mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-30 19:48:19 +00:00 
			
		
		
		
	Drop all duplicate newlines. No functional change. Signed-off-by: Marek Vasut <marek.vasut+renesas@mailbox.org>
		
			
				
	
	
		
			1724 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1724 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ******************************************************************
 | |
|  * huff0 huffman decoder,
 | |
|  * part of Finite State Entropy library
 | |
|  * Copyright (c) Yann Collet, Facebook, Inc.
 | |
|  *
 | |
|  *  You can contact the author at :
 | |
|  *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
 | |
|  *
 | |
|  * This source code is licensed under both the BSD-style license (found in the
 | |
|  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 | |
|  * in the COPYING file in the root directory of this source tree).
 | |
|  * You may select, at your option, one of the above-listed licenses.
 | |
| ****************************************************************** */
 | |
| 
 | |
| /* **************************************************************
 | |
| *  Dependencies
 | |
| ****************************************************************/
 | |
| #include "../common/zstd_deps.h"  /* ZSTD_memcpy, ZSTD_memset */
 | |
| #include "../common/compiler.h"
 | |
| #include "../common/bitstream.h"  /* BIT_* */
 | |
| #include "../common/fse.h"        /* to compress headers */
 | |
| #define HUF_STATIC_LINKING_ONLY
 | |
| #include "../common/huf.h"
 | |
| #include "../common/error_private.h"
 | |
| #include "../common/zstd_internal.h"
 | |
| 
 | |
| /* **************************************************************
 | |
| *  Constants
 | |
| ****************************************************************/
 | |
| 
 | |
| #define HUF_DECODER_FAST_TABLELOG 11
 | |
| 
 | |
| /* **************************************************************
 | |
| *  Macros
 | |
| ****************************************************************/
 | |
| 
 | |
| /* These two optional macros force the use one way or another of the two
 | |
|  * Huffman decompression implementations. You can't force in both directions
 | |
|  * at the same time.
 | |
|  */
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1) && \
 | |
|     defined(HUF_FORCE_DECOMPRESS_X2)
 | |
| #error "Cannot force the use of the X1 and X2 decoders at the same time!"
 | |
| #endif
 | |
| 
 | |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 && DYNAMIC_BMI2
 | |
| # define HUF_ASM_X86_64_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
 | |
| #else
 | |
| # define HUF_ASM_X86_64_BMI2_ATTRS
 | |
| #endif
 | |
| 
 | |
| #define HUF_EXTERN_C
 | |
| #define HUF_ASM_DECL HUF_EXTERN_C
 | |
| 
 | |
| #if DYNAMIC_BMI2 || (ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
 | |
| # define HUF_NEED_BMI2_FUNCTION 1
 | |
| #else
 | |
| # define HUF_NEED_BMI2_FUNCTION 0
 | |
| #endif
 | |
| 
 | |
| #if !(ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
 | |
| # define HUF_NEED_DEFAULT_FUNCTION 1
 | |
| #else
 | |
| # define HUF_NEED_DEFAULT_FUNCTION 0
 | |
| #endif
 | |
| 
 | |
| /* **************************************************************
 | |
| *  Error Management
 | |
| ****************************************************************/
 | |
| #define HUF_isError ERR_isError
 | |
| 
 | |
| /* **************************************************************
 | |
| *  Byte alignment for workSpace management
 | |
| ****************************************************************/
 | |
| #define HUF_ALIGN(x, a)         HUF_ALIGN_MASK((x), (a) - 1)
 | |
| #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
 | |
| 
 | |
| /* **************************************************************
 | |
| *  BMI2 Variant Wrappers
 | |
| ****************************************************************/
 | |
| #if DYNAMIC_BMI2
 | |
| 
 | |
| #define HUF_DGEN(fn)                                                        \
 | |
|                                                                             \
 | |
|     static size_t fn##_default(                                             \
 | |
|                   void* dst,  size_t dstSize,                               \
 | |
|             const void* cSrc, size_t cSrcSize,                              \
 | |
|             const HUF_DTable* DTable)                                       \
 | |
|     {                                                                       \
 | |
|         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
 | |
|     }                                                                       \
 | |
|                                                                             \
 | |
|     static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2(                          \
 | |
|                   void* dst,  size_t dstSize,                               \
 | |
|             const void* cSrc, size_t cSrcSize,                              \
 | |
|             const HUF_DTable* DTable)                                       \
 | |
|     {                                                                       \
 | |
|         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
 | |
|     }                                                                       \
 | |
|                                                                             \
 | |
|     static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
 | |
|                      size_t cSrcSize, HUF_DTable const* DTable, int bmi2)   \
 | |
|     {                                                                       \
 | |
|         if (bmi2) {                                                         \
 | |
|             return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);         \
 | |
|         }                                                                   \
 | |
|         return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable);          \
 | |
|     }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define HUF_DGEN(fn)                                                        \
 | |
|     static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
 | |
|                      size_t cSrcSize, HUF_DTable const* DTable, int bmi2)   \
 | |
|     {                                                                       \
 | |
|         (void)bmi2;                                                         \
 | |
|         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*-***************************/
 | |
| /*  generic DTableDesc       */
 | |
| /*-***************************/
 | |
| typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
 | |
| 
 | |
| static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
 | |
| {
 | |
|     DTableDesc dtd;
 | |
|     ZSTD_memcpy(&dtd, table, sizeof(dtd));
 | |
|     return dtd;
 | |
| }
 | |
| 
 | |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2
 | |
| 
 | |
| static size_t HUF_initDStream(BYTE const* ip) {
 | |
|     BYTE const lastByte = ip[7];
 | |
|     size_t const bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
 | |
|     size_t const value = MEM_readLEST(ip) | 1;
 | |
|     assert(bitsConsumed <= 8);
 | |
|     return value << bitsConsumed;
 | |
| }
 | |
| typedef struct {
 | |
|     BYTE const* ip[4];
 | |
|     BYTE* op[4];
 | |
|     U64 bits[4];
 | |
|     void const* dt;
 | |
|     BYTE const* ilimit;
 | |
|     BYTE* oend;
 | |
|     BYTE const* iend[4];
 | |
| } HUF_DecompressAsmArgs;
 | |
| 
 | |
| /*
 | |
|  * Initializes args for the asm decoding loop.
 | |
|  * @returns 0 on success
 | |
|  *          1 if the fallback implementation should be used.
 | |
|  *          Or an error code on failure.
 | |
|  */
 | |
| static size_t HUF_DecompressAsmArgs_init(HUF_DecompressAsmArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
 | |
| {
 | |
|     void const* dt = DTable + 1;
 | |
|     U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
 | |
| 
 | |
|     const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
 | |
| 
 | |
|     BYTE* const oend = (BYTE*)dst + dstSize;
 | |
| 
 | |
|     /* The following condition is false on x32 platform,
 | |
|      * but HUF_asm is not compatible with this ABI */
 | |
|     if (!(MEM_isLittleEndian() && !MEM_32bits())) return 1;
 | |
| 
 | |
|     /* strict minimum : jump table + 1 byte per stream */
 | |
|     if (srcSize < 10)
 | |
|         return ERROR(corruption_detected);
 | |
| 
 | |
|     /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
 | |
|      * If table log is not correct at this point, fallback to the old decoder.
