mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-11-04 05:50:17 +00:00 
			
		
		
		
	By default the bstopre value has been set to 0x100, used to be 1/4 value of refint. Modern DDR has increased the refresh time. Adjust to 1/4 of refresh interval dynamically. Individual board can still override this value in board ddr file, or to use auto-precharge. Signed-off-by: York Sun <yorksun@freescale.com>
		
			
				
	
	
		
			867 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			867 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2008-2014 Freescale Semiconductor, Inc.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * Version 2 as published by the Free Software Foundation.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
 | 
						|
 * Based on code from spd_sdram.c
 | 
						|
 * Author: James Yang [at freescale.com]
 | 
						|
 */
 | 
						|
 | 
						|
#include <common.h>
 | 
						|
#include <i2c.h>
 | 
						|
#include <fsl_ddr_sdram.h>
 | 
						|
#include <fsl_ddr.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
 | 
						|
 * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
 | 
						|
 * all Power SoCs. But it could be different for ARM SoCs. For example,
 | 
						|
 * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
 | 
						|
 * 0x00_8000_0000 ~ 0x00_ffff_ffff
 | 
						|
 * 0x80_8000_0000 ~ 0xff_ffff_ffff
 | 
						|
 */
 | 
						|
#ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
 | 
						|
#define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_PPC
 | 
						|
#include <asm/fsl_law.h>
 | 
						|
 | 
						|
void fsl_ddr_set_lawbar(
 | 
						|
		const common_timing_params_t *memctl_common_params,
 | 
						|
		unsigned int memctl_interleaved,
 | 
						|
		unsigned int ctrl_num);
 | 
						|
#endif
 | 
						|
 | 
						|
void fsl_ddr_set_intl3r(const unsigned int granule_size);
 | 
						|
#if defined(SPD_EEPROM_ADDRESS) || \
 | 
						|
    defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
 | 
						|
    defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
 | 
						|
#if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
 | 
						|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
 | 
						|
	[0][0] = SPD_EEPROM_ADDRESS,
 | 
						|
};
 | 
						|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
 | 
						|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
 | 
						|
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
 | 
						|
	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
 | 
						|
};
 | 
						|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
 | 
						|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
 | 
						|
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
 | 
						|
	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
 | 
						|
};
 | 
						|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
 | 
						|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
 | 
						|
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
 | 
						|
	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
 | 
						|
	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
 | 
						|
	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
 | 
						|
};
 | 
						|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
 | 
						|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
 | 
						|
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
 | 
						|
	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
 | 
						|
	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
 | 
						|
};
 | 
						|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
 | 
						|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
 | 
						|
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
 | 
						|
	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
 | 
						|
	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
 | 
						|
	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
 | 
						|
	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
 | 
						|
	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
 | 
						|
};
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#define SPD_SPA0_ADDRESS	0x36
 | 
						|
#define SPD_SPA1_ADDRESS	0x37
 | 
						|
 | 
						|
static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
#ifdef CONFIG_SYS_FSL_DDR4
 | 
						|
	uint8_t dummy = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
 | 
						|
 | 
						|
#ifdef CONFIG_SYS_FSL_DDR4
 | 
						|
	/*
 | 
						|
	 * DDR4 SPD has 384 to 512 bytes
 | 
						|
	 * To access the lower 256 bytes, we need to set EE page address to 0
 | 
						|
	 * To access the upper 256 bytes, we need to set EE page address to 1
 | 
						|
	 * See Jedec standar No. 21-C for detail
 | 
						|
	 */
 | 
						|
	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
 | 
						|
	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
 | 
						|
	if (!ret) {
 | 
						|
		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
 | 
						|
		ret = i2c_read(i2c_address, 0, 1,
 | 
						|
			       (uchar *)((ulong)spd + 256),
 | 
						|
			       min(256,
 | 
						|
				   (int)sizeof(generic_spd_eeprom_t) - 256));
 | 
						|
	}
 | 
						|
#else
 | 
						|
	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
 | 
						|
				sizeof(generic_spd_eeprom_t));
 | 
						|
#endif
