mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-25 01:58:13 +01:00 
			
		
		
		
	sync with linux v4.2
commit 64291f7db5bd8150a74ad2036f1037e6a0428df2
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date:   Sun Aug 30 11:34:09 2015 -0700
    Linux 4.2
This update is needed, as it turned out, that fastmap
was in experimental/broken state in kernel v3.15, which
was the last base for U-Boot.
Signed-off-by: Heiko Schocher <hs@denx.de>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
		
	
			
		
			
				
	
	
		
			947 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			947 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is part of UBIFS.
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Nokia Corporation.
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  *
 | |
|  * Author: Adrian Hunter
 | |
|  */
 | |
| 
 | |
| #include <linux/err.h>
 | |
| #include "ubifs.h"
 | |
| 
 | |
| /*
 | |
|  * An orphan is an inode number whose inode node has been committed to the index
 | |
|  * with a link count of zero. That happens when an open file is deleted
 | |
|  * (unlinked) and then a commit is run. In the normal course of events the inode
 | |
|  * would be deleted when the file is closed. However in the case of an unclean
 | |
|  * unmount, orphans need to be accounted for. After an unclean unmount, the
 | |
|  * orphans' inodes must be deleted which means either scanning the entire index
 | |
|  * looking for them, or keeping a list on flash somewhere. This unit implements
 | |
|  * the latter approach.
 | |
|  *
 | |
|  * The orphan area is a fixed number of LEBs situated between the LPT area and
 | |
|  * the main area. The number of orphan area LEBs is specified when the file
 | |
|  * system is created. The minimum number is 1. The size of the orphan area
 | |
|  * should be so that it can hold the maximum number of orphans that are expected
 | |
|  * to ever exist at one time.
 | |
|  *
 | |
|  * The number of orphans that can fit in a LEB is:
 | |
|  *
 | |
|  *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
 | |
|  *
 | |
|  * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
 | |
|  *
 | |
|  * Orphans are accumulated in a rb-tree. When an inode's link count drops to
 | |
|  * zero, the inode number is added to the rb-tree. It is removed from the tree
 | |
|  * when the inode is deleted.  Any new orphans that are in the orphan tree when
 | |
|  * the commit is run, are written to the orphan area in 1 or more orphan nodes.
 | |
|  * If the orphan area is full, it is consolidated to make space.  There is
 | |
|  * always enough space because validation prevents the user from creating more
 | |
|  * than the maximum number of orphans allowed.
 | |
|  */
 | |
| 
 | |
| static int dbg_check_orphans(struct ubifs_info *c);
 | |
| 
 | |
| /**
 | |
|  * ubifs_add_orphan - add an orphan.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: orphan inode number
 | |
|  *
 | |
|  * Add an orphan. This function is called when an inodes link count drops to
 | |
|  * zero.
 | |
|  */
 | |
| int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	struct ubifs_orphan *orphan, *o;
 | |
| 	struct rb_node **p, *parent = NULL;
 | |
| 
 | |
| 	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
 | |
| 	if (!orphan)
 | |
| 		return -ENOMEM;
 | |
| 	orphan->inum = inum;
 | |
| 	orphan->new = 1;
 | |
| 
 | |
| 	spin_lock(&c->orphan_lock);
 | |
| 	if (c->tot_orphans >= c->max_orphans) {
 | |
| 		spin_unlock(&c->orphan_lock);
 | |
| 		kfree(orphan);
 | |
| 		return -ENFILE;
 | |
| 	}
 | |
| 	p = &c->orph_tree.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		o = rb_entry(parent, struct ubifs_orphan, rb);
 | |
| 		if (inum < o->inum)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (inum > o->inum)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else {
 | |
| 			ubifs_err(c, "orphaned twice");
 | |
| 			spin_unlock(&c->orphan_lock);
 | |
| 			kfree(orphan);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	c->tot_orphans += 1;
 | |
| 	c->new_orphans += 1;
 | |
| 	rb_link_node(&orphan->rb, parent, p);
 | |
| 	rb_insert_color(&orphan->rb, &c->orph_tree);
 | |
| 	list_add_tail(&orphan->list, &c->orph_list);
 | |
| 	list_add_tail(&orphan->new_list, &c->orph_new);
 | |
| 	spin_unlock(&c->orphan_lock);
 | |
| 	dbg_gen("ino %lu", (unsigned long)inum);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_delete_orphan - delete an orphan.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: orphan inode number
 | |
|  *
 | |
|  * Delete an orphan. This function is called when an inode is deleted.