 | |
|      * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
 | |
|      */
 | |
|     if (dtLog != HUF_DECODER_FAST_TABLELOG)
 | |
|         return 1;
 | |
| 
 | |
|     /* Read the jump table. */
 | |
|     {
 | |
|         const BYTE* const istart = (const BYTE*)src;
 | |
|         size_t const length1 = MEM_readLE16(istart);
 | |
|         size_t const length2 = MEM_readLE16(istart+2);
 | |
|         size_t const length3 = MEM_readLE16(istart+4);
 | |
|         size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
 | |
|         args->iend[0] = istart + 6;  /* jumpTable */
 | |
|         args->iend[1] = args->iend[0] + length1;
 | |
|         args->iend[2] = args->iend[1] + length2;
 | |
|         args->iend[3] = args->iend[2] + length3;
 | |
| 
 | |
|         /* HUF_initDStream() requires this, and this small of an input
 | |
|          * won't benefit from the ASM loop anyways.
 | |
|          * length1 must be >= 16 so that ip[0] >= ilimit before the loop
 | |
|          * starts.
 | |
|          */
 | |
|         if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
 | |
|             return 1;
 | |
|         if (length4 > srcSize) return ERROR(corruption_detected);   /* overflow */
 | |
|     }
 | |
|     /* ip[] contains the position that is currently loaded into bits[]. */
 | |
|     args->ip[0] = args->iend[1] - sizeof(U64);
 | |
|     args->ip[1] = args->iend[2] - sizeof(U64);
 | |
|     args->ip[2] = args->iend[3] - sizeof(U64);
 | |
|     args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
 | |
| 
 | |
|     /* op[] contains the output pointers. */
 | |
|     args->op[0] = (BYTE*)dst;
 | |
|     args->op[1] = args->op[0] + (dstSize+3)/4;
 | |
|     args->op[2] = args->op[1] + (dstSize+3)/4;
 | |
|     args->op[3] = args->op[2] + (dstSize+3)/4;
 | |
| 
 | |
|     /* No point to call the ASM loop for tiny outputs. */
 | |
|     if (args->op[3] >= oend)
 | |
|         return 1;
 | |
| 
 | |
|     /* bits[] is the bit container.
 | |
|         * It is read from the MSB down to the LSB.
 | |
|         * It is shifted left as it is read, and zeros are
 | |
|         * shifted in. After the lowest valid bit a 1 is
 | |
|         * set, so that CountTrailingZeros(bits[]) can be used
 | |
|         * to count how many bits we've consumed.
 | |
|         */
 | |
|     args->bits[0] = HUF_initDStream(args->ip[0]);
 | |
|     args->bits[1] = HUF_initDStream(args->ip[1]);
 | |
|     args->bits[2] = HUF_initDStream(args->ip[2]);
 | |
|     args->bits[3] = HUF_initDStream(args->ip[3]);
 | |
| 
 | |
|     /* If ip[] >= ilimit, it is guaranteed to be safe to
 | |
|         * reload bits[]. It may be beyond its section, but is
 | |
|         * guaranteed to be valid (>= istart).
 | |
|         */
 | |
|     args->ilimit = ilimit;
 | |
| 
 | |
|     args->oend = oend;
 | |
|     args->dt = dt;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressAsmArgs const* args, int stream, BYTE* segmentEnd)
 | |
| {
 | |
|     /* Validate that we haven't overwritten. */
 | |
|     if (args->op[stream] > segmentEnd)
 | |
|         return ERROR(corruption_detected);
 | |
|     /* Validate that we haven't read beyond iend[].
 | |
|         * Note that ip[] may be < iend[] because the MSB is
 | |
|         * the next bit to read, and we may have consumed 100%
 | |
|         * of the stream, so down to iend[i] - 8 is valid.
 | |
|         */
 | |
|     if (args->ip[stream] < args->iend[stream] - 8)
 | |
|         return ERROR(corruption_detected);
 | |
| 
 | |
|     /* Construct the BIT_DStream_t. */
 | |
|     bit->bitContainer = MEM_readLE64(args->ip[stream]);
 | |
|     bit->bitsConsumed = ZSTD_countTrailingZeros((size_t)args->bits[stream]);
 | |
|     bit->start = (const char*)args->iend[0];
 | |
|     bit->limitPtr = bit->start + sizeof(size_t);
 | |
|     bit->ptr = (const char*)args->ip[stream];
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef HUF_FORCE_DECOMPRESS_X2
 | |
| 
 | |
| /*-***************************/
 | |
| /*  single-symbol decoding   */
 | |
| /*-***************************/
 | |
| typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1;   /* single-symbol decoding */
 | |
| 
 | |
| /*
 | |
|  * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
 | |
|  * a time.
 | |
|  */
 | |
| static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
 | |
|     U64 D4;
 | |
|     if (MEM_isLittleEndian()) {
 | |
|         D4 = (symbol << 8) + nbBits;
 | |
|     } else {
 | |
|         D4 = symbol + (nbBits << 8);
 | |
|     }
 | |
|     D4 *= 0x0001000100010001ULL;
 | |
|     return D4;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase the tableLog to targetTableLog and rescales the stats.
 | |
|  * If tableLog > targetTableLog this is a no-op.
 | |
|  * @returns New tableLog
 | |
|  */
 | |
| static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
 | |
| {
 | |
|     if (tableLog > targetTableLog)
 | |
|         return tableLog;
 | |
|     if (tableLog < targetTableLog) {
 | |
|         U32 const scale = targetTableLog - tableLog;
 | |
|         U32 s;
 | |
|         /* Increase the weight for all non-zero probability symbols by scale. */
 | |
|         for (s = 0; s < nbSymbols; ++s) {
 | |
|             huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
 | |
|         }
 | |
|         /* Update rankVal to reflect the new weights.
 | |
|          * All weights except 0 get moved to weight + scale.
 | |
|          * Weights [1, scale] are empty.
 | |
|          */
 | |
|         for (s = targetTableLog; s > scale; --s) {
 | |
|             rankVal[s] = rankVal[s - scale];
 | |
|         }
 | |
|         for (s = scale; s > 0; --s) {
 | |
|             rankVal[s] = 0;
 | |
|         }
 | |
|     }
 | |
|     return targetTableLog;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|         U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
 | |
|         U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
 | |
|         U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
 | |
|         BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
 | |
|         BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
 | |
| } HUF_ReadDTableX1_Workspace;
 | |
| 
 | |
| size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
 | |
| {
 | |
|     return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2)
 | |
| {
 | |
|     U32 tableLog = 0;
 | |
|     U32 nbSymbols = 0;
 | |
|     size_t iSize;
 | |
|     void* const dtPtr = DTable + 1;
 | |
|     HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
 | |
|     HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
 | |
| 
 | |
|     DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
 | |
|     if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
 | |
| 
 | |
|     DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
 | |
|     /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */   /* is not necessary, even though some analyzer complain ... */
 | |
| 
 | |
|     iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2);
 | |
|     if (HUF_isError(iSize)) return iSize;
 | |
| 
 | |
|     /* Table header */
 | |
|     {   DTableDesc dtd = HUF_getDTableDesc(DTable);
 | |
|         U32 const maxTableLog = dtd.maxTableLog + 1;
 | |
|         U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
 | |
|         tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
 | |
|         if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge);   /* DTable too small, Huffman tree cannot fit in */
 | |
|         dtd.tableType = 0;
 | |
|         dtd.tableLog = (BYTE)tableLog;
 | |
|         ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
 | |
|     }
 | |
| 
 | |
|     /* Compute symbols and rankStart given rankVal:
 | |
|      *
 | |
|      * rankVal already contains the number of values of each weight.
