |
| 			(SVR_MJREV(get_svr()) == 1) &&
 | |
| 			(spd.mem_type == SPD_MEMTYPE_DDR2)) {
 | |
| 		gur->ddrioovcr = (0x80000000	/* Enable */
 | |
| 				  | 0x10000000);/* VSEL to 1.8V */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the size of each Rank in bytes.
 | |
| 	 */
 | |
| 	rank_density = compute_banksize(spd.mem_type, spd.row_dens);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
 | |
| 	 */
 | |
| 	ddr->cs0_bnds = (rank_density >> 24) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * ODT configuration recommendation from DDR Controller Chapter.
 | |
| 	 */
 | |
| 	odt_rd_cfg = 0;			/* Never assert ODT */
 | |
| 	odt_wr_cfg = 0;			/* Never assert ODT */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
 | |
| 		odt_wr_cfg = 1;		/* Assert ODT on writes to CS0 */
 | |
| #if 0
 | |
| 		/* FIXME: How to determine the number of dimm modules? */
 | |
| 		if (n_dimm_modules == 2) {
 | |
| 			odt_rd_cfg = 1;	/* Assert ODT on reads to CS0 */
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	ddr->cs0_config = ( 1 << 31
 | |
| 			    | (odt_rd_cfg << 20)
 | |
| 			    | (odt_wr_cfg << 16)
 | |
| 			    | (spd.nrow_addr - 12) << 8
 | |
| 			    | (spd.ncol_addr - 8) );
 | |
| 	debug("\n");
 | |
| 	debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds);
 | |
| 	debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
 | |
| 
 | |
| 	if (n_ranks == 2) {
 | |
| 		/*
 | |
| 		 * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg
 | |
| 		 */
 | |
| 		ddr->cs1_bnds = ( (rank_density >> 8)
 | |
| 				  | ((rank_density >> (24 - 1)) - 1) );
 | |
| 		ddr->cs1_config = ( 1<<31
 | |
| 				    | (odt_rd_cfg << 20)
 | |
| 				    | (odt_wr_cfg << 16)
 | |
| 				    | (spd.nrow_addr - 12) << 8
 | |
| 				    | (spd.ncol_addr - 8) );
 | |
| 		debug("DDR: cs1_bnds   = 0x%08x\n", ddr->cs1_bnds);
 | |
| 		debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the largest CAS by locating the highest 1 bit
 | |
| 	 * in the spd.cas_lat field.  Translate it to a DDR
 | |
| 	 * controller field value:
 | |
| 	 *
 | |
| 	 *	CAS Lat	DDR I	DDR II	Ctrl
 | |
| 	 *	Clocks	SPD Bit	SPD Bit	Value
 | |
| 	 *	-------	-------	-------	-----
 | |
| 	 *	1.0	0		0001
 | |
| 	 *	1.5	1		0010
 | |
| 	 *	2.0	2	2	0011
 | |
| 	 *	2.5	3		0100
 | |
| 	 *	3.0	4	3	0101
 | |
| 	 *	3.5	5		0110
 | |
| 	 *	4.0		4	0111
 | |
| 	 *	4.5			1000
 | |
| 	 *	5.0		5	1001
 | |
| 	 */
 | |
| 	caslat = __ilog2(spd.cas_lat);
 | |
| 	if ((spd.mem_type == SPD_MEMTYPE_DDR)
 | |
| 	    && (caslat > 5)) {
 | |
| 		printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
 | |
| 		return 0;
 | |
| 
 | |
| 	} else if (spd.mem_type == SPD_MEMTYPE_DDR2
 | |
| 		   && (caslat < 2 || caslat > 5)) {
 | |
| 		printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
 | |
| 		       spd.cas_lat);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	debug("DDR: caslat SPD bit is %d\n", caslat);
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
 | |
| 	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
 | |
| 	 * nanoseconds and represented as BCD.