 | |
|  */
 | |
| void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	struct ubifs_orphan *o;
 | |
| 	struct rb_node *p;
 | |
| 
 | |
| 	spin_lock(&c->orphan_lock);
 | |
| 	p = c->orph_tree.rb_node;
 | |
| 	while (p) {
 | |
| 		o = rb_entry(p, struct ubifs_orphan, rb);
 | |
| 		if (inum < o->inum)
 | |
| 			p = p->rb_left;
 | |
| 		else if (inum > o->inum)
 | |
| 			p = p->rb_right;
 | |
| 		else {
 | |
| 			if (o->del) {
 | |
| 				spin_unlock(&c->orphan_lock);
 | |
| 				dbg_gen("deleted twice ino %lu",
 | |
| 					(unsigned long)inum);
 | |
| 				return;
 | |
| 			}
 | |
| 			if (o->cmt) {
 | |
| 				o->del = 1;
 | |
| 				o->dnext = c->orph_dnext;
 | |
| 				c->orph_dnext = o;
 | |
| 				spin_unlock(&c->orphan_lock);
 | |
| 				dbg_gen("delete later ino %lu",
 | |
| 					(unsigned long)inum);
 | |
| 				return;
 | |
| 			}
 | |
| 			rb_erase(p, &c->orph_tree);
 | |
| 			list_del(&o->list);
 | |
| 			c->tot_orphans -= 1;
 | |
| 			if (o->new) {
 | |
| 				list_del(&o->new_list);
 | |
| 				c->new_orphans -= 1;
 | |
| 			}
 | |
| 			spin_unlock(&c->orphan_lock);
 | |
| 			kfree(o);
 | |
| 			dbg_gen("inum %lu", (unsigned long)inum);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&c->orphan_lock);
 | |
| 	ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_orphan_start_commit - start commit of orphans.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * Start commit of orphans.
 | |
|  */
 | |
| int ubifs_orphan_start_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_orphan *orphan, **last;
 | |
| 
 | |
| 	spin_lock(&c->orphan_lock);
 | |
| 	last = &c->orph_cnext;
 | |
| 	list_for_each_entry(orphan, &c->orph_new, new_list) {
 | |
| 		ubifs_assert(orphan->new);
 | |
| 		ubifs_assert(!orphan->cmt);
 | |
| 		orphan->new = 0;
 | |
| 		orphan->cmt = 1;
 | |
| 		*last = orphan;
 | |
| 		last = &orphan->cnext;
 | |
| 	}
 | |
| 	*last = NULL;
 | |
| 	c->cmt_orphans = c->new_orphans;
 | |
| 	c->new_orphans = 0;
 | |
| 	dbg_cmt("%d orphans to commit", c->cmt_orphans);
 | |
| 	INIT_LIST_HEAD(&c->orph_new);
 | |
| 	if (c->tot_orphans == 0)
 | |
| 		c->no_orphs = 1;
 | |
| 	else
 | |
| 		c->no_orphs = 0;
 | |
| 	spin_unlock(&c->orphan_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * avail_orphs - calculate available space.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function returns the number of orphans that can be written in the
 | |
|  * available space.
 | |
|  */
 | |
| static int avail_orphs(struct ubifs_info *c)
 | |
| {
 | |
| 	int avail_lebs, avail, gap;
 | |
| 
 | |
| 	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
 | |
| 	avail = avail_lebs *
 | |
| 	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 | |
| 	gap = c->leb_size - c->ohead_offs;
 | |
| 	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
 | |
| 		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 | |
| 	return avail;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tot_avail_orphs - calculate total space.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function returns the number of orphans that can be written in half
 | |
|  * the total space. That leaves half the space for adding new orphans.