 | |
|      *
 | |
|      * symbols contains the symbols ordered by weight. First are the rankVal[0]
 | |
|      * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
 | |
|      * symbols[0] is filled (but unused) to avoid a branch.
 | |
|      *
 | |
|      * rankStart contains the offset where each rank belongs in the DTable.
 | |
|      * rankStart[0] is not filled because there are no entries in the table for
 | |
|      * weight 0.
 | |
|      */
 | |
|     {
 | |
|         int n;
 | |
|         int nextRankStart = 0;
 | |
|         int const unroll = 4;
 | |
|         int const nLimit = (int)nbSymbols - unroll + 1;
 | |
|         for (n=0; n<(int)tableLog+1; n++) {
 | |
|             U32 const curr = nextRankStart;
 | |
|             nextRankStart += wksp->rankVal[n];
 | |
|             wksp->rankStart[n] = curr;
 | |
|         }
 | |
|         for (n=0; n < nLimit; n += unroll) {
 | |
|             int u;
 | |
|             for (u=0; u < unroll; ++u) {
 | |
|                 size_t const w = wksp->huffWeight[n+u];
 | |
|                 wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
 | |
|             }
 | |
|         }
 | |
|         for (; n < (int)nbSymbols; ++n) {
 | |
|             size_t const w = wksp->huffWeight[n];
 | |
|             wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* fill DTable
 | |
|      * We fill all entries of each weight in order.
 | |
|      * That way length is a constant for each iteration of the outer loop.
 | |
|      * We can switch based on the length to a different inner loop which is
 | |
|      * optimized for that particular case.
 | |
|      */
 | |
|     {
 | |
|         U32 w;
 | |
|         int symbol=wksp->rankVal[0];
 | |
|         int rankStart=0;
 | |
|         for (w=1; w<tableLog+1; ++w) {
 | |
|             int const symbolCount = wksp->rankVal[w];
 | |
|             int const length = (1 << w) >> 1;
 | |
|             int uStart = rankStart;
 | |
|             BYTE const nbBits = (BYTE)(tableLog + 1 - w);
 | |
|             int s;
 | |
|             int u;
 | |
|             switch (length) {
 | |
|             case 1:
 | |
|                 for (s=0; s<symbolCount; ++s) {
 | |
|                     HUF_DEltX1 D;
 | |
|                     D.byte = wksp->symbols[symbol + s];
 | |
|                     D.nbBits = nbBits;
 | |
|                     dt[uStart] = D;
 | |
|                     uStart += 1;
 | |
|                 }
 | |
|                 break;
 | |
|             case 2:
 | |
|                 for (s=0; s<symbolCount; ++s) {
 | |
|                     HUF_DEltX1 D;
 | |
|                     D.byte = wksp->symbols[symbol + s];
 | |
|                     D.nbBits = nbBits;
 | |
|                     dt[uStart+0] = D;
 | |
|                     dt[uStart+1] = D;
 | |
|                     uStart += 2;
 | |
|                 }
 | |
|                 break;
 | |
|             case 4:
 | |
|                 for (s=0; s<symbolCount; ++s) {
 | |
|                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
 | |
|                     MEM_write64(dt + uStart, D4);
 | |
|                     uStart += 4;
 | |
|                 }
 | |
|                 break;
 | |
|             case 8:
 | |
|                 for (s=0; s<symbolCount; ++s) {
 | |
|                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
 | |
|                     MEM_write64(dt + uStart, D4);
 | |
|                     MEM_write64(dt + uStart + 4, D4);
 | |
|                     uStart += 8;
 | |
|                 }
 | |
|                 break;
 | |
|             default:
 | |
|                 for (s=0; s<symbolCount; ++s) {
 | |
|                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
 | |
|                     for (u=0; u < length; u += 16) {
 | |
|                         MEM_write64(dt + uStart + u + 0, D4);
 | |
|                         MEM_write64(dt + uStart + u + 4, D4);
 | |
|                         MEM_write64(dt + uStart + u + 8, D4);
 | |
|                         MEM_write64(dt + uStart + u + 12, D4);
 | |
|                     }
 | |
|                     assert(u == length);
 | |
|                     uStart += length;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|             symbol += symbolCount;
 | |
|             rankStart += symbolCount * length;
 | |
|         }
 | |
|     }
 | |
|     return iSize;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE BYTE
 | |
| HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
 | |
| {
 | |
|     size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
 | |
|     BYTE const c = dt[val].byte;
 | |
|     BIT_skipBits(Dstream, dt[val].nbBits);
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
 | |
|     *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr)  \
 | |
|     if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
 | |
|         HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits()) \
 | |
|         HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
 | |
| 
 | |
| HINT_INLINE size_t
 | |
| HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
 | |
| {
 | |
|     BYTE* const pStart = p;
 | |
| 
 | |
|     /* up to 4 symbols at a time */
 | |
|     if ((pEnd - p) > 3) {
 | |
|         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
 | |
|             HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
 | |
|             HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
 | |
|             HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
 | |
|             HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
 | |
|         }
 | |
|     } else {
 | |
|         BIT_reloadDStream(bitDPtr);
 | |
|     }
 | |
| 
 | |
|     /* [0-3] symbols remaining */
 | |
|     if (MEM_32bits())
 | |
|         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
 | |
|             HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
 | |
| 
 | |
|     /* no more data to retrieve from bitstream, no need to reload */
 | |
|     while (p < pEnd)
 | |
|         HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
 | |
| 
 | |
|     return pEnd-pStart;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE size_t
 | |
| HUF_decompress1X1_usingDTable_internal_body(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     BYTE* op = (BYTE*)dst;
 | |
|     BYTE* const oend = op + dstSize;
 | |
|     const void* dtPtr = DTable + 1;
 | |
|     const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
 | |
|     BIT_DStream_t bitD;
 | |
|     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 | |
|     U32 const dtLog = dtd.tableLog;
 | |
| 
 | |
|     CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
 | |
| 
 | |
|     HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
 | |
| 
 | |
|     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
 | |
| 
 | |
|     return dstSize;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE size_t
 | |
| HUF_decompress4X1_usingDTable_internal_body(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     /* Check */
 | |
|     if (cSrcSize < 10) return ERROR(corruption_detected);  /* strict minimum : jump table + 1 byte per stream */
 | |
| 
 | |
|     {   const BYTE* const istart = (const BYTE*) cSrc;
 | |
|         BYTE* const ostart = (BYTE*) dst;
 | |
|         BYTE* const oend = ostart + dstSize;
 | |
|         BYTE* const olimit = oend - 3;
 | |
|         const void* const dtPtr = DTable + 1;
 | |
|         const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
 | |
| 
 | |
|         /* Init */
 | |
|         BIT_DStream_t bitD1;
 | |
|         BIT_DStream_t bitD2;
 | |
|         BIT_DStream_t bitD3;
 | |
|         BIT_DStream_t bitD4;
 | |
|         size_t const length1 = MEM_readLE16(istart);
 | |
|         size_t const length2 = MEM_readLE16(istart+2);
 | |
|         size_t const length3 = MEM_readLE16(istart+4);
 | |
|         size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
 | |
|         const BYTE* const istart1 = istart + 6;  /* jumpTable */
 | |
|         const BYTE* const istart2 = istart1 + length1;
 | |
|         const BYTE* const istart3 = istart2 + length2;
 | |
|         const BYTE* const istart4 = istart3 + length3;
 | |
|         const size_t segmentSize = (dstSize+3) / 4;
 | |
|         BYTE* const opStart2 = ostart + segmentSize;
 | |
|         BYTE* const opStart3 = opStart2 + segmentSize;
 | |
|         BYTE* const opStart4 = opStart3 + segmentSize;
 | |
|         BYTE* op1 = ostart;
 | |
|         BYTE* op2 = opStart2;
 | |
|         BYTE* op3 = opStart3;
 | |
|         BYTE* op4 = opStart4;
 | |
|         DTableDesc const dtd = HUF_getDTableDesc(DTable);
 | |
|         U32 const dtLog = dtd.tableLog;
 | |
|         U32 endSignal = 1;
 | |
| 
 | |
|         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
 | |
|         if (opStart4 > oend) return ERROR(corruption_detected);      /* overflow */
 | |
|         CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
 | |
|         CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
 | |
|         CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
 | |
|         CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
 | |
| 
 | |
|         /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
 | |
|         if ((size_t)(oend - op4) >= sizeof(size_t)) {
 | |
|             for ( ; (endSignal) & (op4 < olimit) ; ) {
 | |
|                 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
 | |
|                 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
 | |
|                 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
 | |
|                 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
 | |
|                 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* check corruption */
 | |
|         /* note : should not be necessary : op# advance in lock step, and we control op4.