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		if (i2c_address ==
 | 
						|
#ifdef SPD_EEPROM_ADDRESS
 | 
						|
				SPD_EEPROM_ADDRESS
 | 
						|
#elif defined(SPD_EEPROM_ADDRESS1)
 | 
						|
				SPD_EEPROM_ADDRESS1
 | 
						|
#endif
 | 
						|
				) {
 | 
						|
			printf("DDR: failed to read SPD from address %u\n",
 | 
						|
				i2c_address);
 | 
						|
		} else {
 | 
						|
			debug("DDR: failed to read SPD from address %u\n",
 | 
						|
				i2c_address);
 | 
						|
		}
 | 
						|
		memset(spd, 0, sizeof(generic_spd_eeprom_t));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
__attribute__((weak, alias("__get_spd")))
 | 
						|
void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
 | 
						|
 | 
						|
/* This function allows boards to update SPD address */
 | 
						|
__weak void update_spd_address(unsigned int ctrl_num,
 | 
						|
			       unsigned int slot,
 | 
						|
			       unsigned int *addr)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
 | 
						|
		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
	unsigned int i2c_address = 0;
 | 
						|
 | 
						|
	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
 | 
						|
		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < dimm_slots_per_ctrl; i++) {
 | 
						|
		i2c_address = spd_i2c_addr[ctrl_num][i];
 | 
						|
		update_spd_address(ctrl_num, i, &i2c_address);
 | 
						|
		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
 | 
						|
		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* SPD_EEPROM_ADDRESSx */
 | 
						|
 | 
						|
/*
 | 
						|
 * ASSUMPTIONS:
 | 
						|
 *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
 | 
						|
 *    - Same memory data bus width on all controllers
 | 
						|
 *
 | 
						|
 * NOTES:
 | 
						|
 *
 | 
						|
 * The memory controller and associated documentation use confusing
 | 
						|
 * terminology when referring to the orgranization of DRAM.
 | 
						|
 *
 | 
						|
 * Here is a terminology translation table:
 | 
						|
 *
 | 
						|
 * memory controller/documention  |industry   |this code  |signals
 | 
						|
 * -------------------------------|-----------|-----------|-----------------
 | 
						|
 * physical bank/bank		  |rank       |rank	  |chip select (CS)
 | 
						|
 * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
 | 
						|
 * page/row			  |row	      |page	  |row address
 | 
						|
 * ???				  |column     |column	  |column address
 | 
						|
 *
 | 
						|
 * The naming confusion is further exacerbated by the descriptions of the
 | 
						|
 * memory controller interleaving feature, where accesses are interleaved
 | 
						|
 * _BETWEEN_ two seperate memory controllers.  This is configured only in
 | 
						|
 * CS0_CONFIG[INTLV_CTL] of each memory controller.
 | 
						|
 *
 | 
						|
 * memory controller documentation | number of chip selects
 | 
						|
 *				   | per memory controller supported
 | 
						|
 * --------------------------------|-----------------------------------------
 | 
						|
 * cache line interleaving	   | 1 (CS0 only)
 | 
						|
 * page interleaving		   | 1 (CS0 only)
 | 
						|
 * bank interleaving		   | 1 (CS0 only)
 | 
						|
 * superbank interleraving	   | depends on bank (chip select)
 | 
						|
 *				   |   interleraving [rank interleaving]
 | 
						|
 *				   |   mode used on every memory controller
 | 
						|
 *
 | 
						|
 * Even further confusing is the existence of the interleaving feature
 | 
						|
 * _WITHIN_ each memory controller.  The feature is referred to in
 | 
						|
 * documentation as chip select interleaving or bank interleaving,
 | 
						|
 * although it is configured in the DDR_SDRAM_CFG field.
 | 
						|
 *
 | 
						|
 * Name of field		| documentation name	| this code
 | 
						|
 * -----------------------------|-----------------------|------------------
 | 
						|
 * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
 | 
						|
 *				|  interleaving
 | 
						|
 */
 | 
						|
 | 
						|
const char *step_string_tbl[] = {
 | 
						|
	"STEP_GET_SPD",
 | 
						|
	"STEP_COMPUTE_DIMM_PARMS",
 | 
						|
	"STEP_COMPUTE_COMMON_PARMS",
 | 
						|
	"STEP_GATHER_OPTS",
 | 
						|
	"STEP_ASSIGN_ADDRESSES",
 | 
						|
	"STEP_COMPUTE_REGS",
 | 
						|
	"STEP_PROGRAM_REGS",
 | 
						|
	"STEP_ALL"
 | 
						|
};
 | 
						|
 | 
						|
const char * step_to_string(unsigned int step) {
 | 
						|
 | 
						|
	unsigned int s = __ilog2(step);
 | 
						|
 | 
						|
	if ((1 << s) != step)
 | 
						|
		return step_string_tbl[7];
 | 
						|
 | 
						|
	if (s >= ARRAY_SIZE(step_string_tbl)) {
 | 
						|
		printf("Error for the step in %s\n", __func__);
 | 
						|
		s = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return step_string_tbl[s];
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
 | 
						|
			  unsigned int dbw_cap_adj[])
 | 
						|
{
 | 
						|
	unsigned int i, j;
 | 
						|
	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
 | 
						|
	unsigned long long rank_density, ctlr_density = 0;
 | 
						|
	unsigned int first_ctrl = pinfo->first_ctrl;
 | 
						|
	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If a reduced data width is requested, but the SPD
 | 
						|
	 * specifies a physically wider device, adjust the
 | 
						|
	 * computed dimm capacities accordingly before
 | 
						|
	 * assigning addresses.