 | |
| 	 */
 | |
| 	tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
 | |
| 	debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
 | |
| 
 | |
| 	/*
 | |
| 	 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
 | |
| 	 */
 | |
| 	max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
 | |
| 	debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust the CAS Latency to allow for bus speeds that
 | |
| 	 * are slower than the DDR module.
 | |
| 	 */
 | |
| 	busfreq = get_bus_freq(0) / 1000000;	/* MHz */
 | |
| 
 | |
| 	effective_data_rate = max_data_rate;
 | |
| 	if (busfreq < 90) {
 | |
| 		/* DDR rate out-of-range */
 | |
| 		puts("DDR: platform frequency is not fit for DDR rate\n");
 | |
| 		return 0;
 | |
| 
 | |
| 	} else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) {
 | |
| 		/*
 | |
| 		 * busfreq 90~230 range, treated as DDR 200.
 | |
| 		 */
 | |
| 		effective_data_rate = 200;
 | |
| 		if (spd.clk_cycle3 == 0xa0)	/* 10 ns */
 | |
| 			caslat -= 2;
 | |
| 		else if (spd.clk_cycle2 == 0xa0)
 | |
| 			caslat--;
 | |
| 
 | |
| 	} else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) {
 | |
| 		/*
 | |
| 		 * busfreq 230~280 range, treated as DDR 266.
 | |
| 		 */
 | |
| 		effective_data_rate = 266;
 | |
| 		if (spd.clk_cycle3 == 0x75)	/* 7.5 ns */
 | |
| 			caslat -= 2;
 | |
| 		else if (spd.clk_cycle2 == 0x75)
 | |
| 			caslat--;
 | |
| 
 | |
| 	} else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) {
 | |
| 		/*
 | |
| 		 * busfreq 280~350 range, treated as DDR 333.
 | |
| 		 */
 | |
| 		effective_data_rate = 333;
 | |
| 		if (spd.clk_cycle3 == 0x60)	/* 6.0 ns */
 | |
| 			caslat -= 2;
 | |
| 		else if (spd.clk_cycle2 == 0x60)
 | |
| 			caslat--;
 | |
| 
 | |
| 	} else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) {
 | |
| 		/*
 | |
| 		 * busfreq 350~460 range, treated as DDR 400.
 | |
| 		 */
 | |
| 		effective_data_rate = 400;
 | |
| 		if (spd.clk_cycle3 == 0x50)	/* 5.0 ns */
 | |
| 			caslat -= 2;
 | |
| 		else if (spd.clk_cycle2 == 0x50)
 | |
| 			caslat--;
 | |
| 
 | |
| 	} else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) {
 | |
| 		/*
 | |
| 		 * busfreq 460~560 range, treated as DDR 533.
 | |
| 		 */
 | |
| 		effective_data_rate = 533;
 | |
| 		if (spd.clk_cycle3 == 0x3D)	/* 3.75 ns */
 | |
| 			caslat -= 2;
 | |
| 		else if (spd.clk_cycle2 == 0x3D)
 | |
| 			caslat--;
 | |
| 
 | |
| 	} else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) {
 | |
| 		/*
 | |
| 		 * busfreq 560~700 range, treated as DDR 667.
 | |
| 		 */
 | |
| 		effective_data_rate = 667;
 | |
| 		if (spd.clk_cycle3 == 0x30)	/* 3.0 ns */
 | |
| 			caslat -= 2;
 | |
| 		else if (spd.clk_cycle2 == 0x30)
 | |
| 			caslat--;
 | |
| 
 | |
| 	} else if (700 <= busfreq) {
 | |
| 		/*
 | |
| 		 * DDR rate out-of-range
 | |
| 		 */
 | |
| 		printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
 | |
| 		     busfreq, max_data_rate);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert caslat clocks to DDR controller value.