 | |
|          *        but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
 | |
|         if (op1 > opStart2) return ERROR(corruption_detected);
 | |
|         if (op2 > opStart3) return ERROR(corruption_detected);
 | |
|         if (op3 > opStart4) return ERROR(corruption_detected);
 | |
|         /* note : op4 supposed already verified within main loop */
 | |
| 
 | |
|         /* finish bitStreams one by one */
 | |
|         HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
 | |
|         HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
 | |
|         HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
 | |
|         HUF_decodeStreamX1(op4, &bitD4, oend,     dt, dtLog);
 | |
| 
 | |
|         /* check */
 | |
|         { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
 | |
|           if (!endCheck) return ERROR(corruption_detected); }
 | |
| 
 | |
|         /* decoded size */
 | |
|         return dstSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if HUF_NEED_BMI2_FUNCTION
 | |
| static BMI2_TARGET_ATTRIBUTE
 | |
| size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
 | |
|                     size_t cSrcSize, HUF_DTable const* DTable) {
 | |
|     return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if HUF_NEED_DEFAULT_FUNCTION
 | |
| static
 | |
| size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
 | |
|                     size_t cSrcSize, HUF_DTable const* DTable) {
 | |
|     return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2
 | |
| 
 | |
| HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
 | |
| 
 | |
| static HUF_ASM_X86_64_BMI2_ATTRS
 | |
| size_t
 | |
| HUF_decompress4X1_usingDTable_internal_bmi2_asm(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     void const* dt = DTable + 1;
 | |
|     const BYTE* const iend = (const BYTE*)cSrc + 6;
 | |
|     BYTE* const oend = (BYTE*)dst + dstSize;
 | |
|     HUF_DecompressAsmArgs args;
 | |
|     {
 | |
|         size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
 | |
|         FORWARD_IF_ERROR(ret, "Failed to init asm args");
 | |
|         if (ret != 0)
 | |
|             return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
|     }
 | |
| 
 | |
|     assert(args.ip[0] >= args.ilimit);
 | |
|     HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(&args);
 | |
| 
 | |
|     /* Our loop guarantees that ip[] >= ilimit and that we haven't
 | |
|     * overwritten any op[].
 | |
|     */
 | |
|     assert(args.ip[0] >= iend);
 | |
|     assert(args.ip[1] >= iend);
 | |
|     assert(args.ip[2] >= iend);
 | |
|     assert(args.ip[3] >= iend);
 | |
|     assert(args.op[3] <= oend);
 | |
|     (void)iend;
 | |
| 
 | |
|     /* finish bit streams one by one. */
 | |
|     {
 | |
|         size_t const segmentSize = (dstSize+3) / 4;
 | |
|         BYTE* segmentEnd = (BYTE*)dst;
 | |
|         int i;
 | |
|         for (i = 0; i < 4; ++i) {
 | |
|             BIT_DStream_t bit;
 | |
|             if (segmentSize <= (size_t)(oend - segmentEnd))
 | |
|                 segmentEnd += segmentSize;
 | |
|             else
 | |
|                 segmentEnd = oend;
 | |
|             FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
 | |
|             /* Decompress and validate that we've produced exactly the expected length. */
 | |
|             args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
 | |
|             if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* decoded size */
 | |
|     return dstSize;
 | |
| }
 | |
| #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
 | |
| 
 | |
| typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
 | |
|                                                const void *cSrc,
 | |
|                                                size_t cSrcSize,
 | |
|                                                const HUF_DTable *DTable);
 | |
| 
 | |
| HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
 | |
| 
 | |
| static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
 | |
|                     size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
 | |
| {
 | |
| #if DYNAMIC_BMI2
 | |
|     if (bmi2) {
 | |
| # if ZSTD_ENABLE_ASM_X86_64_BMI2
 | |
|         return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| # else
 | |
|         return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| # endif
 | |
|     }
 | |
| #else
 | |
|     (void)bmi2;
 | |
| #endif
 | |
| 
 | |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
 | |
|     return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| #else
 | |
|     return HUF_decompress4X1_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X1_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     DTableDesc dtd = HUF_getDTableDesc(DTable);
 | |
|     if (dtd.tableType != 0) return ERROR(GENERIC);
 | |
|     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
 | |
|                                    const void* cSrc, size_t cSrcSize,
 | |
|                                    void* workSpace, size_t wkspSize)
 | |
| {
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize; cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress4X1_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     DTableDesc dtd = HUF_getDTableDesc(DTable);
 | |
|     if (dtd.tableType != 0) return ERROR(GENERIC);
 | |
|     return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
 | |
|                                    const void* cSrc, size_t cSrcSize,
 | |
|                                    void* workSpace, size_t wkspSize, int bmi2)
 | |
| {
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize; cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
 | |
|                                    const void* cSrc, size_t cSrcSize,
 | |
|                                    void* workSpace, size_t wkspSize)
 | |
| {
 | |
|     return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
 | |
| }
 | |
| 
 | |
| #endif /* HUF_FORCE_DECOMPRESS_X2 */
 | |
| 
 | |
| #ifndef HUF_FORCE_DECOMPRESS_X1
 | |
| 
 | |
| /* *************************/
 | |
| /* double-symbols decoding */
 | |
| /* *************************/
 | |
| 
 | |
| typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2;  /* double-symbols decoding */
 | |
| typedef struct { BYTE symbol; } sortedSymbol_t;
 | |
| typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
 | |
| typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
 | |
| 
 | |
| /*
 | |
|  * Constructs a HUF_DEltX2 in a U32.
