mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-30 11:38:15 +00:00 
			
		
		
		
	lmb_alloc_addr_flags() is a wrapper for _lmb_alloc_addr() and it's the only function using it. Rename _lmb_alloc_addr() to lmb_alloc_addr_flags() and remove the wrapper. Reviewed-by: Sam Protsenko <semen.protsenko@linaro.org> Tested-by: Sam Protsenko <semen.protsenko@linaro.org> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
		
			
				
	
	
		
			887 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			887 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Procedures for maintaining information about logical memory blocks.
 | |
|  *
 | |
|  * Peter Bergner, IBM Corp.	June 2001.
 | |
|  * Copyright (C) 2001 Peter Bergner.
 | |
|  */
 | |
| 
 | |
| #include <alist.h>
 | |
| #include <efi_loader.h>
 | |
| #include <event.h>
 | |
| #include <image.h>
 | |
| #include <mapmem.h>
 | |
| #include <lmb.h>
 | |
| #include <log.h>
 | |
| #include <malloc.h>
 | |
| #include <spl.h>
 | |
| 
 | |
| #include <asm/global_data.h>
 | |
| #include <asm/sections.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sizes.h>
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| #define MAP_OP_RESERVE		(u8)0x1
 | |
| #define MAP_OP_FREE		(u8)0x2
 | |
| #define MAP_OP_ADD		(u8)0x3
 | |
| 
 | |
| /*
 | |
|  * The following low level LMB functions must not access the global LMB memory
 | |
|  * map since they are also used to manage IOVA memory maps in iommu drivers like
 | |
|  * apple_dart.
 | |
|  */
 | |
| 
 | |
| static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
 | |
| 			      phys_addr_t base2, phys_size_t size2)
 | |
| {
 | |
| 	const phys_addr_t base1_end = base1 + size1 - 1;
 | |
| 	const phys_addr_t base2_end = base2 + size2 - 1;
 | |
| 
 | |
| 	return ((base1 <= base2_end) && (base2 <= base1_end));
 | |
| }
 | |
| 
 | |
| static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
 | |
| 			       phys_addr_t base2, phys_size_t size2)
 | |
| {
 | |
| 	if (base2 == base1 + size1)
 | |
| 		return 1;
 | |
| 	else if (base1 == base2 + size2)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
 | |
| 				unsigned long r2)
 | |
| {
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 	phys_addr_t base1 = rgn[r1].base;
 | |
| 	phys_size_t size1 = rgn[r1].size;
 | |
| 	phys_addr_t base2 = rgn[r2].base;
 | |
| 	phys_size_t size2 = rgn[r2].size;
 | |
| 
 | |
| 	return lmb_addrs_overlap(base1, size1, base2, size2);
 | |
| }
 | |
| 
 | |
| static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
 | |
| 				 unsigned long r2)
 | |
| {
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 	phys_addr_t base1 = rgn[r1].base;
 | |
| 	phys_size_t size1 = rgn[r1].size;
 | |
| 	phys_addr_t base2 = rgn[r2].base;
 | |
| 	phys_size_t size2 = rgn[r2].size;
 | |
| 
 | |
| 	return lmb_addrs_adjacent(base1, size1, base2, size2);
 | |
| }
 | |
| 
 | |
| static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 
 | |
| 	for (i = r; i < lmb_rgn_lst->count - 1; i++) {
 | |
| 		rgn[i].base = rgn[i + 1].base;
 | |
| 		rgn[i].size = rgn[i + 1].size;
 | |
| 		rgn[i].flags = rgn[i + 1].flags;
 | |
| 	}
 | |
| 	lmb_rgn_lst->count--;
 | |
| }
 | |
| 
 | |
| /* Assumption: base addr of region 1 < base addr of region 2 */
 | |
| static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
 | |
| 				 unsigned long r2)
 | |
| {
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 
 | |
| 	rgn[r1].size += rgn[r2].size;
 | |
| 	lmb_remove_region(lmb_rgn_lst, r2);
 | |