 | 
						|
	 */
 | 
						|
	for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
		unsigned int found = 0;
 | 
						|
 | 
						|
		switch (pinfo->memctl_opts[i].data_bus_width) {
 | 
						|
		case 2:
 | 
						|
			/* 16-bit */
 | 
						|
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
 | 
						|
				unsigned int dw;
 | 
						|
				if (!pinfo->dimm_params[i][j].n_ranks)
 | 
						|
					continue;
 | 
						|
				dw = pinfo->dimm_params[i][j].primary_sdram_width;
 | 
						|
				if ((dw == 72 || dw == 64)) {
 | 
						|
					dbw_cap_adj[i] = 2;
 | 
						|
					break;
 | 
						|
				} else if ((dw == 40 || dw == 32)) {
 | 
						|
					dbw_cap_adj[i] = 1;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			break;
 | 
						|
 | 
						|
		case 1:
 | 
						|
			/* 32-bit */
 | 
						|
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
 | 
						|
				unsigned int dw;
 | 
						|
				dw = pinfo->dimm_params[i][j].data_width;
 | 
						|
				if (pinfo->dimm_params[i][j].n_ranks
 | 
						|
				    && (dw == 72 || dw == 64)) {
 | 
						|
					/*
 | 
						|
					 * FIXME: can't really do it
 | 
						|
					 * like this because this just
 | 
						|
					 * further reduces the memory
 | 
						|
					 */
 | 
						|
					found = 1;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (found) {
 | 
						|
				dbw_cap_adj[i] = 1;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
 | 
						|
		case 0:
 | 
						|
			/* 64-bit */
 | 
						|
			break;
 | 
						|
 | 
						|
		default:
 | 
						|
			printf("unexpected data bus width "
 | 
						|
				"specified controller %u\n", i);
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	current_mem_base = pinfo->mem_base;
 | 
						|
	total_mem = 0;
 | 
						|
	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
 | 
						|
		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
 | 
						|
					dbw_cap_adj[first_ctrl];
 | 
						|
		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
 | 
						|
					FSL_DDR_CS0_CS1_CS2_CS3) {
 | 
						|
		case FSL_DDR_CS0_CS1_CS2_CS3:
 | 
						|
			ctlr_density = 4 * rank_density;
 | 
						|
			break;
 | 
						|
		case FSL_DDR_CS0_CS1:
 | 
						|
		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
 | 
						|
			ctlr_density = 2 * rank_density;
 | 
						|
			break;
 | 
						|
		case FSL_DDR_CS2_CS3:
 | 
						|
		default:
 | 
						|
			ctlr_density = rank_density;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
 | 
						|
			rank_density, ctlr_density);
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			if (pinfo->memctl_opts[i].memctl_interleaving) {
 | 
						|
				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
 | 
						|
				case FSL_DDR_256B_INTERLEAVING:
 | 
						|
				case FSL_DDR_CACHE_LINE_INTERLEAVING:
 | 
						|
				case FSL_DDR_PAGE_INTERLEAVING:
 | 
						|
				case FSL_DDR_BANK_INTERLEAVING:
 | 
						|
				case FSL_DDR_SUPERBANK_INTERLEAVING:
 | 
						|
					total_ctlr_mem = 2 * ctlr_density;
 | 
						|
					break;
 | 
						|
				case FSL_DDR_3WAY_1KB_INTERLEAVING:
 | 
						|
				case FSL_DDR_3WAY_4KB_INTERLEAVING:
 | 
						|
				case FSL_DDR_3WAY_8KB_INTERLEAVING:
 | 
						|
					total_ctlr_mem = 3 * ctlr_density;
 | 
						|
					break;
 | 
						|
				case FSL_DDR_4WAY_1KB_INTERLEAVING:
 | 
						|
				case FSL_DDR_4WAY_4KB_INTERLEAVING:
 | 
						|
				case FSL_DDR_4WAY_8KB_INTERLEAVING:
 | 
						|
					total_ctlr_mem = 4 * ctlr_density;
 | 
						|
					break;
 | 
						|
				default:
 | 
						|
					panic("Unknown interleaving mode");
 | 
						|
				}
 | 
						|
				pinfo->common_timing_params[i].base_address =
 | 
						|
							current_mem_base;
 | 
						|
				pinfo->common_timing_params[i].total_mem =
 | 
						|
							total_ctlr_mem;
 | 
						|
				total_mem = current_mem_base + total_ctlr_mem;