 | |
|  */
 | |
| static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
 | |
| {
 | |
|     U32 seq;
 | |
|     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
 | |
|     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
 | |
|     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
 | |
|     DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
 | |
|     if (MEM_isLittleEndian()) {
 | |
|         seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
 | |
|         return seq + (nbBits << 16) + ((U32)level << 24);
 | |
|     } else {
 | |
|         seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
 | |
|         return (seq << 16) + (nbBits << 8) + (U32)level;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructs a HUF_DEltX2.
 | |
|  */
 | |
| static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
 | |
| {
 | |
|     HUF_DEltX2 DElt;
 | |
|     U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
 | |
|     DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
 | |
|     ZSTD_memcpy(&DElt, &val, sizeof(val));
 | |
|     return DElt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructs 2 HUF_DEltX2s and packs them into a U64.
 | |
|  */
 | |
| static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
 | |
| {
 | |
|     U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
 | |
|     return (U64)DElt + ((U64)DElt << 32);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fills the DTable rank with all the symbols from [begin, end) that are each
 | |
|  * nbBits long.
 | |
|  *
 | |
|  * @param DTableRank The start of the rank in the DTable.
 | |
|  * @param begin The first symbol to fill (inclusive).
 | |
|  * @param end The last symbol to fill (exclusive).
 | |
|  * @param nbBits Each symbol is nbBits long.
 | |
|  * @param tableLog The table log.
 | |
|  * @param baseSeq If level == 1 { 0 } else { the first level symbol }
 | |
|  * @param level The level in the table. Must be 1 or 2.
 | |
|  */
 | |
| static void HUF_fillDTableX2ForWeight(
 | |
|     HUF_DEltX2* DTableRank,
 | |
|     sortedSymbol_t const* begin, sortedSymbol_t const* end,
 | |
|     U32 nbBits, U32 tableLog,
 | |
|     U16 baseSeq, int const level)
 | |
| {
 | |
|     U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
 | |
|     const sortedSymbol_t* ptr;
 | |
|     assert(level >= 1 && level <= 2);
 | |
|     switch (length) {
 | |
|     case 1:
 | |
|         for (ptr = begin; ptr != end; ++ptr) {
 | |
|             HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
 | |
|             *DTableRank++ = DElt;
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|         for (ptr = begin; ptr != end; ++ptr) {
 | |
|             HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
 | |
|             DTableRank[0] = DElt;
 | |
|             DTableRank[1] = DElt;
 | |
|             DTableRank += 2;
 | |
|         }
 | |
|         break;
 | |
|     case 4:
 | |
|         for (ptr = begin; ptr != end; ++ptr) {
 | |
|             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
 | |
|             ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
 | |
|             ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
 | |
|             DTableRank += 4;
 | |
|         }
 | |
|         break;
 | |
|     case 8:
 | |
|         for (ptr = begin; ptr != end; ++ptr) {
 | |
|             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
 | |
|             ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
 | |
|             ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
 | |
|             ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
 | |
|             ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
 | |
|             DTableRank += 8;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         for (ptr = begin; ptr != end; ++ptr) {
 | |
|             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
 | |
|             HUF_DEltX2* const DTableRankEnd = DTableRank + length;
 | |
|             for (; DTableRank != DTableRankEnd; DTableRank += 8) {
 | |
|                 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
 | |
|                 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
 | |
|                 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
 | |
|                 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* HUF_fillDTableX2Level2() :
 | |
|  * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
 | |
| static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
 | |
|                            const U32* rankVal, const int minWeight, const int maxWeight1,
 | |
|                            const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
 | |
|                            U32 nbBitsBaseline, U16 baseSeq)
 | |
| {
 | |
|     /* Fill skipped values (all positions up to rankVal[minWeight]).
 | |
|      * These are positions only get a single symbol because the combined weight
 | |
|      * is too large.
 | |
|      */
 | |
|     if (minWeight>1) {
 | |
|         U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
 | |
|         U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
 | |
|         int const skipSize = rankVal[minWeight];
 | |
|         assert(length > 1);
 | |
|         assert((U32)skipSize < length);
 | |
|         switch (length) {
 | |
|         case 2:
 | |
|             assert(skipSize == 1);
 | |
|             ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
 | |
|             break;
 | |
|         case 4:
 | |
|             assert(skipSize <= 4);
 | |
|             ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
 | |
|             ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
 | |
|             break;
 | |
|         default:
 | |
|             {
 | |
|                 int i;
 | |
|                 for (i = 0; i < skipSize; i += 8) {
 | |
|                     ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
 | |
|                     ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
 | |
|                     ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
 | |
|                     ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Fill each of the second level symbols by weight. */
 | |
|     {
 | |
|         int w;
 | |
|         for (w = minWeight; w < maxWeight1; ++w) {
 | |
|             int const begin = rankStart[w];
 | |
|             int const end = rankStart[w+1];
 | |
|             U32 const nbBits = nbBitsBaseline - w;
 | |
|             U32 const totalBits = nbBits + consumedBits;
 | |
|             HUF_fillDTableX2ForWeight(
 | |
|                 DTable + rankVal[w],
 | |
|                 sortedSymbols + begin, sortedSymbols + end,
 | |
|                 totalBits, targetLog,
 | |
|                 baseSeq, /* level */ 2);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
 | |
|                            const sortedSymbol_t* sortedList,
 | |
|                            const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
 | |
|                            const U32 nbBitsBaseline)
 | |
| {
 | |
|     U32* const rankVal = rankValOrigin[0];
 | |
|     const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
 | |
|     const U32 minBits  = nbBitsBaseline - maxWeight;
 | |
|     int w;
 | |
|     int const wEnd = (int)maxWeight + 1;
 | |
| 
 | |
|     /* Fill DTable in order of weight. */
 | |
|     for (w = 1; w < wEnd; ++w) {
 | |
|         int const begin = (int)rankStart[w];
 | |
|         int const end = (int)rankStart[w+1];
 | |
|         U32 const nbBits = nbBitsBaseline - w;
 | |
| 
 | |
|         if (targetLog-nbBits >= minBits) {
 | |
|             /* Enough room for a second symbol. */
 | |
|             int start = rankVal[w];
 | |
|             U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
 | |
|             int minWeight = nbBits + scaleLog;
 | |
|             int s;
 | |
|             if (minWeight < 1) minWeight = 1;
 | |
|             /* Fill the DTable for every symbol of weight w.
 | |
|              * These symbols get at least 1 second symbol.