 | |
|  */
 | |
| static int tot_avail_orphs(struct ubifs_info *c)
 | |
| {
 | |
| 	int avail_lebs, avail;
 | |
| 
 | |
| 	avail_lebs = c->orph_lebs;
 | |
| 	avail = avail_lebs *
 | |
| 	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 | |
| 	return avail / 2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_write_orph_node - write a node to the orphan head.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @len: length of node
 | |
|  * @atomic: write atomically
 | |
|  *
 | |
|  * This function writes a node to the orphan head from the orphan buffer. If
 | |
|  * %atomic is not zero, then the write is done atomically. On success, %0 is
 | |
|  * returned, otherwise a negative error code is returned.
 | |
|  */
 | |
| static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (atomic) {
 | |
| 		ubifs_assert(c->ohead_offs == 0);
 | |
| 		ubifs_prepare_node(c, c->orph_buf, len, 1);
 | |
| 		len = ALIGN(len, c->min_io_size);
 | |
| 		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
 | |
| 	} else {
 | |
| 		if (c->ohead_offs == 0) {
 | |
| 			/* Ensure LEB has been unmapped */
 | |
| 			err = ubifs_leb_unmap(c, c->ohead_lnum);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
 | |
| 				       c->ohead_offs);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_orph_node - write an orphan node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @atomic: write atomically
 | |
|  *
 | |
|  * This function builds an orphan node from the cnext list and writes it to the
 | |
|  * orphan head. On success, %0 is returned, otherwise a negative error code
 | |
|  * is returned.
 | |
|  */
 | |
| static int write_orph_node(struct ubifs_info *c, int atomic)
 | |
| {
 | |
| 	struct ubifs_orphan *orphan, *cnext;
 | |
| 	struct ubifs_orph_node *orph;
 | |
| 	int gap, err, len, cnt, i;
 | |
| 
 | |
| 	ubifs_assert(c->cmt_orphans > 0);
 | |
| 	gap = c->leb_size - c->ohead_offs;
 | |
| 	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
 | |
| 		c->ohead_lnum += 1;
 | |
| 		c->ohead_offs = 0;
 | |
| 		gap = c->leb_size;
 | |
| 		if (c->ohead_lnum > c->orph_last) {
 | |
| 			/*
 | |
| 			 * We limit the number of orphans so that this should
 | |
| 			 * never happen.
 | |
| 			 */
 | |
| 			ubifs_err(c, "out of space in orphan area");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 | |
| 	if (cnt > c->cmt_orphans)
 | |
| 		cnt = c->cmt_orphans;
 | |
| 	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
 | |
| 	ubifs_assert(c->orph_buf);
 | |
| 	orph = c->orph_buf;
 | |
| 	orph->ch.node_type = UBIFS_ORPH_NODE;
 | |
| 	spin_lock(&c->orphan_lock);
 | |
| 	cnext = c->orph_cnext;
 | |
| 	for (i = 0; i < cnt; i++) {
 | |
| 		orphan = cnext;
 | |
| 		ubifs_assert(orphan->cmt);
 | |
| 		orph->inos[i] = cpu_to_le64(orphan->inum);
 | |
| 		orphan->cmt = 0;
 | |
| 		cnext = orphan->cnext;
 | |
| 		orphan->cnext = NULL;
 | |
| 	}
 | |
| 	c->orph_cnext = cnext;
 | |
| 	c->cmt_orphans -= cnt;
 | |
| 	spin_unlock(&c->orphan_lock);
 | |
| 	if (c->cmt_orphans)
 | |
| 		orph->cmt_no = cpu_to_le64(c->cmt_no);
 | |
| 	else
 | |
| 		/* Mark the last node of the commit */
 | |
| 		orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
 | |
| 	ubifs_assert(c->ohead_offs + len <= c->leb_size);
 | |
| 	ubifs_assert(c->ohead_lnum >= c->orph_first);
 | |
| 	ubifs_assert(c->ohead_lnum <= c->orph_last);
 | |
| 	err = do_write_orph_node(c, len, atomic);
 | |
| 	c->ohead_offs += ALIGN(len, c->min_io_size);
 | |
| 	c->ohead_offs = ALIGN(c->ohead_offs, 8);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_orph_nodes - write orphan nodes until there are no more to commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @atomic: write atomically
 | |
|  *
 | |
|  * This function writes orphan nodes for all the orphans to commit. On success,
 | |
|  * %0 is returned, otherwise a negative error code is returned.