 | 
						|
				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
 | 
						|
				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
 | 
						|
			} else {
 | 
						|
				/* when 3rd controller not interleaved */
 | 
						|
				current_mem_base = total_mem;
 | 
						|
				total_ctlr_mem = 0;
 | 
						|
				pinfo->common_timing_params[i].base_address =
 | 
						|
							current_mem_base;
 | 
						|
				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
 | 
						|
					unsigned long long cap =
 | 
						|
						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
 | 
						|
					pinfo->dimm_params[i][j].base_address =
 | 
						|
						current_mem_base;
 | 
						|
					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
 | 
						|
					current_mem_base += cap;
 | 
						|
					total_ctlr_mem += cap;
 | 
						|
				}
 | 
						|
				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
 | 
						|
				pinfo->common_timing_params[i].total_mem =
 | 
						|
							total_ctlr_mem;
 | 
						|
				total_mem += total_ctlr_mem;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Simple linear assignment if memory
 | 
						|
		 * controllers are not interleaved.
 | 
						|
		 */
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			total_ctlr_mem = 0;
 | 
						|
			pinfo->common_timing_params[i].base_address =
 | 
						|
						current_mem_base;
 | 
						|
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
 | 
						|
				/* Compute DIMM base addresses. */
 | 
						|
				unsigned long long cap =
 | 
						|
					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
 | 
						|
				pinfo->dimm_params[i][j].base_address =
 | 
						|
					current_mem_base;
 | 
						|
				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
 | 
						|
				current_mem_base += cap;
 | 
						|
				total_ctlr_mem += cap;
 | 
						|
			}
 | 
						|
			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
 | 
						|
			pinfo->common_timing_params[i].total_mem =
 | 
						|
							total_ctlr_mem;
 | 
						|
			total_mem += total_ctlr_mem;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
 | 
						|
 | 
						|
	return total_mem;
 | 
						|
}
 | 
						|
 | 
						|
/* Use weak function to allow board file to override the address assignment */
 | 
						|
__attribute__((weak, alias("__step_assign_addresses")))
 | 
						|
unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
 | 
						|
			  unsigned int dbw_cap_adj[]);
 | 
						|
 | 
						|
unsigned long long
 | 
						|
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
 | 
						|
				       unsigned int size_only)
 | 
						|
{
 | 
						|
	unsigned int i, j;
 | 
						|
	unsigned long long total_mem = 0;
 | 
						|
	int assert_reset = 0;
 | 
						|
	unsigned int first_ctrl =  pinfo->first_ctrl;
 | 
						|
	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
 | 
						|
	__maybe_unused int retval;
 | 
						|
	__maybe_unused bool goodspd = false;
 | 
						|
	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
 | 
						|
 | 
						|
	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
 | 
						|
	common_timing_params_t *timing_params = pinfo->common_timing_params;
 | 
						|
	if (pinfo->board_need_mem_reset)
 | 
						|
		assert_reset = pinfo->board_need_mem_reset();
 | 
						|
 | 
						|
	/* data bus width capacity adjust shift amount */
 | 
						|
	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
 | 
						|
 | 
						|
	for (i = first_ctrl; i <= last_ctrl; i++)
 | 
						|
		dbw_capacity_adjust[i] = 0;
 | 
						|
 | 
						|
	debug("starting at step %u (%s)\n",
 | 
						|
	      start_step, step_to_string(start_step));
 | 
						|
 | 
						|
	switch (start_step) {
 | 
						|
	case STEP_GET_SPD:
 | 
						|
#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
 | 
						|