 | |
|              */
 | |
|             for (s = begin; s != end; ++s) {
 | |
|                 HUF_fillDTableX2Level2(
 | |
|                     DTable + start, targetLog, nbBits,
 | |
|                     rankValOrigin[nbBits], minWeight, wEnd,
 | |
|                     sortedList, rankStart,
 | |
|                     nbBitsBaseline, sortedList[s].symbol);
 | |
|                 start += length;
 | |
|             }
 | |
|         } else {
 | |
|             /* Only a single symbol. */
 | |
|             HUF_fillDTableX2ForWeight(
 | |
|                 DTable + rankVal[w],
 | |
|                 sortedList + begin, sortedList + end,
 | |
|                 nbBits, targetLog,
 | |
|                 /* baseSeq */ 0, /* level */ 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     rankValCol_t rankVal[HUF_TABLELOG_MAX];
 | |
|     U32 rankStats[HUF_TABLELOG_MAX + 1];
 | |
|     U32 rankStart0[HUF_TABLELOG_MAX + 3];
 | |
|     sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
 | |
|     BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
 | |
|     U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
 | |
| } HUF_ReadDTableX2_Workspace;
 | |
| 
 | |
| size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
 | |
|                        const void* src, size_t srcSize,
 | |
|                              void* workSpace, size_t wkspSize)
 | |
| {
 | |
|     return HUF_readDTableX2_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable,
 | |
|                        const void* src, size_t srcSize,
 | |
|                              void* workSpace, size_t wkspSize, int bmi2)
 | |
| {
 | |
|     U32 tableLog, maxW, nbSymbols;
 | |
|     DTableDesc dtd = HUF_getDTableDesc(DTable);
 | |
|     U32 maxTableLog = dtd.maxTableLog;
 | |
|     size_t iSize;
 | |
|     void* dtPtr = DTable+1;   /* force compiler to avoid strict-aliasing */
 | |
|     HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
 | |
|     U32 *rankStart;
 | |
| 
 | |
|     HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
 | |
| 
 | |
|     if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
 | |
| 
 | |
|     rankStart = wksp->rankStart0 + 1;
 | |
|     ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
 | |
|     ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
 | |
| 
 | |
|     DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable));   /* if compiler fails here, assertion is wrong */
 | |
|     if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
 | |
|     /* ZSTD_memset(weightList, 0, sizeof(weightList)); */  /* is not necessary, even though some analyzer complain ... */
 | |
| 
 | |
|     iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), bmi2);
 | |
|     if (HUF_isError(iSize)) return iSize;
 | |
| 
 | |
|     /* check result */
 | |
|     if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */
 | |
|     if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
 | |
| 
 | |
|     /* find maxWeight */
 | |
|     for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */
 | |
| 
 | |
|     /* Get start index of each weight */
 | |
|     {   U32 w, nextRankStart = 0;
 | |
|         for (w=1; w<maxW+1; w++) {
 | |
|             U32 curr = nextRankStart;
 | |
|             nextRankStart += wksp->rankStats[w];
 | |
|             rankStart[w] = curr;
 | |
|         }
 | |
|         rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
 | |
|         rankStart[maxW+1] = nextRankStart;
 | |
|     }
 | |
| 
 | |
|     /* sort symbols by weight */
 | |
|     {   U32 s;
 | |
|         for (s=0; s<nbSymbols; s++) {
 | |
|             U32 const w = wksp->weightList[s];
 | |
|             U32 const r = rankStart[w]++;
 | |
|             wksp->sortedSymbol[r].symbol = (BYTE)s;
 | |
|         }
 | |
|         rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
 | |
|     }
 | |
| 
 | |
|     /* Build rankVal */
 | |
|     {   U32* const rankVal0 = wksp->rankVal[0];
 | |
|         {   int const rescale = (maxTableLog-tableLog) - 1;   /* tableLog <= maxTableLog */
 | |
|             U32 nextRankVal = 0;
 | |
|             U32 w;
 | |
|             for (w=1; w<maxW+1; w++) {
 | |
|                 U32 curr = nextRankVal;
 | |
|                 nextRankVal += wksp->rankStats[w] << (w+rescale);
 | |
|                 rankVal0[w] = curr;
 | |
|         }   }
 | |
|         {   U32 const minBits = tableLog+1 - maxW;
 | |
|             U32 consumed;
 | |
|             for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
 | |
|                 U32* const rankValPtr = wksp->rankVal[consumed];
 | |
|                 U32 w;
 | |
|                 for (w = 1; w < maxW+1; w++) {
 | |
|                     rankValPtr[w] = rankVal0[w] >> consumed;
 | |
|     }   }   }   }
 | |
| 
 | |
|     HUF_fillDTableX2(dt, maxTableLog,
 | |
|                    wksp->sortedSymbol,
 | |
|                    wksp->rankStart0, wksp->rankVal, maxW,
 | |
|                    tableLog+1);
 | |
| 
 | |
|     dtd.tableLog = (BYTE)maxTableLog;
 | |
|     dtd.tableType = 1;
 | |
|     ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
 | |
|     return iSize;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U32
 | |
| HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
 | |
| {
 | |
|     size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
 | |
|     ZSTD_memcpy(op, &dt[val].sequence, 2);
 | |
|     BIT_skipBits(DStream, dt[val].nbBits);
 | |
|     return dt[val].length;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U32
 | |
| HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
 | |
| {
 | |
|     size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
 | |
|     ZSTD_memcpy(op, &dt[val].sequence, 1);
 | |
|     if (dt[val].length==1) {
 | |
|         BIT_skipBits(DStream, dt[val].nbBits);
 | |
|     } else {
 | |
|         if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
 | |
|             BIT_skipBits(DStream, dt[val].nbBits);
 | |
|             if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
 | |
|                 /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
 | |
|                 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
 | |
|     ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
 | |
|         ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits()) \
 | |
|         ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
 | |
| 
 | |
| HINT_INLINE size_t
 | |
| HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
 | |
|                 const HUF_DEltX2* const dt, const U32 dtLog)
 | |
| {
 | |
|     BYTE* const pStart = p;
 | |
| 
 | |
|     /* up to 8 symbols at a time */
 | |
|     if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
 | |
|         if (dtLog <= 11 && MEM_64bits()) {
 | |
|             /* up to 10 symbols at a time */
 | |
|             while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
 | |
|                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
|                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
|                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
|                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
|                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
|             }
 | |
|         } else {
 | |
|             /* up to 8 symbols at a time */
 | |
|             while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
 | |
|                 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
 | |
|                 HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
 | |
|                 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
 | |
|                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         BIT_reloadDStream(bitDPtr);
 | |
|     }
 | |
| 
 | |
|     /* closer to end : up to 2 symbols at a time */
 | |
|     if ((size_t)(pEnd - p) >= 2) {
 | |
|         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
 | |
|             HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
| 
 | |
|         while (p <= pEnd-2)
 | |
|             HUF_DECODE_SYMBOLX2_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
 | |
|     }
 | |
| 
 | |
|     if (p < pEnd)
 | |
|         p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
 | |
| 
 | |
|     return p-pStart;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE size_t
 | |
| HUF_decompress1X2_usingDTable_internal_body(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     BIT_DStream_t bitD;
 | |
| 
 | |
|     /* Init */
 | |
|     CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
 | |
| 
 | |
|     /* decode */
 | |
|     {   BYTE* const ostart = (BYTE*) dst;
 | |
|         BYTE* const oend = ostart + dstSize;
 | |
|         const void* const dtPtr = DTable+1;   /* force compiler to not use strict-aliasing */
 | |
|         const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
 | |
|         DTableDesc const dtd = HUF_getDTableDesc(DTable);
 | |
|         HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
 | |
|     }
 | |
| 
 | |
|     /* check */
 | |