 | |
|  */
 | |
| static int write_orph_nodes(struct ubifs_info *c, int atomic)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	while (c->cmt_orphans > 0) {
 | |
| 		err = write_orph_node(c, atomic);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	if (atomic) {
 | |
| 		int lnum;
 | |
| 
 | |
| 		/* Unmap any unused LEBs after consolidation */
 | |
| 		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
 | |
| 			err = ubifs_leb_unmap(c, lnum);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * consolidate - consolidate the orphan area.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function enables consolidation by putting all the orphans into the list
 | |
|  * to commit. The list is in the order that the orphans were added, and the
 | |
|  * LEBs are written atomically in order, so at no time can orphans be lost by
 | |
|  * an unclean unmount.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int consolidate(struct ubifs_info *c)
 | |
| {
 | |
| 	int tot_avail = tot_avail_orphs(c), err = 0;
 | |
| 
 | |
| 	spin_lock(&c->orphan_lock);
 | |
| 	dbg_cmt("there is space for %d orphans and there are %d",
 | |
| 		tot_avail, c->tot_orphans);
 | |
| 	if (c->tot_orphans - c->new_orphans <= tot_avail) {
 | |
| 		struct ubifs_orphan *orphan, **last;
 | |
| 		int cnt = 0;
 | |
| 
 | |
| 		/* Change the cnext list to include all non-new orphans */
 | |
| 		last = &c->orph_cnext;
 | |
| 		list_for_each_entry(orphan, &c->orph_list, list) {
 | |
| 			if (orphan->new)
 | |
| 				continue;
 | |
| 			orphan->cmt = 1;
 | |
| 			*last = orphan;
 | |
| 			last = &orphan->cnext;
 | |
| 			cnt += 1;
 | |
| 		}
 | |
| 		*last = NULL;
 | |
| 		ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
 | |
| 		c->cmt_orphans = cnt;
 | |
| 		c->ohead_lnum = c->orph_first;
 | |
| 		c->ohead_offs = 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We limit the number of orphans so that this should
 | |
| 		 * never happen.
 | |
| 		 */
 | |
| 		ubifs_err(c, "out of space in orphan area");
 | |
| 		err = -EINVAL;
 | |
| 	}
 | |
| 	spin_unlock(&c->orphan_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * commit_orphans - commit orphans.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function commits orphans to flash. On success, %0 is returned,
 | |
|  * otherwise a negative error code is returned.
 | |
|  */
 | |
| static int commit_orphans(struct ubifs_info *c)
 | |
| {
 | |
| 	int avail, atomic = 0, err;
 | |
| 
 | |
| 	ubifs_assert(c->cmt_orphans > 0);
 | |
| 	avail = avail_orphs(c);
 | |
| 	if (avail < c->cmt_orphans) {
 | |
| 		/* Not enough space to write new orphans, so consolidate */
 | |
| 		err = consolidate(c);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		atomic = 1;
 | |
| 	}
 | |
| 	err = write_orph_nodes(c, atomic);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * erase_deleted - erase the orphans marked for deletion.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * During commit, the orphans being committed cannot be deleted, so they are
 | |
|  * marked for deletion and deleted by this function. Also, the recovery
 | |
|  * adds killed orphans to the deletion list, and therefore they are deleted
 | |
|  * here too.