		/* STEP 1:  Gather all DIMM SPD data */
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
 | 
						|
					dimm_slots_per_ctrl);
 | 
						|
		}
 | 
						|
 | 
						|
	case STEP_COMPUTE_DIMM_PARMS:
 | 
						|
		/* STEP 2:  Compute DIMM parameters from SPD data */
 | 
						|
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
 | 
						|
				generic_spd_eeprom_t *spd =
 | 
						|
					&(pinfo->spd_installed_dimms[i][j]);
 | 
						|
				dimm_params_t *pdimm =
 | 
						|
					&(pinfo->dimm_params[i][j]);
 | 
						|
				retval = compute_dimm_parameters(
 | 
						|
							i, spd, pdimm, j);
 | 
						|
#ifdef CONFIG_SYS_DDR_RAW_TIMING
 | 
						|
				if (!j && retval) {
 | 
						|
					printf("SPD error on controller %d! "
 | 
						|
					"Trying fallback to raw timing "
 | 
						|
					"calculation\n", i);
 | 
						|
					retval = fsl_ddr_get_dimm_params(pdimm,
 | 
						|
									 i, j);
 | 
						|
				}
 | 
						|
#else
 | 
						|
				if (retval == 2) {
 | 
						|
					printf("Error: compute_dimm_parameters"
 | 
						|
					" non-zero returned FATAL value "
 | 
						|
					"for memctl=%u dimm=%u\n", i, j);
 | 
						|
					return 0;
 | 
						|
				}
 | 
						|
#endif
 | 
						|
				if (retval) {
 | 
						|
					debug("Warning: compute_dimm_parameters"
 | 
						|
					" non-zero return value for memctl=%u "
 | 
						|
					"dimm=%u\n", i, j);
 | 
						|
				} else {
 | 
						|
					goodspd = true;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!goodspd) {
 | 
						|
			/*
 | 
						|
			 * No valid SPD found
 | 
						|
			 * Throw an error if this is for main memory, i.e.
 | 
						|
			 * first_ctrl == 0. Otherwise, siliently return 0
 | 
						|
			 * as the memory size.
 | 
						|
			 */
 | 
						|
			if (first_ctrl == 0)
 | 
						|
				printf("Error: No valid SPD detected.\n");
 | 
						|
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
 | 
						|
	case STEP_COMPUTE_DIMM_PARMS:
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
 | 
						|
				dimm_params_t *pdimm =
 | 
						|
					&(pinfo->dimm_params[i][j]);
 | 
						|
				fsl_ddr_get_dimm_params(pdimm, i, j);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		debug("Filling dimm parameters from board specific file\n");
 | 
						|
#endif
 | 
						|
	case STEP_COMPUTE_COMMON_PARMS:
 | 
						|
		/*
 | 
						|
		 * STEP 3: Compute a common set of timing parameters
 | 
						|
		 * suitable for all of the DIMMs on each memory controller
 | 
						|
		 */
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			debug("Computing lowest common DIMM"
 | 
						|
				" parameters for memctl=%u\n", i);
 | 
						|
			compute_lowest_common_dimm_parameters
 | 
						|
				(i,
 | 
						|
				 pinfo->dimm_params[i],
 | 
						|
				 &timing_params[i],
 | 
						|
				 CONFIG_DIMM_SLOTS_PER_CTLR);
 | 
						|
		}
 | 
						|
 | 
						|
	case STEP_GATHER_OPTS:
 | 
						|
		/* STEP 4:  Gather configuration requirements from user */
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			debug("Reloading memory controller "
 | 
						|
				"configuration options for memctl=%u\n", i);
 | 
						|
			/*
 | 
						|
			 * This "reloads" the memory controller options
 | 
						|
			 * to defaults.  If the user "edits" an option,
 | 
						|
			 * next_step points to the step after this,
 | 
						|
			 * which is currently STEP_ASSIGN_ADDRESSES.
 | 
						|
			 */
 | 
						|
			populate_memctl_options(
 | 
						|
					&timing_params[i],
 | 
						|
					&pinfo->memctl_opts[i],
 | 
						|
					pinfo->dimm_params[i], i);
 | 
						|
			/*
 | 
						|
			 * For RDIMMs, JEDEC spec requires clocks to be stable
 | 
						|
			 * before reset signal is deasserted. For the boards
 | 
						|
			 * using fixed parameters, this function should be
 | 
						|
			 * be called from board init file.