 | |
| 	 * Force caslat_ctrl to be DDR Controller field-sized.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		caslat_ctrl = (caslat + 1) & 0x07;
 | |
| 	} else {
 | |
| 		caslat_ctrl =  (2 * caslat - 1) & 0x0f;
 | |
| 	}
 | |
| 
 | |
| 	debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
 | |
| 	debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
 | |
| 	      caslat, caslat_ctrl);
 | |
| 
 | |
| 	/*
 | |
| 	 * Timing Config 0.
 | |
| 	 * Avoid writing for DDR I.  The new PQ38 DDR controller
 | |
| 	 * dreams up non-zero default values to be backwards compatible.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
 | |
| 		unsigned char taxpd_clk = 8;		/* By the book. */
 | |
| 		unsigned char tmrd_clk = 2;		/* By the book. */
 | |
| 		unsigned char act_pd_exit = 2;		/* Empirical? */
 | |
| 		unsigned char pre_pd_exit = 6;		/* Empirical? */
 | |
| 
 | |
| 		ddr->timing_cfg_0 = (0
 | |
| 			| ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */
 | |
| 			| ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */
 | |
| 			| ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */
 | |
| 			| ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */
 | |
| 			);
 | |
| #if 0
 | |
| 		ddr->timing_cfg_0 |= 0xaa000000;	/* extra cycles */
 | |
| #endif
 | |
| 		debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
 | |
| 
 | |
| 	} else {
 | |
| #if 0
 | |
| 		/*
 | |
| 		 * Force extra cycles with 0xaa bits.
 | |
| 		 * Incidentally supply the dreamt-up backwards compat value!
 | |
| 		 */
 | |
| 		ddr->timing_cfg_0 = 0x00110105;	/* backwards compat value */
 | |
| 		ddr->timing_cfg_0 |= 0xaa000000;	/* extra cycles */
 | |
| 		debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Some Timing Config 1 values now.
 | |
| 	 * Sneak Extended Refresh Recovery in here too.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
 | |
| 	 * use conservative value.
 | |
| 	 * For DDR II, they are bytes 36 and 37, in quarter nanos.
 | |
| 	 */
 | |
| 
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		twr_clk = 3;	/* Clocks */
 | |
| 		twtr_clk = 1;	/* Clocks */
 | |
| 	} else {
 | |
| 		twr_clk = picos_to_clk(spd.twr * 250);
 | |
| 		twtr_clk = picos_to_clk(spd.twtr * 250);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate Trfc, in picos.
 | |
| 	 * DDR I:  Byte 42 straight up in ns.
 | |
| 	 * DDR II: Byte 40 and 42 swizzled some, in ns.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		trfc = spd.trfc * 1000;		/* up to ps */
 | |
| 	} else {
 | |
| 		unsigned int byte40_table_ps[8] = {
 | |
| 			0,
 | |
| 			250,
 | |
| 			330,
 | |
| 			500,
 | |
| 			660,
 | |
| 			750,
 | |
| 			0,
 | |
| 			0
 | |
| 		};
 | |
| 
 | |
| 		trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
 | |
| 			+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
 | |
| 	}
 | |
| 	trfc_clk = picos_to_clk(trfc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Trcd, Byte 29, from quarter nanos to ps and clocks.
 | |
| 	 */
 | |
| 	trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert trfc_clk to DDR controller fields.  DDR I should
 | |
| 	 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
 | |
| 	 * 8548 controller has an extended REFREC field of three bits.
 | |
| 	 * The controller automatically adds 8 clocks to this value,
 | |
| 	 * so preadjust it down 8 first before splitting it up.
 | |
| 	 */
 | |
| 	trfc_low = (trfc_clk - 8) & 0xf;
 | |
| 	trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sneak in some Extended Refresh Recovery.