| }
 | |
| 
 | |
| /*Assumption : base addr of region 1 < base addr of region 2*/
 | |
| static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst,
 | |
| 				     unsigned long r1, unsigned long r2)
 | |
| {
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 
 | |
| 	phys_addr_t base1 = rgn[r1].base;
 | |
| 	phys_size_t size1 = rgn[r1].size;
 | |
| 	phys_addr_t base2 = rgn[r2].base;
 | |
| 	phys_size_t size2 = rgn[r2].size;
 | |
| 
 | |
| 	if (base1 + size1 > base2 + size2) {
 | |
| 		printf("This will not be a case any time\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	rgn[r1].size = base2 + size2 - base1;
 | |
| 	lmb_remove_region(lmb_rgn_lst, r2);
 | |
| }
 | |
| 
 | |
| static long lmb_resize_regions(struct alist *lmb_rgn_lst,
 | |
| 			       unsigned long idx_start,
 | |
| 			       phys_addr_t base, phys_size_t size)
 | |
| {
 | |
| 	phys_size_t rgnsize;
 | |
| 	unsigned long rgn_cnt, idx, idx_end;
 | |
| 	phys_addr_t rgnbase, rgnend;
 | |
| 	phys_addr_t mergebase, mergeend;
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 
 | |
| 	rgn_cnt = 0;
 | |
| 	idx = idx_start;
 | |
| 	idx_end = idx_start;
 | |
| 
 | |
| 	/*
 | |
| 	 * First thing to do is to identify how many regions
 | |
| 	 * the requested region overlaps.
 | |
| 	 * If the flags match, combine all these overlapping
 | |
| 	 * regions into a single region, and remove the merged
 | |
| 	 * regions.
 | |
| 	 */
 | |
| 	while (idx <= lmb_rgn_lst->count - 1) {
 | |
| 		rgnbase = rgn[idx].base;
 | |
| 		rgnsize = rgn[idx].size;
 | |
| 
 | |
| 		if (lmb_addrs_overlap(base, size, rgnbase,
 | |
| 				      rgnsize)) {
 | |
| 			if (rgn[idx].flags != LMB_NONE)
 | |
| 				return -1;
 | |
| 			rgn_cnt++;
 | |
| 			idx_end = idx;
 | |
| 		}
 | |
| 		idx++;
 | |
| 	}
 | |
| 
 | |
| 	/* The merged region's base and size */
 | |
| 	rgnbase = rgn[idx_start].base;
 | |
| 	mergebase = min(base, rgnbase);
 | |
| 	rgnend = rgn[idx_end].base + rgn[idx_end].size;
 | |
| 	mergeend = max(rgnend, (base + size));
 | |
| 
 | |
| 	rgn[idx_start].base = mergebase;
 | |
| 	rgn[idx_start].size = mergeend - mergebase;
 | |
| 
 | |
| 	/* Now remove the merged regions */
 | |
| 	while (--rgn_cnt)
 | |
| 		lmb_remove_region(lmb_rgn_lst, idx_start + 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lmb_add_region_flags() - Add an lmb region to the given list
 | |
|  * @lmb_rgn_lst: LMB list to which region is to be added(free/used)
 | |
|  * @base: Start address of the region
 | |
|  * @size: Size of the region to be added
 | |
|  * @flags: Attributes of the LMB region
 | |
|  *
 | |
|  * Add a region of memory to the list. If the region does not exist, add
 | |
|  * it to the list. Depending on the attributes of the region to be added,
 | |
|  * the function might resize an already existing region or coalesce two
 | |
|  * adjacent regions.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0		- Added successfully, or it's already added (only if LMB_NONE)
 | |
|  * * %-EEXIST	- The region is already added, and flags != LMB_NONE
 | |
|  * * %-1	- Failure
 | |
|  */
 | |
| static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
 | |
| 				 phys_size_t size, u32 flags)
 | |
| {
 | |
| 	unsigned long coalesced = 0;
 | |
| 	long ret, i;
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 
 | |
| 	if (alist_err(lmb_rgn_lst))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* First try and coalesce this LMB with another. */
 | |
| 	for (i = 0; i < lmb_rgn_lst->count; i++) {