 | 
						|
			 */
 | 
						|
			if (timing_params[i].all_dimms_registered)
 | 
						|
				assert_reset = 1;
 | 
						|
		}
 | 
						|
		if (assert_reset && !size_only) {
 | 
						|
			if (pinfo->board_mem_reset) {
 | 
						|
				debug("Asserting mem reset\n");
 | 
						|
				pinfo->board_mem_reset();
 | 
						|
			} else {
 | 
						|
				debug("Asserting mem reset missing\n");
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	case STEP_ASSIGN_ADDRESSES:
 | 
						|
		/* STEP 5:  Assign addresses to chip selects */
 | 
						|
		check_interleaving_options(pinfo);
 | 
						|
		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
 | 
						|
		debug("Total mem %llu assigned\n", total_mem);
 | 
						|
 | 
						|
	case STEP_COMPUTE_REGS:
 | 
						|
		/* STEP 6:  compute controller register values */
 | 
						|
		debug("FSL Memory ctrl register computation\n");
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			if (timing_params[i].ndimms_present == 0) {
 | 
						|
				memset(&ddr_reg[i], 0,
 | 
						|
					sizeof(fsl_ddr_cfg_regs_t));
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			compute_fsl_memctl_config_regs
 | 
						|
				(i,
 | 
						|
				 &pinfo->memctl_opts[i],
 | 
						|
				 &ddr_reg[i], &timing_params[i],
 | 
						|
				 pinfo->dimm_params[i],
 | 
						|
				 dbw_capacity_adjust[i],
 | 
						|
				 size_only);
 | 
						|
		}
 | 
						|
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	{
 | 
						|
		/*
 | 
						|
		 * Compute the amount of memory available just by
 | 
						|
		 * looking for the highest valid CSn_BNDS value.
 | 
						|
		 * This allows us to also experiment with using
 | 
						|
		 * only CS0 when using dual-rank DIMMs.
 | 
						|
		 */
 | 
						|
		unsigned int max_end = 0;
 | 
						|
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
 | 
						|
				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
 | 
						|
				if (reg->cs[j].config & 0x80000000) {
 | 
						|
					unsigned int end;
 | 
						|
					/*
 | 
						|
					 * 0xfffffff is a special value we put
 | 
						|
					 * for unused bnds
 | 
						|
					 */
 | 
						|
					if (reg->cs[j].bnds == 0xffffffff)
 | 
						|
						continue;
 | 
						|
					end = reg->cs[j].bnds & 0xffff;
 | 
						|
					if (end > max_end) {
 | 
						|
						max_end = end;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
 | 
						|
			    0xFFFFFFULL) - pinfo->mem_base;
 | 
						|
	}
 | 
						|
 | 
						|
	return total_mem;
 | 
						|
}
 | 
						|
 | 
						|
phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
 | 
						|
{
 | 
						|
	unsigned int i, first_ctrl, last_ctrl;
 | 
						|
#ifdef CONFIG_PPC
 | 
						|
	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
 | 
						|
#endif
 | 
						|
	unsigned long long total_memory;
 | 
						|
	int deassert_reset = 0;
 | 
						|
 | 
						|
	first_ctrl = pinfo->first_ctrl;
 | 
						|
	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
 | 
						|
 | 
						|
	/* Compute it once normally. */
 | 
						|
#ifdef CONFIG_FSL_DDR_INTERACTIVE
 | 
						|
	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
 | 
						|
		total_memory = fsl_ddr_interactive(pinfo, 0);
 | 
						|
	} else if (fsl_ddr_interactive_env_var_exists()) {
 | 
						|
		total_memory = fsl_ddr_interactive(pinfo, 1);
 | 
						|
	} else
 | 
						|
#endif
 | 
						|
		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
 | 
						|
 | 
						|
	/* setup 3-way interleaving before enabling DDRC */
 | 
						|
	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
 | 
						|
	case FSL_DDR_3WAY_1KB_INTERLEAVING:
 | 
						|
	case FSL_DDR_3WAY_4KB_INTERLEAVING:
 | 
						|
	case FSL_DDR_3WAY_8KB_INTERLEAVING:
 | 
						|
		fsl_ddr_set_intl3r(
 | 
						|
			pinfo->memctl_opts[first_ctrl].