 | |
| 	 */
 | |
| 	ddr->ext_refrec = (trfc_high << 16);
 | |
| 	debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
 | |
| 
 | |
| 	ddr->timing_cfg_1 =
 | |
| 	    (0
 | |
| 	     | ((picos_to_clk(spd.trp * 250) & 0x07) << 28)	/* PRETOACT */
 | |
| 	     | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24)	/* ACTTOPRE */
 | |
| 	     | (trcd_clk << 20)					/* ACTTORW */
 | |
| 	     | (caslat_ctrl << 16)				/* CASLAT */
 | |
| 	     | (trfc_low << 12)					/* REFEC */
 | |
| 	     | ((twr_clk & 0x07) << 8)				/* WRRREC */
 | |
| 	     | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4)	/* ACTTOACT */
 | |
| 	     | ((twtr_clk & 0x07) << 0)				/* WRTORD */
 | |
| 	     );
 | |
| 
 | |
| 	debug("DDR: timing_cfg_1  = 0x%08x\n", ddr->timing_cfg_1);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Timing_Config_2
 | |
| 	 * Was: 0x00000800;
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Additive Latency
 | |
| 	 * For DDR I, 0.
 | |
| 	 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
 | |
| 	 * which comes from Trcd, and also note that:
 | |
| 	 *	add_lat + caslat must be >= 4
 | |
| 	 */
 | |
| 	add_lat = 0;
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2
 | |
| 	    && (odt_wr_cfg || odt_rd_cfg)
 | |
| 	    && (caslat < 4)) {
 | |
| 		add_lat = 4 - caslat;
 | |
| 		if (add_lat > trcd_clk) {
 | |
| 			add_lat = trcd_clk - 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Write Data Delay
 | |
| 	 * Historically 0x2 == 4/8 clock delay.
 | |
| 	 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
 | |
| 	 */
 | |
| 	wr_data_delay = 3;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write Latency
 | |
| 	 * Read to Precharge
 | |
| 	 * Minimum CKE Pulse Width.
 | |
| 	 * Four Activate Window
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		/*
 | |
| 		 * This is a lie.  It should really be 1, but if it is
 | |
| 		 * set to 1, bits overlap into the old controller's
 | |
| 		 * otherwise unused ACSM field.  If we leave it 0, then
 | |
| 		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
 | |
| 		 */
 | |
| 		wr_lat = 0;
 | |
| 
 | |
| 		trtp_clk = 2;		/* By the book. */
 | |
| 		cke_min_clk = 1;	/* By the book. */
 | |
| 		four_act = 1;		/* By the book. */
 | |
| 
 | |
| 	} else {
 | |
| 		wr_lat = caslat - 1;
 | |
| 
 | |
| 		/* Convert SPD value from quarter nanos to picos. */
 | |
| 		trtp_clk = picos_to_clk(spd.trtp * 250);
 | |
| 
 | |
| 		cke_min_clk = 3;	/* By the book. */
 | |
| 		four_act = picos_to_clk(37500);	/* By the book. 1k pages? */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Empirically set ~MCAS-to-preamble override for DDR 2.
 | |
| 	 * Your milage will vary.
 | |
| 	 */
 | |
| 	cpo = 0;
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
 | |
| 		if (effective_data_rate == 266 || effective_data_rate == 333) {
 | |
| 			cpo = 0x7;		/* READ_LAT + 5/4 */
 | |
| 		} else if (effective_data_rate == 400) {
 | |
| 			cpo = 0x9;		/* READ_LAT + 7/4 */
 | |
| 		} else {
 | |
| 			/* Pure speculation */
 | |
| 			cpo = 0xb;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ddr->timing_cfg_2 = (0
 | |
| 		| ((add_lat & 0x7) << 28)		/* ADD_LAT */
 | |
| 		| ((cpo & 0x1f) << 23)			/* CPO */
 | |
| 		| ((wr_lat & 0x7) << 19)		/* WR_LAT */
 | |
| 		| ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */
 | |
| 		| ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */
 | |
| 		| ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */
 | |
| 		| ((four_act & 0x1f) << 0)		/* FOUR_ACT */
 | |
| 		);
 | |
| 
 | |
| 	debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the Mode Register Set.
 | |
| 	 *
 | |
| 	 * This is nominally part specific, but it appears to be
 | |
| 	 * consistent for all DDR I devices, and for all DDR II devices.