 | |
| 		phys_addr_t rgnbase = rgn[i].base;
 | |
| 		phys_size_t rgnsize = rgn[i].size;
 | |
| 		u32 rgnflags = rgn[i].flags;
 | |
| 
 | |
| 		ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
 | |
| 		if (ret > 0) {
 | |
| 			if (flags != rgnflags)
 | |
| 				break;
 | |
| 			rgn[i].base -= size;
 | |
| 			rgn[i].size += size;
 | |
| 			coalesced++;
 | |
| 			break;
 | |
| 		} else if (ret < 0) {
 | |
| 			if (flags != rgnflags)
 | |
| 				break;
 | |
| 			rgn[i].size += size;
 | |
| 			coalesced++;
 | |
| 			break;
 | |
| 		} else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
 | |
| 			if (flags != LMB_NONE)
 | |
| 				return -EEXIST;
 | |
| 
 | |
| 			ret = lmb_resize_regions(lmb_rgn_lst, i, base, size);
 | |
| 			if (ret < 0)
 | |
| 				return -1;
 | |
| 
 | |
| 			coalesced++;
 | |
| 			break;
 | |
| 
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
 | |
| 		rgn = lmb_rgn_lst->data;
 | |
| 		if (rgn[i].flags == rgn[i + 1].flags) {
 | |
| 			if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
 | |
| 				lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
 | |
| 				coalesced++;
 | |
| 			} else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
 | |
| 				/* fix overlapping area */
 | |
| 				lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1);
 | |
| 				coalesced++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (coalesced)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (alist_full(lmb_rgn_lst) &&
 | |
| 	    !alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
 | |
| 		return -1;
 | |
| 	rgn = lmb_rgn_lst->data;
 | |
| 
 | |
| 	/* Couldn't coalesce the LMB, so add it to the sorted table. */
 | |
| 	for (i = lmb_rgn_lst->count; i >= 0; i--) {
 | |
| 		if (i && base < rgn[i - 1].base) {
 | |
| 			rgn[i] = rgn[i - 1];
 | |
| 		} else {
 | |
| 			rgn[i].base = base;
 | |
| 			rgn[i].size = size;
 | |
| 			rgn[i].flags = flags;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	lmb_rgn_lst->count++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long _lmb_free(struct alist *lmb_rgn_lst, phys_addr_t base,
 | |
| 		      phys_size_t size)
 | |
| {
 | |
| 	struct lmb_region *rgn;
 | |
| 	phys_addr_t rgnbegin, rgnend;
 | |
| 	phys_addr_t end = base + size - 1;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Suppress GCC warnings */
 | |
| 	rgnbegin = 0;
 | |
| 	rgnend = 0;
 | |
| 
 | |
| 	rgn = lmb_rgn_lst->data;
 | |
| 	/* Find the region where (base, size) belongs to */
 | |
| 	for (i = 0; i < lmb_rgn_lst->count; i++) {
 | |
| 		rgnbegin = rgn[i].base;
 | |
| 		rgnend = rgnbegin + rgn[i].size - 1;
 | |
| 
 | |
| 		if (rgnbegin <= base && end <= rgnend)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Didn't find the region */
 | |
| 	if (i == lmb_rgn_lst->count)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Check to see if we are removing entire region */
 | |
| 	if (rgnbegin == base && rgnend == end) {
 | |
| 		lmb_remove_region(lmb_rgn_lst, i);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check to see if region is matching at the front */
 | |
| 	if (rgnbegin == base) {
 | |
| 		rgn[i].base = end + 1;
 | |
| 		rgn[i].size -= size;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check to see if the region is matching at the end */
 | |
| 	if (rgnend == end) {
 | |
| 		rgn[i].size -= size;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to split the entry -  adjust the current one to the
 | |
| 	 * beginging of the hole and add the region after hole.
