mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-31 12:08:19 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			769 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			769 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (C) Copyright 2000
 | |
|  * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
 | |
|  *
 | |
|  * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
 | |
|  * Marius Groeger <mgroeger@sysgo.de>
 | |
|  *
 | |
|  * See file CREDITS for list of people who contributed to this
 | |
|  * project.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 of
 | |
|  * the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 | |
|  * MA 02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| 
 | |
| #if defined(CONFIG_HARD_I2C)
 | |
| 
 | |
| #include <asm/cpm_8260.h>
 | |
| #include <i2c.h>
 | |
| 
 | |
| /* define to enable debug messages */
 | |
| #undef  DEBUG_I2C
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| /* uSec to wait between polls of the i2c */
 | |
| #define DELAY_US	100
 | |
| /* uSec to wait for the CPM to start processing the buffer */
 | |
| #define START_DELAY_US	1000
 | |
| 
 | |
| /*
 | |
|  * tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the
 | |
|  * timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP
 | |
|  */
 | |
| #define TOUT_LOOP 5
 | |
| 
 | |
| /*-----------------------------------------------------------------------
 | |
|  * Set default values
 | |
|  */
 | |
| #ifndef	CFG_I2C_SPEED
 | |
| #define	CFG_I2C_SPEED	50000
 | |
| #endif
 | |
| 
 | |
| #ifndef	CFG_I2C_SLAVE
 | |
| #define	CFG_I2C_SLAVE	0xFE
 | |
| #endif
 | |
| /*-----------------------------------------------------------------------
 | |
|  */
 | |
| 
 | |
| typedef void (*i2c_ecb_t)(int, int, void *);    /* error callback function */
 | |
| 
 | |
| /* This structure keeps track of the bd and buffer space usage. */
 | |
| typedef struct i2c_state {
 | |
| 	int		rx_idx;		/* index   to next free Rx BD */
 | |
| 	int		tx_idx;		/* index   to next free Tx BD */
 | |
| 	void		*rxbd;		/* pointer to next free Rx BD */
 | |
| 	void		*txbd;		/* pointer to next free Tx BD */
 | |
| 	int		tx_space;	/* number  of Tx bytes left   */
 | |
| 	unsigned char	*tx_buf;	/* pointer to free Tx area    */
 | |
| 	i2c_ecb_t	err_cb;		/* error callback function    */
 | |
| 	void		*cb_data;	/* private data to be passed  */
 | |
| } i2c_state_t;
 | |
| 
 | |
| /* flags for i2c_send() and i2c_receive() */
 | |
| #define	I2CF_ENABLE_SECONDARY	0x01	/* secondary_address is valid	*/
 | |
| #define	I2CF_START_COND		0x02	/* tx: generate start condition	*/
 | |
| #define I2CF_STOP_COND		0x04	/* tx: generate stop  condition	*/
 | |
| 
 | |
| /* return codes */
 | |
| #define I2CERR_NO_BUFFERS	1	/* no more BDs or buffer space	*/
 | |
| #define I2CERR_MSG_TOO_LONG	2	/* tried to send/receive to much data   */
 | |
| #define I2CERR_TIMEOUT		3	/* timeout in i2c_doio()	*/
 | |
| #define I2CERR_QUEUE_EMPTY	4	/* i2c_doio called without send/receive */
 | |
| #define I2CERR_IO_ERROR		5	/* had an error during comms	*/
 | |
| 
 | |
| /* error callback flags */
 | |
| #define I2CECB_RX_ERR		0x10	/* this is a receive error	*/
 | |
| #define     I2CECB_RX_OV	0x02	/* receive overrun error	*/
 | |
| #define     I2CECB_RX_MASK	0x0f	/* mask for error bits		*/
 | |
| #define I2CECB_TX_ERR		0x20	/* this is a transmit error	*/
 | |
| #define     I2CECB_TX_CL	0x01	/* transmit collision error	*/
 | |
| #define     I2CECB_TX_UN	0x02	/* transmit underflow error	*/
 | |
| #define     I2CECB_TX_NAK	0x04	/* transmit no ack error	*/
 | |
| #define     I2CECB_TX_MASK	0x0f	/* mask for error bits		*/
 | |
| #define I2CECB_TIMEOUT		0x40	/* this is a timeout error	*/
 | |
| 
 | |
| #define ERROR_I2C_NONE		0
 | |
| #define ERROR_I2C_LENGTH	1
 | |
| 
 | |
| #define I2C_WRITE_BIT		0x00
 | |
| #define I2C_READ_BIT		0x01
 | |
| 
 | |
| #define I2C_RXTX_LEN	128	/* maximum tx/rx buffer length */
 | |
| 
 | |
| 
 | |
| #define NUM_RX_BDS 4
 | |
| #define NUM_TX_BDS 4
 | |
| #define MAX_TX_SPACE 256
 | |
| 
 | |
| typedef struct I2C_BD
 | |
| {
 | |
|   unsigned short status;
 | |
|   unsigned short length;
 | |
|   unsigned char *addr;
 | |
| } I2C_BD;
 | |
| #define BD_I2C_TX_START 0x0400  /* special status for i2c: Start condition */
 | |
| 
 | |
| #define BD_I2C_TX_CL	0x0001	/* collision error */
 | |
| #define BD_I2C_TX_UN	0x0002	/* underflow error */
 | |
| #define BD_I2C_TX_NAK	0x0004	/* no acknowledge error */
 | |
| #define BD_I2C_TX_ERR	(BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
 | |
| 
 | |
| #define BD_I2C_RX_ERR	BD_SC_OV
 | |
| 
 | |
| #ifdef DEBUG_I2C
 | |
| #define PRINTD(x) printf x
 | |
| #else
 | |
| #define PRINTD(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Returns the best value of I2BRG to meet desired clock speed of I2C with
 | |
|  * input parameters (clock speed, filter, and predivider value).