 | |
| 	 *
 | |
| 	 *     caslat must be programmed
 | |
| 	 *     burst length is always 4
 | |
| 	 *     burst type is sequential
 | |
| 	 *
 | |
| 	 * For DDR I:
 | |
| 	 *     operating mode is "normal"
 | |
| 	 *
 | |
| 	 * For DDR II:
 | |
| 	 *     other stuff
 | |
| 	 */
 | |
| 
 | |
| 	mode_caslat = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Table lookup from DDR I or II Device Operation Specs.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		if (1 <= caslat && caslat <= 4) {
 | |
| 			unsigned char mode_caslat_table[4] = {
 | |
| 				0x5,	/* 1.5 clocks */
 | |
| 				0x2,	/* 2.0 clocks */
 | |
| 				0x6,	/* 2.5 clocks */
 | |
| 				0x3	/* 3.0 clocks */
 | |
| 			};
 | |
| 			mode_caslat = mode_caslat_table[caslat - 1];
 | |
| 		} else {
 | |
| 			puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
 | |
| 			     "2.5 and 3.0 clocks are supported.\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		if (2 <= caslat && caslat <= 5) {
 | |
| 			mode_caslat = caslat;
 | |
| 		} else {
 | |
| 			puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
 | |
| 			     "4.0 and 5.0 clocks are supported.\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Encoded Burst Lenght of 4.
 | |
| 	 */
 | |
| 	burst_len = 2;			/* Fiat. */
 | |
| 
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		twr_auto_clk = 0;	/* Historical */
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Determine tCK max in picos.  Grab tWR and convert to picos.
 | |
| 		 * Auto-precharge write recovery is:
 | |
| 		 *	WR = roundup(tWR_ns/tCKmax_ns).
 | |
| 		 *
 | |
| 		 * Ponder: Is twr_auto_clk different than twr_clk?
 | |
| 		 */
 | |
| 		tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
 | |
| 		twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Mode Reg in bits 16 ~ 31,
 | |
| 	 * Extended Mode Reg 1 in bits 0 ~ 15.
 | |
| 	 */
 | |
| 	mode_odt_enable = 0x0;			/* Default disabled */
 | |
| 	if (odt_wr_cfg || odt_rd_cfg) {
 | |
| 		/*
 | |
| 		 * Bits 6 and 2 in Extended MRS(1)
 | |
| 		 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
 | |
| 		 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
 | |
| 		 */
 | |
| 		mode_odt_enable = 0x40;		/* 150 Ohm */
 | |
| 	}
 | |
| 
 | |
| 	ddr->sdram_mode =
 | |
| 		(0
 | |
| 		 | (add_lat << (16 + 3))	/* Additive Latency in EMRS1 */
 | |
| 		 | (mode_odt_enable << 16)	/* ODT Enable in EMRS1 */
 | |
| 		 | (twr_auto_clk << 9)		/* Write Recovery Autopre */
 | |
| 		 | (mode_caslat << 4)		/* caslat */
 | |
| 		 | (burst_len << 0)		/* Burst length */
 | |
| 		 );
 | |
| 
 | |
| 	debug("DDR: sdram_mode   = 0x%08x\n", ddr->sdram_mode);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear EMRS2 and EMRS3.
 | |
| 	 */
 | |
| 	ddr->sdram_mode_2 = 0;
 | |
| 	debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine Refresh Rate.
 | |
| 	 */
 | |
| 	refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set BSTOPRE to 0x100 for page mode
 | |
| 	 * If auto-charge is used, set BSTOPRE = 0
 | |
| 	 */
 | |
| 	ddr->sdram_interval =
 | |
| 	    (0
 | |
| 	     | (refresh_clk & 0x3fff) << 16
 | |
| 	     | 0x100
 | |
| 	     );
 | |
| 	debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
 | |
| 
 | |
| 	/*
 | |
| 	 * Is this an ECC DDR chip?