 | |
| 	 */
 | |
| 	rgn[i].size = base - rgn[i].base;
 | |
| 	return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
 | |
| 				    rgn[i].flags);
 | |
| }
 | |
| 
 | |
| static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
 | |
| 				phys_size_t size)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 
 | |
| 	for (i = 0; i < lmb_rgn_lst->count; i++) {
 | |
| 		phys_addr_t rgnbase = rgn[i].base;
 | |
| 		phys_size_t rgnsize = rgn[i].size;
 | |
| 
 | |
| 		if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return (i < lmb_rgn_lst->count) ? i : -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IOVA LMB memory maps using lmb pointers instead of the global LMB memory map.
 | |
|  */
 | |
| 
 | |
| int io_lmb_setup(struct lmb *io_lmb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = alist_init(&io_lmb->available_mem, sizeof(struct lmb_region),
 | |
| 			 (uint)LMB_ALIST_INITIAL_SIZE);
 | |
| 	if (!ret) {
 | |
| 		log_debug("Unable to initialise the list for LMB free IOVA\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = alist_init(&io_lmb->used_mem, sizeof(struct lmb_region),
 | |
| 			 (uint)LMB_ALIST_INITIAL_SIZE);
 | |
| 	if (!ret) {
 | |
| 		log_debug("Unable to initialise the list for LMB used IOVA\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	io_lmb->test = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void io_lmb_teardown(struct lmb *io_lmb)
 | |
| {
 | |
| 	alist_uninit(&io_lmb->available_mem);
 | |
| 	alist_uninit(&io_lmb->used_mem);
 | |
| }
 | |
| 
 | |
| long io_lmb_add(struct lmb *io_lmb, phys_addr_t base, phys_size_t size)
 | |
| {
 | |
| 	return lmb_add_region_flags(&io_lmb->available_mem, base, size, LMB_NONE);
 | |
| }
 | |
| 
 | |
| /* derived and simplified from _lmb_alloc_base() */
 | |
| phys_addr_t io_lmb_alloc(struct lmb *io_lmb, phys_size_t size, ulong align)
 | |
| {
 | |
| 	long i, rgn;
 | |
| 	phys_addr_t base = 0;
 | |
| 	phys_addr_t res_base;
 | |
| 	struct lmb_region *lmb_used = io_lmb->used_mem.data;
 | |
| 	struct lmb_region *lmb_memory = io_lmb->available_mem.data;
 | |
| 
 | |
| 	for (i = io_lmb->available_mem.count - 1; i >= 0; i--) {
 | |
| 		phys_addr_t lmbbase = lmb_memory[i].base;
 | |
| 		phys_size_t lmbsize = lmb_memory[i].size;
 | |
| 
 | |
| 		if (lmbsize < size)
 | |
| 			continue;
 | |
| 		base = ALIGN_DOWN(lmbbase + lmbsize - size, align);
 | |
| 
 | |
| 		while (base && lmbbase <= base) {
 | |
| 			rgn = lmb_overlaps_region(&io_lmb->used_mem, base, size);
 | |
| 			if (rgn < 0) {
 | |
| 				/* This area isn't reserved, take it */
 | |
| 				if (lmb_add_region_flags(&io_lmb->used_mem, base,
 | |
| 							 size, LMB_NONE) < 0)
 | |
| 					return 0;
 | |
| 
 | |
| 				return base;
 | |
| 			}
 | |
| 
 | |
| 			res_base = lmb_used[rgn].base;
 | |
| 			if (res_base < size)
 | |
| 				break;
 | |
| 			base = ALIGN_DOWN(res_base - size, align);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long io_lmb_free(struct lmb *io_lmb, phys_addr_t base, phys_size_t size)
 | |
| {
 | |
| 	return _lmb_free(&io_lmb->used_mem, base, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Low level LMB functions are used to manage IOVA memory maps for the Apple
 | |
|  * dart iommu. They must not access the global LMB memory map.
 | |
|  * So keep the global LMB variable declaration unreachable from them.