 | |
|  */
 | |
| static void erase_deleted(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_orphan *orphan, *dnext;
 | |
| 
 | |
| 	spin_lock(&c->orphan_lock);
 | |
| 	dnext = c->orph_dnext;
 | |
| 	while (dnext) {
 | |
| 		orphan = dnext;
 | |
| 		dnext = orphan->dnext;
 | |
| 		ubifs_assert(!orphan->new);
 | |
| 		ubifs_assert(orphan->del);
 | |
| 		rb_erase(&orphan->rb, &c->orph_tree);
 | |
| 		list_del(&orphan->list);
 | |
| 		c->tot_orphans -= 1;
 | |
| 		dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
 | |
| 		kfree(orphan);
 | |
| 	}
 | |
| 	c->orph_dnext = NULL;
 | |
| 	spin_unlock(&c->orphan_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_orphan_end_commit - end commit of orphans.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * End commit of orphans.
 | |
|  */
 | |
| int ubifs_orphan_end_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (c->cmt_orphans != 0) {
 | |
| 		err = commit_orphans(c);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	erase_deleted(c);
 | |
| 	err = dbg_check_orphans(c);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_clear_orphans - erase all LEBs used for orphans.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * If recovery is not required, then the orphans from the previous session
 | |
|  * are not needed. This function locates the LEBs used to record
 | |
|  * orphans, and un-maps them.
 | |
|  */
 | |
| int ubifs_clear_orphans(struct ubifs_info *c)
 | |
| {
 | |
| 	int lnum, err;
 | |
| 
 | |
| 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 | |
| 		err = ubifs_leb_unmap(c, lnum);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	c->ohead_lnum = c->orph_first;
 | |
| 	c->ohead_offs = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * insert_dead_orphan - insert an orphan.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: orphan inode number
 | |
|  *
 | |
|  * This function is a helper to the 'do_kill_orphans()' function. The orphan
 | |
|  * must be kept until the next commit, so it is added to the rb-tree and the
 | |
|  * deletion list.
 | |
|  */
 | |
| static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	struct ubifs_orphan *orphan, *o;
 | |
| 	struct rb_node **p, *parent = NULL;
 | |
| 
 | |
| 	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
 | |
| 	if (!orphan)
 | |
| 		return -ENOMEM;
 | |
| 	orphan->inum = inum;
 | |
| 
 | |
| 	p = &c->orph_tree.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		o = rb_entry(parent, struct ubifs_orphan, rb);
 | |
| 		if (inum < o->inum)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (inum > o->inum)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else {
 | |
| 			/* Already added - no problem */
 | |
| 			kfree(orphan);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	c->tot_orphans += 1;
 | |
| 	rb_link_node(&orphan->rb, parent, p);
 | |
| 	rb_insert_color(&orphan->rb, &c->orph_tree);
 | |
| 	list_add_tail(&orphan->list, &c->orph_list);
 | |
| 	orphan->del = 1;
 | |
| 	orphan->dnext = c->orph_dnext;
 | |
| 	c->orph_dnext = orphan;
 | |
| 	dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
 | |
| 		c->new_orphans, c->tot_orphans);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_kill_orphans - remove orphan inodes from the index.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sleb: scanned LEB
 | |
|  * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
 | |
|  * @outofdate: whether the LEB is out of date is returned here
 | |
|  * @last_flagged: whether the end orphan node is encountered
 | |
|  *
 | |
|  * This function is a helper to the 'kill_orphans()' function. It goes through
 | |
|  * every orphan node in a LEB and for every inode number recorded, removes
 | |
|  * all keys for that inode from the TNC.