 | |
|  * It returns computer speed value and the difference between it and desired
 | |
|  * speed.
 | |
|  */
 | |
| static inline int
 | |
| i2c_roundrate(int hz, int speed, int filter, int modval,
 | |
| 		int *brgval, int *totspeed)
 | |
| {
 | |
|     int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
 | |
| 
 | |
|     PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
 | |
| 	hz, speed, filter, modval));
 | |
| 
 | |
|     div = moddiv * speed;
 | |
|     brgdiv = (hz + div - 1) / div;
 | |
| 
 | |
|     PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
 | |
| 
 | |
|     *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter);
 | |
| 
 | |
|     if ((*brgval < 0) || (*brgval > 255)) {
 | |
| 	  PRINTD(("\t\trejected brgval=%d\n", *brgval));
 | |
| 	  return -1;
 | |
|     }
 | |
| 
 | |
|     brgdiv = 2 * (*brgval + 3 + (2 * filter));
 | |
|     div = moddiv * brgdiv ;
 | |
|     *totspeed = hz / div;
 | |
| 
 | |
|     PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
 | |
| 
 | |
|     return  0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets the I2C clock predivider and divider to meet required clock speed.
 | |
|  */
 | |
| static int i2c_setrate(int hz, int speed)
 | |
| {
 | |
|     immap_t	*immap = (immap_t *)CFG_IMMR ;
 | |
|     volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
 | |
|     int brgval,
 | |
| 	  modval,	/* 0-3 */
 | |
| 	  bestspeed_diff = speed,
 | |
| 	  bestspeed_brgval=0,
 | |
| 	  bestspeed_modval=0,
 | |
| 	  bestspeed_filter=0,
 | |
| 	  totspeed,
 | |
| 	  filter = 0; /* Use this fixed value */
 | |
| 
 | |
| 	for (modval = 0; modval < 4; modval++)
 | |
| 	{
 | |
| 		if (i2c_roundrate (hz, speed, filter, modval, &brgval, &totspeed) == 0)
 | |
| 		{
 | |
| 			int diff = speed - totspeed ;
 | |
| 
 | |
| 			if ((diff >= 0) && (diff < bestspeed_diff))
 | |
| 			{
 | |
| 				bestspeed_diff 	= diff ;
 | |
| 				bestspeed_modval 	= modval;
 | |
| 				bestspeed_brgval 	= brgval;
 | |
| 				bestspeed_filter 	= filter;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|     PRINTD(("[I2C] Best is:\n"));
 | |
|     PRINTD(("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
 | |
| 		   hz, speed,
 | |
| 		   bestspeed_filter, bestspeed_modval, bestspeed_brgval,
 | |
| 		   bestspeed_diff));
 | |
| 
 | |
|     i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
 | |
|     i2c->i2c_i2brg = bestspeed_brgval & 0xff;
 | |
| 
 | |
|     PRINTD(("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, i2c->i2c_i2brg));
 | |
| 
 | |
|     return 1 ;
 | |
| }
 | |
| 
 | |
| void i2c_init(int speed, int slaveadd)
 | |
| {
 | |
| 	volatile immap_t *immap = (immap_t *)CFG_IMMR ;
 | |
| 	volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm;
 | |
| 	volatile i2c8260_t *i2c	= (i2c8260_t *)&immap->im_i2c;
 | |
| 	volatile iic_t *iip;
 | |
| 	ulong rbase, tbase;
 | |
| 	volatile I2C_BD *rxbd, *txbd;
 | |
| 	uint dpaddr;
 | |
| 
 | |
| #ifdef CFG_I2C_INIT_BOARD
 | |
| 	/* call board specific i2c bus reset routine before accessing the   */
 | |
| 	/* environment, which might be in a chip on that bus. For details   */
 | |
| 	/* about this problem see doc/I2C_Edge_Conditions.                  */
 | |
| 	i2c_init_board();
 | |
| #endif
 | |
| 
 | |
| 	dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
 | |
| 	if (dpaddr == 0) {
 | |
| 	    /* need to allocate dual port ram */
 | |
| 	    dpaddr = m8260_cpm_dpalloc(64 +
 | |
| 		(NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