 | |
|  */
 | |
| 
 | |
| static struct lmb lmb;
 | |
| 
 | |
| static bool lmb_should_notify(u32 flags)
 | |
| {
 | |
| 	return !lmb.test && !(flags & LMB_NONOTIFY) &&
 | |
| 		CONFIG_IS_ENABLED(EFI_LOADER);
 | |
| }
 | |
| 
 | |
| static int lmb_map_update_notify(phys_addr_t addr, phys_size_t size, u8 op,
 | |
| 				 u32 flags)
 | |
| {
 | |
| 	u64 efi_addr;
 | |
| 	u64 pages;
 | |
| 	efi_status_t status;
 | |
| 
 | |
| 	if (op != MAP_OP_RESERVE && op != MAP_OP_FREE && op != MAP_OP_ADD) {
 | |
| 		log_err("Invalid map update op received (%d)\n", op);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (!lmb_should_notify(flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	efi_addr = (uintptr_t)map_sysmem(addr, 0);
 | |
| 	pages = efi_size_in_pages(size + (efi_addr & EFI_PAGE_MASK));
 | |
| 	efi_addr &= ~EFI_PAGE_MASK;
 | |
| 
 | |
| 	status = efi_add_memory_map_pg(efi_addr, pages,
 | |
| 				       op == MAP_OP_RESERVE ?
 | |
| 				       EFI_BOOT_SERVICES_DATA :
 | |
| 				       EFI_CONVENTIONAL_MEMORY,
 | |
| 				       false);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		log_err("%s: LMB Map notify failure %lu\n", __func__,
 | |
| 			status & ~EFI_ERROR_MASK);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	unmap_sysmem((void *)(uintptr_t)efi_addr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void lmb_print_region_flags(u32 flags)
 | |
| {
 | |
| 	const char * const flag_str[] = { "none", "no-map", "no-overwrite",
 | |
| 					  "no-notify" };
 | |
| 	unsigned int pflags = flags &
 | |
| 			      (LMB_NOMAP | LMB_NOOVERWRITE | LMB_NONOTIFY);
 | |
| 
 | |
| 	if (flags != pflags) {
 | |
| 		printf("invalid %#x\n", flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		int bitpos = pflags ? fls(pflags) - 1 : 0;
 | |
| 
 | |
| 		printf("%s", flag_str[bitpos]);
 | |
| 		pflags &= ~(1u << bitpos);
 | |
| 		puts(pflags ? ", " : "\n");
 | |
| 	} while (pflags);
 | |
| }
 | |
| 
 | |
| static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
 | |
| {
 | |
| 	struct lmb_region *rgn = lmb_rgn_lst->data;
 | |
| 	unsigned long long base, size, end;
 | |
| 	u32 flags;
 | |
| 	int i;
 | |
| 
 | |
| 	printf(" %s.count = %#x\n", name, lmb_rgn_lst->count);
 | |
| 
 | |
| 	for (i = 0; i < lmb_rgn_lst->count; i++) {
 | |
| 		base = rgn[i].base;
 | |
| 		size = rgn[i].size;
 | |
| 		end = base + size - 1;
 | |
| 		flags = rgn[i].flags;
 | |
| 
 | |
| 		printf(" %s[%d]\t[%#llx-%#llx], %#llx bytes, flags: ",
 | |
| 		       name, i, base, end, size);
 | |
| 		lmb_print_region_flags(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void lmb_dump_all_force(void)
 | |
| {
 | |
| 	printf("lmb_dump_all:\n");
 | |
| 	lmb_dump_region(&lmb.available_mem, "memory");
 | |
| 	lmb_dump_region(&lmb.used_mem, "reserved");
 | |
| }
 | |
| 
 | |
| void lmb_dump_all(void)
 | |
| {
 | |
| #ifdef DEBUG
 | |
| 	lmb_dump_all_force();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void lmb_reserve_uboot_region(void)
 | |
| {
 | |
| 	int bank;
 | |
| 	ulong end, bank_end;
 | |
| 	phys_addr_t rsv_start;
 | |
| 
 | |
| 	rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
 | |
| 	end = gd->ram_top;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve memory from aligned address below the bottom of U-Boot stack
 | |
| 	 * until end of RAM area to prevent LMB from overwriting that memory.