 | |
|  */
 | |
| static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 | |
| 			   unsigned long long *last_cmt_no, int *outofdate,
 | |
| 			   int *last_flagged)
 | |
| {
 | |
| 	struct ubifs_scan_node *snod;
 | |
| 	struct ubifs_orph_node *orph;
 | |
| 	unsigned long long cmt_no;
 | |
| 	ino_t inum;
 | |
| 	int i, n, err, first = 1;
 | |
| 
 | |
| 	list_for_each_entry(snod, &sleb->nodes, list) {
 | |
| 		if (snod->type != UBIFS_ORPH_NODE) {
 | |
| 			ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
 | |
| 				  snod->type, sleb->lnum, snod->offs);
 | |
| 			ubifs_dump_node(c, snod->node);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		orph = snod->node;
 | |
| 
 | |
| 		/* Check commit number */
 | |
| 		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
 | |
| 		/*
 | |
| 		 * The commit number on the master node may be less, because
 | |
| 		 * of a failed commit. If there are several failed commits in a
 | |
| 		 * row, the commit number written on orphan nodes will continue
 | |
| 		 * to increase (because the commit number is adjusted here) even
 | |
| 		 * though the commit number on the master node stays the same
 | |
| 		 * because the master node has not been re-written.
 | |
| 		 */
 | |
| 		if (cmt_no > c->cmt_no)
 | |
| 			c->cmt_no = cmt_no;
 | |
| 		if (cmt_no < *last_cmt_no && *last_flagged) {
 | |
| 			/*
 | |
| 			 * The last orphan node had a higher commit number and
 | |
| 			 * was flagged as the last written for that commit
 | |
| 			 * number. That makes this orphan node, out of date.
 | |
| 			 */
 | |
| 			if (!first) {
 | |
| 				ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
 | |
| 					  cmt_no, sleb->lnum, snod->offs);
 | |
| 				ubifs_dump_node(c, snod->node);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			dbg_rcvry("out of date LEB %d", sleb->lnum);
 | |
| 			*outofdate = 1;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (first)
 | |
| 			first = 0;
 | |
| 
 | |
| 		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			inum = le64_to_cpu(orph->inos[i]);
 | |
| 			dbg_rcvry("deleting orphaned inode %lu",
 | |
| 				  (unsigned long)inum);
 | |
| 			err = ubifs_tnc_remove_ino(c, inum);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			err = insert_dead_orphan(c, inum);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		*last_cmt_no = cmt_no;
 | |
| 		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
 | |
| 			dbg_rcvry("last orph node for commit %llu at %d:%d",
 | |
| 				  cmt_no, sleb->lnum, snod->offs);
 | |
| 			*last_flagged = 1;
 | |
| 		} else
 | |
| 			*last_flagged = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kill_orphans - remove all orphan inodes from the index.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * If recovery is required, then orphan inodes recorded during the previous
 | |
|  * session (which ended with an unclean unmount) must be deleted from the index.
 | |
|  * This is done by updating the TNC, but since the index is not updated until
 | |
|  * the next commit, the LEBs where the orphan information is recorded are not
 | |
|  * erased until the next commit.
 | |
|  */
 | |
| static int kill_orphans(struct ubifs_info *c)
 | |
| {
 | |
| 	unsigned long long last_cmt_no = 0;
 | |
| 	int lnum, err = 0, outofdate = 0, last_flagged = 0;
 | |
| 
 | |
| 	c->ohead_lnum = c->orph_first;
 | |
| 	c->ohead_offs = 0;
 | |
| 	/* Check no-orphans flag and skip this if no orphans */
 | |
| 	if (c->no_orphs) {
 | |
| 		dbg_rcvry("no orphans");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Orph nodes always start at c->orph_first and are written to each
 | |
| 	 * successive LEB in turn. Generally unused LEBs will have been unmapped
 | |
| 	 * but may contain out of date orphan nodes if the unmap didn't go
 | |
| 	 * through. In addition, the last orphan node written for each commit is
 | |
| 	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
 | |
| 	 * there are orphan nodes from the next commit (i.e. the commit did not
 | |
| 	 * complete successfully). In that case, no orphans will have been lost
 | |
| 	 * due to the way that orphans are written, and any orphans added will
 | |
| 	 * be valid orphans anyway and so can be deleted.