|     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
 | |
| 
 | |
|     /* decoded size */
 | |
|     return dstSize;
 | |
| }
 | |
| FORCE_INLINE_TEMPLATE size_t
 | |
| HUF_decompress4X2_usingDTable_internal_body(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
 | |
| 
 | |
|     {   const BYTE* const istart = (const BYTE*) cSrc;
 | |
|         BYTE* const ostart = (BYTE*) dst;
 | |
|         BYTE* const oend = ostart + dstSize;
 | |
|         BYTE* const olimit = oend - (sizeof(size_t)-1);
 | |
|         const void* const dtPtr = DTable+1;
 | |
|         const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
 | |
| 
 | |
|         /* Init */
 | |
|         BIT_DStream_t bitD1;
 | |
|         BIT_DStream_t bitD2;
 | |
|         BIT_DStream_t bitD3;
 | |
|         BIT_DStream_t bitD4;
 | |
|         size_t const length1 = MEM_readLE16(istart);
 | |
|         size_t const length2 = MEM_readLE16(istart+2);
 | |
|         size_t const length3 = MEM_readLE16(istart+4);
 | |
|         size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
 | |
|         const BYTE* const istart1 = istart + 6;  /* jumpTable */
 | |
|         const BYTE* const istart2 = istart1 + length1;
 | |
|         const BYTE* const istart3 = istart2 + length2;
 | |
|         const BYTE* const istart4 = istart3 + length3;
 | |
|         size_t const segmentSize = (dstSize+3) / 4;
 | |
|         BYTE* const opStart2 = ostart + segmentSize;
 | |
|         BYTE* const opStart3 = opStart2 + segmentSize;
 | |
|         BYTE* const opStart4 = opStart3 + segmentSize;
 | |
|         BYTE* op1 = ostart;
 | |
|         BYTE* op2 = opStart2;
 | |
|         BYTE* op3 = opStart3;
 | |
|         BYTE* op4 = opStart4;
 | |
|         U32 endSignal = 1;
 | |
|         DTableDesc const dtd = HUF_getDTableDesc(DTable);
 | |
|         U32 const dtLog = dtd.tableLog;
 | |
| 
 | |
|         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
 | |
|         if (opStart4 > oend) return ERROR(corruption_detected);      /* overflow */
 | |
|         CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
 | |
|         CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
 | |
|         CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
 | |
|         CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
 | |
| 
 | |
|         /* 16-32 symbols per loop (4-8 symbols per stream) */
 | |
|         if ((size_t)(oend - op4) >= sizeof(size_t)) {
 | |
|             for ( ; (endSignal) & (op4 < olimit); ) {
 | |
| #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
 | |
|                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
 | |
|                 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
 | |
|                 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
 | |
|                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
 | |
|                 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
 | |
|                 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
 | |
| #else
 | |
|                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 | |
|                 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
 | |
|                 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
 | |
|                 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
 | |
|                 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
 | |
|                 endSignal = (U32)LIKELY((U32)
 | |
|                             (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
 | |
|                         & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
 | |
|                         & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
 | |
|                         & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* check corruption */
 | |
|         if (op1 > opStart2) return ERROR(corruption_detected);
 | |
|         if (op2 > opStart3) return ERROR(corruption_detected);
 | |
|         if (op3 > opStart4) return ERROR(corruption_detected);
 | |
|         /* note : op4 already verified within main loop */
 | |
| 
 | |
|         /* finish bitStreams one by one */
 | |
|         HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
 | |
|         HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
 | |
|         HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
 | |
|         HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);
 | |
| 
 | |
|         /* check */
 | |
|         { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
 | |
|           if (!endCheck) return ERROR(corruption_detected); }
 | |
| 
 | |
|         /* decoded size */
 | |
|         return dstSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if HUF_NEED_BMI2_FUNCTION
 | |
| static BMI2_TARGET_ATTRIBUTE
 | |
| size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
 | |
|                     size_t cSrcSize, HUF_DTable const* DTable) {
 | |
|     return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if HUF_NEED_DEFAULT_FUNCTION
 | |
| static
 | |
| size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
 | |
|                     size_t cSrcSize, HUF_DTable const* DTable) {
 | |
|     return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2
 | |
| 
 | |
| HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
 | |
| 
 | |
| static HUF_ASM_X86_64_BMI2_ATTRS size_t
 | |
| HUF_decompress4X2_usingDTable_internal_bmi2_asm(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable) {
 | |
|     void const* dt = DTable + 1;
 | |
|     const BYTE* const iend = (const BYTE*)cSrc + 6;
 | |
|     BYTE* const oend = (BYTE*)dst + dstSize;
 | |
|     HUF_DecompressAsmArgs args;
 | |
|     {
 | |
|         size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
 | |
|         FORWARD_IF_ERROR(ret, "Failed to init asm args");
 | |
|         if (ret != 0)
 | |
|             return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
|     }
 | |
| 
 | |
|     assert(args.ip[0] >= args.ilimit);
 | |
|     HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(&args);
 | |
| 
 | |
|     /* note : op4 already verified within main loop */
 | |
|     assert(args.ip[0] >= iend);
 | |
|     assert(args.ip[1] >= iend);
 | |
|     assert(args.ip[2] >= iend);
 | |
|     assert(args.ip[3] >= iend);
 | |
|     assert(args.op[3] <= oend);
 | |
|     (void)iend;
 | |
| 
 | |
|     /* finish bitStreams one by one */
 | |
|     {
 | |
|         size_t const segmentSize = (dstSize+3) / 4;
 | |
|         BYTE* segmentEnd = (BYTE*)dst;
 | |
|         int i;
 | |
|         for (i = 0; i < 4; ++i) {
 | |
|             BIT_DStream_t bit;
 | |
|             if (segmentSize <= (size_t)(oend - segmentEnd))
 | |
|                 segmentEnd += segmentSize;
 | |
|             else
 | |
|                 segmentEnd = oend;
 | |
|             FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
 | |
|             args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
 | |
|             if (args.op[i] != segmentEnd)
 | |
|                 return ERROR(corruption_detected);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* decoded size */
 | |
|     return dstSize;
 | |
| }
 | |
| #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
 | |
| 
 | |
| static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
 | |
|                     size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
 | |
| {
 | |
| #if DYNAMIC_BMI2
 | |
|     if (bmi2) {
 | |
| # if ZSTD_ENABLE_ASM_X86_64_BMI2
 | |
|         return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| # else
 | |
|         return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| # endif
 | |
|     }
 | |
| #else
 | |
|     (void)bmi2;
 | |
| #endif
 | |
| 
 | |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
 | |
|     return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| #else
 | |
|     return HUF_decompress4X2_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
 | |
| 
 | |
| size_t HUF_decompress1X2_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     DTableDesc dtd = HUF_getDTableDesc(DTable);
 | |
|     if (dtd.tableType != 1) return ERROR(GENERIC);
 | |
|     return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
 | |
|                                    const void* cSrc, size_t cSrcSize,
 | |
|                                    void* workSpace, size_t wkspSize)
 | |
| {
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
 | |
|                                                workSpace, wkspSize);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize; cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress4X2_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const HUF_DTable* DTable)
 | |
| {
 | |
|     DTableDesc dtd = HUF_getDTableDesc(DTable);
 | |
|     if (dtd.tableType != 1) return ERROR(GENERIC);
 | |
|     return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
 | |
|                                    const void* cSrc, size_t cSrcSize,
 | |
|                                    void* workSpace, size_t wkspSize, int bmi2)
 | |
| {
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