 | 
						|
			memctl_interleaving_mode);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Program configuration registers.
 | 
						|
	 * JEDEC specs requires clocks to be stable before deasserting reset
 | 
						|
	 * for RDIMMs. Clocks start after chip select is enabled and clock
 | 
						|
	 * control register is set. During step 1, all controllers have their
 | 
						|
	 * registers set but not enabled. Step 2 proceeds after deasserting
 | 
						|
	 * reset through board FPGA or GPIO.
 | 
						|
	 * For non-registered DIMMs, initialization can go through but it is
 | 
						|
	 * also OK to follow the same flow.
 | 
						|
	 */
 | 
						|
	if (pinfo->board_need_mem_reset)
 | 
						|
		deassert_reset = pinfo->board_need_mem_reset();
 | 
						|
	for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
		if (pinfo->common_timing_params[i].all_dimms_registered)
 | 
						|
			deassert_reset = 1;
 | 
						|
	}
 | 
						|
	for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
		debug("Programming controller %u\n", i);
 | 
						|
		if (pinfo->common_timing_params[i].ndimms_present == 0) {
 | 
						|
			debug("No dimms present on controller %u; "
 | 
						|
					"skipping programming\n", i);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * The following call with step = 1 returns before enabling
 | 
						|
		 * the controller. It has to finish with step = 2 later.
 | 
						|
		 */
 | 
						|
		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
 | 
						|
					deassert_reset ? 1 : 0);
 | 
						|
	}
 | 
						|
	if (deassert_reset) {
 | 
						|
		/* Use board FPGA or GPIO to deassert reset signal */
 | 
						|
		if (pinfo->board_mem_de_reset) {
 | 
						|
			debug("Deasserting mem reset\n");
 | 
						|
			pinfo->board_mem_de_reset();
 | 
						|
		} else {
 | 
						|
			debug("Deasserting mem reset missing\n");
 | 
						|
		}
 | 
						|
		for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
			/* Call with step = 2 to continue initialization */
 | 
						|
			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
 | 
						|
						i, 2);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_FSL_DDR_SYNC_REFRESH
 | 
						|
	fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_PPC
 | 
						|
	/* program LAWs */
 | 
						|
	for (i = first_ctrl; i <= last_ctrl; i++) {
 | 
						|
		if (pinfo->memctl_opts[i].memctl_interleaving) {
 | 
						|
			switch (pinfo->memctl_opts[i].
 | 
						|
				memctl_interleaving_mode) {
 | 
						|
			case FSL_DDR_CACHE_LINE_INTERLEAVING:
 | 
						|
			case FSL_DDR_PAGE_INTERLEAVING:
 | 
						|
			case FSL_DDR_BANK_INTERLEAVING:
 | 
						|
			case FSL_DDR_SUPERBANK_INTERLEAVING:
 | 
						|
				if (i % 2)
 | 
						|
					break;
 | 
						|
				if (i == 0) {
 | 
						|
					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
 | 
						|
					fsl_ddr_set_lawbar(
 | 
						|
						&pinfo->common_timing_params[i],
 | 
						|
						law_memctl, i);
 | 
						|
				}
 | 
						|
#if CONFIG_NUM_DDR_CONTROLLERS > 3
 | 
						|
				else if (i == 2) {
 | 
						|
					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
 | 
						|
					fsl_ddr_set_lawbar(
 | 
						|
						&pinfo->common_timing_params[i],
 | 
						|
						law_memctl, i);
 | 
						|
				}
 | 
						|
#endif
 | 
						|
				break;
 | 
						|
			case FSL_DDR_3WAY_1KB_INTERLEAVING:
 | 
						|
			case FSL_DDR_3WAY_4KB_INTERLEAVING:
 | 
						|
			case FSL_DDR_3WAY_8KB_INTERLEAVING:
 | 
						|
				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
 | 
						|
				if (i == 0) {
 | 
						|
					fsl_ddr_set_lawbar(
 | 
						|
						&pinfo->common_timing_params[i],
 | 
						|
						law_memctl, i);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case FSL_DDR_4WAY_1KB_INTERLEAVING:
 | 
						|
			case FSL_DDR_4WAY_4KB_INTERLEAVING:
 | 
						|
			case FSL_DDR_4WAY_8KB_INTERLEAVING:
 | 
						|
				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
 | 
						|
				if (i == 0)
 | 
						|
					fsl_ddr_set_lawbar(
 | 
						|
						&pinfo->common_timing_params[i],