 | |
| 	 */
 | |
| 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 | |
| 		struct ubifs_scan_leb *sleb;
 | |
| 
 | |
| 		dbg_rcvry("LEB %d", lnum);
 | |
| 		sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
 | |
| 		if (IS_ERR(sleb)) {
 | |
| 			if (PTR_ERR(sleb) == -EUCLEAN)
 | |
| 				sleb = ubifs_recover_leb(c, lnum, 0,
 | |
| 							 c->sbuf, -1);
 | |
| 			if (IS_ERR(sleb)) {
 | |
| 				err = PTR_ERR(sleb);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
 | |
| 				      &last_flagged);
 | |
| 		if (err || outofdate) {
 | |
| 			ubifs_scan_destroy(sleb);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (sleb->endpt) {
 | |
| 			c->ohead_lnum = lnum;
 | |
| 			c->ohead_offs = sleb->endpt;
 | |
| 		}
 | |
| 		ubifs_scan_destroy(sleb);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @unclean: indicates recovery from unclean unmount
 | |
|  * @read_only: indicates read only mount
 | |
|  *
 | |
|  * This function is called when mounting to erase orphans from the previous
 | |
|  * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
 | |
|  * orphans are deleted.
 | |
|  */
 | |
| int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	c->max_orphans = tot_avail_orphs(c);
 | |
| 
 | |
| 	if (!read_only) {
 | |
| 		c->orph_buf = vmalloc(c->leb_size);
 | |
| 		if (!c->orph_buf)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (unclean)
 | |
| 		err = kill_orphans(c);
 | |
| 	else if (!read_only)
 | |
| 		err = ubifs_clear_orphans(c);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Everything below is related to debugging.
 | |
|  */
 | |
| 
 | |
| struct check_orphan {
 | |
| 	struct rb_node rb;
 | |
| 	ino_t inum;
 | |
| };
 | |
| 
 | |
| struct check_info {
 | |
| 	unsigned long last_ino;
 | |
| 	unsigned long tot_inos;
 | |
| 	unsigned long missing;
 | |
| 	unsigned long long leaf_cnt;
 | |
| 	struct ubifs_ino_node *node;
 | |
| 	struct rb_root root;
 | |
| };
 | |
| 
 | |
| static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	struct ubifs_orphan *o;
 | |
| 	struct rb_node *p;
 | |
| 
 | |
| 	spin_lock(&c->orphan_lock);
 | |
| 	p = c->orph_tree.rb_node;
 | |
| 	while (p) {
 | |
| 		o = rb_entry(p, struct ubifs_orphan, rb);
 | |
| 		if (inum < o->inum)
 | |
| 			p = p->rb_left;
 | |
| 		else if (inum > o->inum)
 | |
| 			p = p->rb_right;
 | |
| 		else {
 | |
| 			spin_unlock(&c->orphan_lock);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&c->orphan_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
 | |
| {
 | |
| 	struct check_orphan *orphan, *o;
 | |
| 	struct rb_node **p, *parent = NULL;
 | |
| 
 | |
| 	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
 | |
| 	if (!orphan)
 | |
| 		return -ENOMEM;
 | |
| 	orphan->inum = inum;
 | |
| 
 | |
| 	p = &root->rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		o = rb_entry(parent, struct check_orphan, rb);
 | |
| 		if (inum < o->inum)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (inum > o->inum)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else {
 | |
| 			kfree(orphan);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	rb_link_node(&orphan->rb, parent, p);
 | |
| 	rb_insert_color(&orphan->rb, root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
 | |
| {
 | |
| 	struct check_orphan *o;
 | |
| 	struct rb_node *p;
 | |
| 
 | |
| 	p = root->rb_node;
 | |
| 	while (p) {
 | |
| 		o = rb_entry(p, struct check_orphan, rb);
 | |
| 		if (inum < o->inum)
 | |
| 			p = p->rb_left;
 | |
| 		else if (inum > o->inum)
 | |
| 			p = p->rb_right;
 | |
| 		else
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dbg_free_check_tree(struct rb_root *root)
 | |
| {
 | |
| 	struct check_orphan *o, *n;