 | |
|                                          workSpace, wkspSize);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize; cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
 | |
|                                    const void* cSrc, size_t cSrcSize,
 | |
|                                    void* workSpace, size_t wkspSize)
 | |
| {
 | |
|     return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
 | |
| }
 | |
| 
 | |
| #endif /* HUF_FORCE_DECOMPRESS_X1 */
 | |
| 
 | |
| /* ***********************************/
 | |
| /* Universal decompression selectors */
 | |
| /* ***********************************/
 | |
| 
 | |
| size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
 | |
|                                     const void* cSrc, size_t cSrcSize,
 | |
|                                     const HUF_DTable* DTable)
 | |
| {
 | |
|     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1)
 | |
|     (void)dtd;
 | |
|     assert(dtd.tableType == 0);
 | |
|     return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| #elif defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|     (void)dtd;
 | |
|     assert(dtd.tableType == 1);
 | |
|     return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| #else
 | |
|     return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
 | |
|                            HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
 | |
|                                     const void* cSrc, size_t cSrcSize,
 | |
|                                     const HUF_DTable* DTable)
 | |
| {
 | |
|     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1)
 | |
|     (void)dtd;
 | |
|     assert(dtd.tableType == 0);
 | |
|     return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| #elif defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|     (void)dtd;
 | |
|     assert(dtd.tableType == 1);
 | |
|     return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| #else
 | |
|     return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
 | |
|                            HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
 | |
| typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
 | |
| static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
 | |
| {
 | |
|     /* single, double, quad */
 | |
|     {{0,0}, {1,1}},  /* Q==0 : impossible */
 | |
|     {{0,0}, {1,1}},  /* Q==1 : impossible */
 | |
|     {{ 150,216}, { 381,119}},   /* Q == 2 : 12-18% */
 | |
|     {{ 170,205}, { 514,112}},   /* Q == 3 : 18-25% */
 | |
|     {{ 177,199}, { 539,110}},   /* Q == 4 : 25-32% */
 | |
|     {{ 197,194}, { 644,107}},   /* Q == 5 : 32-38% */
 | |
|     {{ 221,192}, { 735,107}},   /* Q == 6 : 38-44% */
 | |
|     {{ 256,189}, { 881,106}},   /* Q == 7 : 44-50% */
 | |
|     {{ 359,188}, {1167,109}},   /* Q == 8 : 50-56% */
 | |
|     {{ 582,187}, {1570,114}},   /* Q == 9 : 56-62% */
 | |
|     {{ 688,187}, {1712,122}},   /* Q ==10 : 62-69% */
 | |
|     {{ 825,186}, {1965,136}},   /* Q ==11 : 69-75% */
 | |
|     {{ 976,185}, {2131,150}},   /* Q ==12 : 75-81% */
 | |
|     {{1180,186}, {2070,175}},   /* Q ==13 : 81-87% */
 | |
|     {{1377,185}, {1731,202}},   /* Q ==14 : 87-93% */
 | |
|     {{1412,185}, {1695,202}},   /* Q ==15 : 93-99% */
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /* HUF_selectDecoder() :
 | |
|  *  Tells which decoder is likely to decode faster,
 | |
|  *  based on a set of pre-computed metrics.
 | |
|  * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
 | |
|  *  Assumption : 0 < dstSize <= 128 KB */
 | |
| U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
 | |
| {
 | |
|     assert(dstSize > 0);
 | |
|     assert(dstSize <= 128*1024);
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1)
 | |
|     (void)dstSize;
 | |
|     (void)cSrcSize;
 | |
|     return 0;
 | |
| #elif defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|     (void)dstSize;
 | |
|     (void)cSrcSize;
 | |
|     return 1;
 | |
| #else
 | |
|     /* decoder timing evaluation */
 | |
|     {   U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 */
 | |
|         U32 const D256 = (U32)(dstSize >> 8);
 | |
|         U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
 | |
|         U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
 | |
|         DTime1 += DTime1 >> 5;  /* small advantage to algorithm using less memory, to reduce cache eviction */
 | |
|         return DTime1 < DTime0;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
 | |
|                                      size_t dstSize, const void* cSrc,
 | |
|                                      size_t cSrcSize, void* workSpace,
 | |
|                                      size_t wkspSize)
 | |
| {
 | |
|     /* validation checks */
 | |
|     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 | |
|     if (cSrcSize == 0) return ERROR(corruption_detected);
 | |
| 
 | |
|     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1)
 | |
|         (void)algoNb;
 | |
|         assert(algoNb == 0);
 | |
|         return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
 | |
| #elif defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|         (void)algoNb;
 | |
|         assert(algoNb == 1);
 | |
|         return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
 | |
| #else
 | |
|         return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
 | |
|                             cSrcSize, workSpace, wkspSize):
 | |
|                         HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
 | |
|                                   const void* cSrc, size_t cSrcSize,
 | |
|                                   void* workSpace, size_t wkspSize)
 | |
| {
 | |
|     /* validation checks */
 | |
|     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 | |
|     if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
 | |
|     if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
 | |
|     if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
 | |
| 
 | |
|     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1)
 | |
|         (void)algoNb;
 | |
|         assert(algoNb == 0);
 | |
|         return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
 | |
|                                 cSrcSize, workSpace, wkspSize);
 | |
| #elif defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|         (void)algoNb;
 | |
|         assert(algoNb == 1);
 | |
|         return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
 | |
|                                 cSrcSize, workSpace, wkspSize);
 | |
| #else
 | |
|         return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
 | |
|                                 cSrcSize, workSpace, wkspSize):
 | |
|                         HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
 | |
|                                 cSrcSize, workSpace, wkspSize);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
 | |
| {
 | |
|     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1)
 | |
|     (void)dtd;
 | |
|     assert(dtd.tableType == 0);
 | |
|     return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 | |
| #elif defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|     (void)dtd;
 | |
|     assert(dtd.tableType == 1);
 | |
|     return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 | |
| #else
 | |
|     return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
 | |
|                            HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef HUF_FORCE_DECOMPRESS_X2
 | |
| size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
 | |
| {
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize; cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
 | |
| {
 | |
|     DTableDesc const dtd = HUF_getDTableDesc(DTable);
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1)
 | |
|     (void)dtd;
 | |
|     assert(dtd.tableType == 0);
 | |
|     return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 | |
| #elif defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|     (void)dtd;
 | |
|     assert(dtd.tableType == 1);
 | |
|     return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 | |
| #else
 | |
|     return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
 | |
|                            HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
 | |
| {
 | |
|     /* validation checks */
 | |
|     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 | |
|     if (cSrcSize == 0) return ERROR(corruption_detected);
 | |
| 
 | |
|     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X1)
 | |
|         (void)algoNb;
 | |
|         assert(algoNb == 0);
 | |
|         return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 | |
| #elif defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|         (void)algoNb;
 | |
|         assert(algoNb == 1);
 | |
|         return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 | |
| #else
 | |
|         return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
 | |
|                         HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 |