 | |
| 	 * But don't mess with it if the DDR controller will init mem.
 | |
| 	 */
 | |
| #ifdef CONFIG_DDR_ECC
 | |
| 	if (spd.config == 0x02) {
 | |
| #ifndef CONFIG_ECC_INIT_VIA_DDRCONTROLLER
 | |
| 		ddr->err_disable = 0x0000000d;
 | |
| #endif
 | |
| 		ddr->err_sbe = 0x00ff0000;
 | |
| 	}
 | |
| 
 | |
| 	debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
 | |
| 	debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
 | |
| #endif /* CONFIG_DDR_ECC */
 | |
| 
 | |
| 	asm("sync;isync;msync");
 | |
| 	udelay(500);
 | |
| 
 | |
| 	/*
 | |
| 	 * SDRAM Cfg 2
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * When ODT is enabled, Chap 9 suggests asserting ODT to
 | |
| 	 * internal IOs only during reads.
 | |
| 	 */
 | |
| 	odt_cfg = 0;
 | |
| 	if (odt_rd_cfg | odt_wr_cfg) {
 | |
| 		odt_cfg = 0x2;		/* ODT to IOs during reads */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to use differential DQS with DDR II.
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR) {
 | |
| 		dqs_cfg = 0;		/* No Differential DQS for DDR I */
 | |
| 	} else {
 | |
| 		dqs_cfg = 0x1;		/* Differential DQS for DDR II */
 | |
| 	}
 | |
| 
 | |
| #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
 | |
| 	/*
 | |
| 	 * Use the DDR controller to auto initialize memory.
 | |
| 	 */
 | |
| 	d_init = 1;
 | |
| 	ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
 | |
| 	debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
 | |
| #else
 | |
| 	/*
 | |
| 	 * Memory will be initialized via DMA, or not at all.
 | |
| 	 */
 | |
| 	d_init = 0;
 | |
| #endif
 | |
| 
 | |
| 	ddr->sdram_cfg_2 = (0
 | |
| 			    | (dqs_cfg << 26)	/* Differential DQS */
 | |
| 			    | (odt_cfg << 21)	/* ODT */
 | |
| 			    | (d_init << 4)	/* D_INIT auto init DDR */
 | |
| 			    );
 | |
| 
 | |
| 	debug("DDR: sdram_cfg_2  = 0x%08x\n", ddr->sdram_cfg_2);
 | |
| 
 | |
| 
 | |
| #ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
 | |
| 	/*
 | |
| 	 * Setup the clock control.
 | |
| 	 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
 | |
| 	 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
 | |
| 	 *	0110	3/4 cycle late
 | |
| 	 *	0111	7/8 cycle late
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR)
 | |
| 		clk_adjust = 0x6;
 | |
| 	else
 | |
| 		clk_adjust = 0x7;
 | |
| 
 | |
| 	ddr->sdram_clk_cntl = (0
 | |
| 			       | 0x80000000
 | |
| 			       | (clk_adjust << 23)
 | |
| 			       );
 | |
| 	debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out the settings for the sdram_cfg register.
 | |
| 	 * Build up the entire register in 'sdram_cfg' before writing
 | |
| 	 * since the write into the register will actually enable the
 | |
| 	 * memory controller; all settings must be done before enabling.