 | |
| 	 */
 | |
| 	debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
 | |
| 
 | |
| 	for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
 | |
| 		if (!gd->bd->bi_dram[bank].size ||
 | |
| 		    rsv_start < gd->bd->bi_dram[bank].start)
 | |
| 			continue;
 | |
| 		/* Watch out for RAM at end of address space! */
 | |
| 		bank_end = gd->bd->bi_dram[bank].start +
 | |
| 			gd->bd->bi_dram[bank].size - 1;
 | |
| 		if (rsv_start > bank_end)
 | |
| 			continue;
 | |
| 		if (bank_end > end)
 | |
| 			bank_end = end - 1;
 | |
| 
 | |
| 		lmb_reserve(rsv_start, bank_end - rsv_start + 1, LMB_NOOVERWRITE);
 | |
| 
 | |
| 		if (gd->flags & GD_FLG_SKIP_RELOC)
 | |
| 			lmb_reserve((phys_addr_t)(uintptr_t)_start,
 | |
| 				    gd->mon_len, LMB_NOOVERWRITE);
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void lmb_reserve_common(void *fdt_blob)
 | |
| {
 | |
| 	lmb_reserve_uboot_region();
 | |
| 
 | |
| 	if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
 | |
| 		boot_fdt_add_mem_rsv_regions(fdt_blob);
 | |
| }
 | |
| 
 | |
| static __maybe_unused void lmb_reserve_common_spl(void)
 | |
| {
 | |
| 	phys_addr_t rsv_start;
 | |
| 	phys_size_t rsv_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume a SPL stack of 16KB. This must be
 | |
| 	 * more than enough for the SPL stage.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
 | |
| 		rsv_start = gd->start_addr_sp - 16384;
 | |
| 		rsv_size = 16384;
 | |
| 		lmb_reserve(rsv_start, rsv_size, LMB_NOOVERWRITE);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
 | |
| 		/* Reserve the bss region */
 | |
| 		rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
 | |
| 		rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
 | |
| 			(phys_addr_t)(uintptr_t)__bss_start;
 | |
| 		lmb_reserve(rsv_start, rsv_size, LMB_NOOVERWRITE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void lmb_add_memory(void)
 | |
| {
 | |
| 	int i;
 | |
| 	phys_addr_t bank_end;
 | |
| 	phys_size_t size;
 | |
| 	u64 ram_top = gd->ram_top;
 | |
| 	struct bd_info *bd = gd->bd;
 | |
| 
 | |
| 	if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP))
 | |
| 		return lmb_arch_add_memory();
 | |
| 
 | |
| 	/* Assume a 4GB ram_top if not defined */
 | |
| 	if (!ram_top)
 | |
| 		ram_top = 0x100000000ULL;
 | |
| 
 | |
| 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
 | |
| 		size = bd->bi_dram[i].size;
 | |
| 		bank_end = bd->bi_dram[i].start + size;
 | |
| 
 | |
| 		if (size) {
 | |
| 			lmb_add(bd->bi_dram[i].start, size);
 | |
| 
 | |
| 			/*
 | |
| 			 * Reserve memory above ram_top as
 | |
| 			 * no-overwrite so that it cannot be
 | |
| 			 * allocated
 | |
| 			 */
 | |
| 			if (bd->bi_dram[i].start >= ram_top)
 | |
| 				lmb_reserve(bd->bi_dram[i].start, size,
 | |
| 					    LMB_NOOVERWRITE);
 | |
| 			else if (bank_end > ram_top)
 | |
| 				lmb_reserve(ram_top, bank_end - ram_top,
 | |
| 					    LMB_NOOVERWRITE);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This routine may be called with relocation disabled. */
 | |
| long lmb_add(phys_addr_t base, phys_size_t size)
 | |
| {
 | |
| 	long ret;
 | |
| 	struct alist *lmb_rgn_lst = &lmb.available_mem;
 | |
| 
 | |
| 	ret = lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return lmb_map_update_notify(base, size, MAP_OP_ADD, LMB_NONE);
 | |
| }
 | |
| 
 | |
| long lmb_free_flags(phys_addr_t base, phys_size_t size,