 | |
| 
 | |
| 	rbtree_postorder_for_each_entry_safe(o, n, root, rb)
 | |
| 		kfree(o);
 | |
| }
 | |
| 
 | |
| static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | |
| 			    void *priv)
 | |
| {
 | |
| 	struct check_info *ci = priv;
 | |
| 	ino_t inum;
 | |
| 	int err;
 | |
| 
 | |
| 	inum = key_inum(c, &zbr->key);
 | |
| 	if (inum != ci->last_ino) {
 | |
| 		/* Lowest node type is the inode node, so it comes first */
 | |
| 		if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
 | |
| 			ubifs_err(c, "found orphan node ino %lu, type %d",
 | |
| 				  (unsigned long)inum, key_type(c, &zbr->key));
 | |
| 		ci->last_ino = inum;
 | |
| 		ci->tot_inos += 1;
 | |
| 		err = ubifs_tnc_read_node(c, zbr, ci->node);
 | |
| 		if (err) {
 | |
| 			ubifs_err(c, "node read failed, error %d", err);
 | |
| 			return err;
 | |
| 		}
 | |
| 		if (ci->node->nlink == 0)
 | |
| 			/* Must be recorded as an orphan */
 | |
| 			if (!dbg_find_check_orphan(&ci->root, inum) &&
 | |
| 			    !dbg_find_orphan(c, inum)) {
 | |
| 				ubifs_err(c, "missing orphan, ino %lu",
 | |
| 					  (unsigned long)inum);
 | |
| 				ci->missing += 1;
 | |
| 			}
 | |
| 	}
 | |
| 	ci->leaf_cnt += 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
 | |
| {
 | |
| 	struct ubifs_scan_node *snod;
 | |
| 	struct ubifs_orph_node *orph;
 | |
| 	ino_t inum;
 | |
| 	int i, n, err;
 | |
| 
 | |
| 	list_for_each_entry(snod, &sleb->nodes, list) {
 | |
| 		cond_resched();
 | |
| 		if (snod->type != UBIFS_ORPH_NODE)
 | |
| 			continue;
 | |
| 		orph = snod->node;
 | |
| 		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			inum = le64_to_cpu(orph->inos[i]);
 | |
| 			err = dbg_ins_check_orphan(&ci->root, inum);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
 | |
| {
 | |
| 	int lnum, err = 0;
 | |
| 	void *buf;
 | |
| 
 | |
| 	/* Check no-orphans flag and skip this if no orphans */
 | |
| 	if (c->no_orphs)
 | |
| 		return 0;
 | |
| 
 | |
| 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 | |
| 	if (!buf) {
 | |
| 		ubifs_err(c, "cannot allocate memory to check orphans");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 | |
| 		struct ubifs_scan_leb *sleb;
 | |
| 
 | |
| 		sleb = ubifs_scan(c, lnum, 0, buf, 0);
 | |
| 		if (IS_ERR(sleb)) {
 | |
| 			err = PTR_ERR(sleb);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		err = dbg_read_orphans(ci, sleb);
 | |
| 		ubifs_scan_destroy(sleb);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	vfree(buf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int dbg_check_orphans(struct ubifs_info *c)
 | |
| {
 | |
| 	struct check_info ci;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!dbg_is_chk_orph(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	ci.last_ino = 0;
 | |
| 	ci.tot_inos = 0;
 | |
| 	ci.missing  = 0;
 | |
| 	ci.leaf_cnt = 0;
 | |
| 	ci.root = RB_ROOT;
 | |
| 	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 | |
| 	if (!ci.node) {
 | |
| 		ubifs_err(c, "out of memory");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	err = dbg_scan_orphans(c, &ci);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
 | |
| 	if (err) {
 | |
| 		ubifs_err(c, "cannot scan TNC, error %d", err);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (ci.missing) {
 | |
| 		ubifs_err(c, "%lu missing orphan(s)", ci.missing);
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dbg_cmt("last inode number is %lu", ci.last_ino);
 | |
| 	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
 | |
| 	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
 | |
| 
 | |
| out:
 | |
| 	dbg_free_check_tree(&ci.root);
 | |
| 	kfree(ci.node);
 | |
| 	return err;
 | |
| }
 |