 | |
| 	 *
 | |
| 	 * sdram_cfg[0]   = 1 (ddr sdram logic enable)
 | |
| 	 * sdram_cfg[1]   = 1 (self-refresh-enable)
 | |
| 	 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
 | |
| 	 *			010 DDR 1 SDRAM
 | |
| 	 *			011 DDR 2 SDRAM
 | |
| 	 */
 | |
| 	sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
 | |
| 	sdram_cfg = (0
 | |
| 		     | (1 << 31)			/* Enable */
 | |
| 		     | (1 << 30)			/* Self refresh */
 | |
| 		     | (sdram_type << 24)		/* SDRAM type */
 | |
| 		     );
 | |
| 
 | |
| 	/*
 | |
| 	 * sdram_cfg[3] = RD_EN - registered DIMM enable
 | |
| 	 *   A value of 0x26 indicates micron registered DIMMS (micron.com)
 | |
| 	 */
 | |
| 	if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) {
 | |
| 		sdram_cfg |= 0x10000000;		/* RD_EN */
 | |
| 	}
 | |
| 
 | |
| #if defined(CONFIG_DDR_ECC)
 | |
| 	/*
 | |
| 	 * If the user wanted ECC (enabled via sdram_cfg[2])
 | |
| 	 */
 | |
| 	if (spd.config == 0x02) {
 | |
| 		sdram_cfg |= 0x20000000;		/* ECC_EN */
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * REV1 uses 1T timing.
 | |
| 	 * REV2 may use 1T or 2T as configured by the user.
 | |
| 	 */
 | |
| 	{
 | |
| 		uint pvr = get_pvr();
 | |
| 
 | |
| 		if (pvr != PVR_85xx_REV1) {
 | |
| #if defined(CONFIG_DDR_2T_TIMING)
 | |
| 			/*
 | |
| 			 * Enable 2T timing by setting sdram_cfg[16].
 | |
| 			 */
 | |
| 			sdram_cfg |= 0x8000;		/* 2T_EN */
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 200 painful micro-seconds must elapse between
 | |
| 	 * the DDR clock setup and the DDR config enable.
 | |
| 	 */
 | |
| 	udelay(200);
 | |
| 
 | |
| 	/*
 | |
| 	 * Go!
 | |
| 	 */
 | |
| 	ddr->sdram_cfg = sdram_cfg;
 | |
| 
 | |
| 	asm("sync;isync;msync");
 | |
| 	udelay(500);
 | |
| 
 | |
| 	debug("DDR: sdram_cfg   = 0x%08x\n", ddr->sdram_cfg);
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
 | |
| 	/*
 | |
| 	 * Poll until memory is initialized.
 | |
| 	 * 512 Meg at 400 might hit this 200 times or so.
 | |
| 	 */
 | |
| 	while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
 | |
| 		udelay(1000);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out memory size in Megabytes.
 | |
| 	 */
 | |
| 	memsize = n_ranks * rank_density / 0x100000;
 | |
| 
 | |
| 	/*
 | |
| 	 * Establish Local Access Window and TLB mappings for DDR memory.
 | |
| 	 */
 | |
| 	memsize = setup_laws_and_tlbs(memsize);
 | |
| 	if (memsize == 0) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return memsize * 1024 * 1024;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Setup Local Access Window and TLB1 mappings for the requested
 | |
|  * amount of memory.  Returns the amount of memory actually mapped
 | |
|  * (usually the original request size), or 0 on error.
 | |
|  */
 | |
| 
 | |
| static unsigned int
 | |
| setup_laws_and_tlbs(unsigned int memsize)
 | |
| {
 | |
| 	volatile immap_t *immap = (immap_t *)CFG_IMMR;
 | |
| 	volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
 | |
| 	unsigned int tlb_size;
 | |
| 	unsigned int law_size;
 | |
| 	unsigned int ram_tlb_index;
 | |
| 	unsigned int ram_tlb_address;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine size of each TLB1 entry.
 | |
| 	 */
 | |
| 	switch (memsize) {
 | |
| 	case 16:
 | |
| 	case 32:
 | |
| 		tlb_size = BOOKE_PAGESZ_16M;
 | |
| 		break;
 | |
| 	case 64:
 | |
| 	case 128:
 | |
| 		tlb_size = BOOKE_PAGESZ_64M;
 | |
| 		break;
 | |
| 	case 256:
 | |
| 	case 512:
 | |
| 		tlb_size = BOOKE_PAGESZ_256M;
 | |
| 		break;
 | |
| 	case 1024:
 | |
| 	case 2048:
 | |
| 		if (PVR_VER(get_pvr()) > PVR_VER(PVR_85xx))
 | |
| 			tlb_size = BOOKE_PAGESZ_1G;
 | |
| 		else
 | |
| 			tlb_size = BOOKE_PAGESZ_256M;
 | |
| 		break;
 | |
| 	default:
 | |
| 		puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * The memory was not able to be mapped.