 | |
| 		    uint flags)
 | |
| {
 | |
| 	long ret;
 | |
| 
 | |
| 	ret = _lmb_free(&lmb.used_mem, base, size);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return lmb_map_update_notify(base, size, MAP_OP_FREE, flags);
 | |
| }
 | |
| 
 | |
| long lmb_free(phys_addr_t base, phys_size_t size)
 | |
| {
 | |
| 	return lmb_free_flags(base, size, LMB_NONE);
 | |
| }
 | |
| 
 | |
| long lmb_reserve(phys_addr_t base, phys_size_t size, u32 flags)
 | |
| {
 | |
| 	long ret = 0;
 | |
| 	struct alist *lmb_rgn_lst = &lmb.used_mem;
 | |
| 
 | |
| 	ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return lmb_map_update_notify(base, size, MAP_OP_RESERVE, flags);
 | |
| }
 | |
| 
 | |
| static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align,
 | |
| 				   phys_addr_t max_addr, u32 flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	long i, rgn;
 | |
| 	phys_addr_t base = 0;
 | |
| 	phys_addr_t res_base;
 | |
| 	struct lmb_region *lmb_used = lmb.used_mem.data;
 | |
| 	struct lmb_region *lmb_memory = lmb.available_mem.data;
 | |
| 
 | |
| 	for (i = lmb.available_mem.count - 1; i >= 0; i--) {
 | |
| 		phys_addr_t lmbbase = lmb_memory[i].base;
 | |
| 		phys_size_t lmbsize = lmb_memory[i].size;
 | |
| 
 | |
| 		if (lmbsize < size)
 | |
| 			continue;
 | |
| 
 | |
| 		if (max_addr == LMB_ALLOC_ANYWHERE) {
 | |
| 			base = ALIGN_DOWN(lmbbase + lmbsize - size, align);
 | |
| 		} else if (lmbbase < max_addr) {
 | |
| 			base = lmbbase + lmbsize;
 | |
| 			if (base < lmbbase)
 | |
| 				base = -1;
 | |
| 			base = min(base, max_addr);
 | |
| 			base = ALIGN_DOWN(base - size, align);
 | |
| 		} else {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		while (base && lmbbase <= base) {
 | |
| 			rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
 | |
| 			if (rgn < 0) {
 | |
| 				/* This area isn't reserved, take it */
 | |
| 				if (lmb_add_region_flags(&lmb.used_mem, base,
 | |
| 							 size, flags))
 | |
| 					return 0;
 | |
| 
 | |
| 				ret = lmb_map_update_notify(base, size,
 | |
| 							    MAP_OP_RESERVE,
 | |
| 							    flags);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 
 | |
| 				return base;
 | |
| 			}
 | |
| 
 | |
| 			res_base = lmb_used[rgn].base;
 | |
| 			if (res_base < size)
 | |
| 				break;
 | |
| 			base = ALIGN_DOWN(res_base - size, align);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| phys_addr_t lmb_alloc(phys_size_t size, ulong align)
 | |
| {
 | |
| 	return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE, LMB_NONE);
 | |
| }
 | |
| 
 | |
| phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr,
 | |
| 			   uint flags)
 | |
| {
 | |
| 	phys_addr_t alloc;
 | |
| 
 | |
| 	alloc = _lmb_alloc_base(size, align, max_addr, flags);
 | |
| 
 | |
| 	if (alloc == 0)
 | |
| 		printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
 | |
| 		       (ulong)size, (ulong)max_addr);
 | |
| 
 | |
| 	return alloc;
 | |
| }
 | |
| 
 | |
| phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size, u32 flags)
 | |
| {
 | |
| 	long rgn;
 | |
| 	struct lmb_region *lmb_memory = lmb.available_mem.data;
 | |
| 
 | |
| 	/* Check if the requested address is in one of the memory regions */
 | |
| 	rgn = lmb_overlaps_region(&lmb.available_mem, base, size);
 | |
| 	if (rgn >= 0) {
 | |
| 		/*
 | |
| 		 * Check if the requested end address is in the same memory
 | |
| 		 * region we found.