 | 
						|
						law_memctl, i);
 | 
						|
				/* place holder for future 4-way interleaving */
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			switch (i) {
 | 
						|
			case 0:
 | 
						|
				law_memctl = LAW_TRGT_IF_DDR_1;
 | 
						|
				break;
 | 
						|
			case 1:
 | 
						|
				law_memctl = LAW_TRGT_IF_DDR_2;
 | 
						|
				break;
 | 
						|
			case 2:
 | 
						|
				law_memctl = LAW_TRGT_IF_DDR_3;
 | 
						|
				break;
 | 
						|
			case 3:
 | 
						|
				law_memctl = LAW_TRGT_IF_DDR_4;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
 | 
						|
					   law_memctl, i);
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	debug("total_memory by %s = %llu\n", __func__, total_memory);
 | 
						|
 | 
						|
#if !defined(CONFIG_PHYS_64BIT)
 | 
						|
	/* Check for 4G or more.  Bad. */
 | 
						|
	if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
 | 
						|
		puts("Detected ");
 | 
						|
		print_size(total_memory, " of memory\n");
 | 
						|
		printf("       This U-Boot only supports < 4G of DDR\n");
 | 
						|
		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
 | 
						|
		printf("       "); /* re-align to match init_func_ram print */
 | 
						|
		total_memory = CONFIG_MAX_MEM_MAPPED;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return total_memory;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fsl_ddr_sdram(void) -- this is the main function to be
 | 
						|
 * called by initdram() in the board file.
 | 
						|
 *
 | 
						|
 * It returns amount of memory configured in bytes.
 | 
						|
 */
 | 
						|
phys_size_t fsl_ddr_sdram(void)
 | 
						|
{
 | 
						|
	fsl_ddr_info_t info;
 | 
						|
 | 
						|
	/* Reset info structure. */
 | 
						|
	memset(&info, 0, sizeof(fsl_ddr_info_t));
 | 
						|
	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
 | 
						|
	info.first_ctrl = 0;
 | 
						|
	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
 | 
						|
	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
 | 
						|
	info.board_need_mem_reset = board_need_mem_reset;
 | 
						|
	info.board_mem_reset = board_assert_mem_reset;
 | 
						|
	info.board_mem_de_reset = board_deassert_mem_reset;
 | 
						|
 | 
						|
	return __fsl_ddr_sdram(&info);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
 | 
						|
phys_size_t fsl_other_ddr_sdram(unsigned long long base,
 | 
						|
				unsigned int first_ctrl,
 | 
						|
				unsigned int num_ctrls,
 | 
						|
				unsigned int dimm_slots_per_ctrl,
 | 
						|
				int (*board_need_reset)(void),
 | 
						|
				void (*board_reset)(void),
 | 
						|
				void (*board_de_reset)(void))
 | 
						|
{
 | 
						|
	fsl_ddr_info_t info;
 | 
						|
 | 
						|
	/* Reset info structure. */
 | 
						|
	memset(&info, 0, sizeof(fsl_ddr_info_t));
 | 
						|
	info.mem_base = base;
 | 
						|
	info.first_ctrl = first_ctrl;
 | 
						|
	info.num_ctrls = num_ctrls;
 | 
						|
	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
 | 
						|
	info.board_need_mem_reset = board_need_reset;
 | 
						|
	info.board_mem_reset = board_reset;
 | 
						|
	info.board_mem_de_reset = board_de_reset;
 | 
						|
 | 
						|
	return __fsl_ddr_sdram(&info);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
 | 
						|
 * size of the total memory without setting ddr control registers.
 | 
						|
 */
 | 
						|
phys_size_t
 | 
						|
fsl_ddr_sdram_size(void)
 | 
						|
{
 | 
						|
	fsl_ddr_info_t  info;
 | 
						|
	unsigned long long total_memory = 0;
 | 
						|
 | 
						|
	memset(&info, 0 , sizeof(fsl_ddr_info_t));
 | 
						|
	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
 | 
						|
	info.first_ctrl = 0;
 | 
						|
	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
 | 
						|
	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
 | 
						|
	info.board_need_mem_reset = NULL;
 | 
						|
 | 
						|
	/* Compute it once normally. */
 | 
						|
	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
 | 
						|
 | 
						|
	return total_memory;
 | 
						|
}
 |