 | |
| 		 * Default to a small size.
 | |
| 		 */
 | |
| 		tlb_size = BOOKE_PAGESZ_64M;
 | |
| 		memsize=64;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure DDR TLB1 entries.
 | |
| 	 * Starting at TLB1 8, use no more than 8 TLB1 entries.
 | |
| 	 */
 | |
| 	ram_tlb_index = 8;
 | |
| 	ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
 | |
| 	while (ram_tlb_address < (memsize * 1024 * 1024)
 | |
| 	      && ram_tlb_index < 16) {
 | |
| 		mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0));
 | |
| 		mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size));
 | |
| 		mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
 | |
| 				      0, 0, 0, 0, 0, 0, 0, 0));
 | |
| 		mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
 | |
| 				      0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
 | |
| 		asm volatile("isync;msync;tlbwe;isync");
 | |
| 
 | |
| 		debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0));
 | |
| 		debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size));
 | |
| 		debug("DDR: MAS2=0x%08x\n",
 | |
| 		      TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
 | |
| 				0, 0, 0, 0, 0, 0, 0, 0));
 | |
| 		debug("DDR: MAS3=0x%08x\n",
 | |
| 		      TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
 | |
| 				0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
 | |
| 
 | |
| 		ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
 | |
| 		ram_tlb_index++;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.  Fnord.
 | |
| 	 */
 | |
| 	law_size = 19 + __ilog2(memsize);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up LAWBAR for all of DDR.
 | |
| 	 */
 | |
| 	ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
 | |
| 	ecm->lawar1 = (LAWAR_EN
 | |
| 		       | LAWAR_TRGT_IF_DDR
 | |
| 		       | (LAWAR_SIZE & law_size));
 | |
| 	debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1);
 | |
| 	debug("DDR: LARAR1=0x%08x\n", ecm->lawar1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Confirm that the requested amount of memory was mapped.
 | |
| 	 */
 | |
| 	return memsize;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SPD_EEPROM */
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
 | |
| 
 | |
| /*
 | |
|  * Initialize all of memory for ECC, then enable errors.
 | |
|  */
 | |
| 
 | |
| void
 | |
| ddr_enable_ecc(unsigned int dram_size)
 | |
| {
 | |
| 	uint *p = 0;
 | |
| 	uint i = 0;
 | |
| 	volatile immap_t *immap = (immap_t *)CFG_IMMR;
 | |
| 	volatile ccsr_ddr_t *ddr= &immap->im_ddr;
 | |
| 
 | |
| 	dma_init();
 | |
| 
 | |
| 	for (*p = 0; p < (uint *)(8 * 1024); p++) {
 | |
| 		if (((unsigned int)p & 0x1f) == 0) {
 | |
| 			ppcDcbz((unsigned long) p);
 | |
| 		}
 | |
| 		*p = (unsigned int)CONFIG_MEM_INIT_VALUE;
 | |
| 		if (((unsigned int)p & 0x1c) == 0x1c) {
 | |
| 			ppcDcbf((unsigned long) p);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
 | |
| 	dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
 | |
| 	dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
 | |
| 	dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
 | |
| 	dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
 | |
| 	dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
 | |
| 	dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
 | |
| 	dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
 | |
| 	dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
 | |
| 	dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
 | |
| 
 | |
| 	for (i = 1; i < dram_size / 0x800000; i++) {
 | |
| 		dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable errors for ECC.
 | |
| 	 */
 | |
| 	debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
 | |
| 	ddr->err_disable = 0x00000000;
 | |
| 	asm("sync;isync;msync");
 | |
| 	debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_DDR_ECC  && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */
 |