 | |
| 		 */
 | |
| 		if (lmb_addrs_overlap(lmb_memory[rgn].base,
 | |
| 				      lmb_memory[rgn].size,
 | |
| 				      base + size - 1, 1)) {
 | |
| 			/* ok, reserve the memory */
 | |
| 			if (!lmb_reserve(base, size, flags))
 | |
| 				return base;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Return number of bytes from a given address that are free */
 | |
| phys_size_t lmb_get_free_size(phys_addr_t addr)
 | |
| {
 | |
| 	int i;
 | |
| 	long rgn;
 | |
| 	struct lmb_region *lmb_used = lmb.used_mem.data;
 | |
| 	struct lmb_region *lmb_memory = lmb.available_mem.data;
 | |
| 
 | |
| 	/* check if the requested address is in the memory regions */
 | |
| 	rgn = lmb_overlaps_region(&lmb.available_mem, addr, 1);
 | |
| 	if (rgn >= 0) {
 | |
| 		for (i = 0; i < lmb.used_mem.count; i++) {
 | |
| 			if (addr < lmb_used[i].base) {
 | |
| 				/* first reserved range > requested address */
 | |
| 				return lmb_used[i].base - addr;
 | |
| 			}
 | |
| 			if (lmb_used[i].base +
 | |
| 			    lmb_used[i].size > addr) {
 | |
| 				/* requested addr is in this reserved range */
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 		/* if we come here: no reserved ranges above requested addr */
 | |
| 		return lmb_memory[lmb.available_mem.count - 1].base +
 | |
| 		       lmb_memory[lmb.available_mem.count - 1].size - addr;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int lmb_is_reserved_flags(phys_addr_t addr, int flags)
 | |
| {
 | |
| 	int i;
 | |
| 	struct lmb_region *lmb_used = lmb.used_mem.data;
 | |
| 
 | |
| 	for (i = 0; i < lmb.used_mem.count; i++) {
 | |
| 		phys_addr_t upper = lmb_used[i].base +
 | |
| 			lmb_used[i].size - 1;
 | |
| 		if (addr >= lmb_used[i].base && addr <= upper)
 | |
| 			return (lmb_used[i].flags & flags) == flags;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int lmb_setup(bool test)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	ret = alist_init(&lmb.available_mem, sizeof(struct lmb_region),
 | |
| 			 (uint)LMB_ALIST_INITIAL_SIZE);
 | |
| 	if (!ret) {
 | |
| 		log_debug("Unable to initialise the list for LMB free memory\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
 | |
| 			 (uint)LMB_ALIST_INITIAL_SIZE);
 | |
| 	if (!ret) {
 | |
| 		log_debug("Unable to initialise the list for LMB used memory\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	lmb.test = test;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int lmb_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = lmb_setup(false);
 | |
| 	if (ret) {
 | |
| 		log_info("Unable to init LMB\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	lmb_add_memory();
 | |
| 
 | |
| 	/* Reserve the U-Boot image region once U-Boot has relocated */
 | |
| 	if (xpl_phase() == PHASE_SPL)
 | |
| 		lmb_reserve_common_spl();
 | |
| 	else if (xpl_phase() == PHASE_BOARD_R)
 | |
| 		lmb_reserve_common((void *)gd->fdt_blob);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct lmb *lmb_get(void)
 | |
| {
 | |
| 	return &lmb;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IS_ENABLED(UNIT_TEST)
 | |
| int lmb_push(struct lmb *store)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	*store = lmb;
 | |
| 	ret = lmb_setup(true);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void lmb_pop(struct lmb *store)
 | |
| {
 | |
| 	alist_uninit(&lmb.available_mem);
 | |
| 	alist_uninit(&lmb.used_mem);
 | |
| 	lmb = *store;
 | |
| }
 | |
| #endif /* UNIT_TEST */
 |