 | |
| 		MAX_TX_SPACE, 64);
 | |
| 	    *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])) = dpaddr;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * initialise data in dual port ram:
 | |
| 	 *
 | |
| 	 * 	  dpaddr -> parameter ram (64 bytes)
 | |
| 	 *         rbase -> rx BD         (NUM_RX_BDS * sizeof(I2C_BD) bytes)
 | |
| 	 *         tbase -> tx BD         (NUM_TX_BDS * sizeof(I2C_BD) bytes)
 | |
| 	 *                  tx buffer     (MAX_TX_SPACE bytes)
 | |
| 	 */
 | |
| 
 | |
| 	iip = (iic_t *)&immap->im_dprambase[dpaddr];
 | |
| 	memset((void*)iip, 0, sizeof(iic_t));
 | |
| 
 | |
| 	rbase = dpaddr + 64;
 | |
| 	tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
 | |
| 
 | |
| 	/* Disable interrupts */
 | |
| 	i2c->i2c_i2mod = 0x00;
 | |
| 	i2c->i2c_i2cmr = 0x00;
 | |
| 	i2c->i2c_i2cer = 0xff;
 | |
| 	i2c->i2c_i2add = slaveadd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the I2C BRG Clock division factor from desired i2c rate
 | |
| 	 * and current CPU rate (we assume sccr dfbgr field is 0;
 | |
| 	 * divide BRGCLK by 1)
 | |
| 	 */
 | |
| 	PRINTD(("[I2C] Setting rate...\n"));
 | |
| 	i2c_setrate (gd->brg_clk, CFG_I2C_SPEED) ;
 | |
| 
 | |
| 	/* Set I2C controller in master mode */
 | |
| 	i2c->i2c_i2com = 0x01;
 | |
| 
 | |
| 	/* Initialize Tx/Rx parameters */
 | |
| 	iip->iic_rbase = rbase;
 | |
| 	iip->iic_tbase = tbase;
 | |
| 	rxbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_rbase]);
 | |
| 	txbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_tbase]);
 | |
| 
 | |
| 	PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
 | |
| 	PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
 | |
| 	PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
 | |
| 	PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
 | |
| 
 | |
| 	/* Set big endian byte order */
 | |
| 	iip->iic_tfcr = 0x10;
 | |
| 	iip->iic_rfcr = 0x10;
 | |
| 
 | |
| 	/* Set maximum receive size. */
 | |
| 	iip->iic_mrblr = I2C_RXTX_LEN;
 | |
| 
 | |
|     cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE,
 | |
| 							CPM_CR_I2C_SBLOCK,
 | |
| 							0x00,
 | |
| 							CPM_CR_INIT_TRX) | CPM_CR_FLG;
 | |
|     do {
 | |
| 		__asm__ __volatile__ ("eieio");
 | |
|     } while (cp->cp_cpcr & CPM_CR_FLG);
 | |
| 
 | |
| 	/* Clear events and interrupts */
 | |
| 	i2c->i2c_i2cer = 0xff;
 | |
| 	i2c->i2c_i2cmr = 0x00;
 | |
| }
 | |
| 
 | |
| static
 | |
| void i2c_newio(i2c_state_t *state)
 | |
| {
 | |
| 	volatile immap_t *immap = (immap_t *)CFG_IMMR ;
 | |
| 	volatile iic_t *iip;
 | |
| 	uint dpaddr;
 | |
| 
 | |
| 	PRINTD(("[I2C] i2c_newio\n"));
 | |
| 
 | |
| 	dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
 | |
| 	iip = (iic_t *)&immap->im_dprambase[dpaddr];
 | |
| 	state->rx_idx = 0;
 | |
| 	state->tx_idx = 0;
 | |
| 	state->rxbd = (void*)&immap->im_dprambase[iip->iic_rbase];
 | |
| 	state->txbd = (void*)&immap->im_dprambase[iip->iic_tbase];
 | |
| 	state->tx_space = MAX_TX_SPACE;
 | |
| 	state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
 | |
| 	state->err_cb = NULL;
 | |
| 	state->cb_data = NULL;
 | |
| 
 | |
| 	PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
 | |
| 	PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
 | |
| 	PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
 | |
| 
 | |
| 	/* clear the buffer memory */
 | |
| 	memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
 | |
| }
 | |
| 
 | |
| static
 | |
| int i2c_send(i2c_state_t *state,
 | |
| 			 unsigned char address,
 | |
| 			 unsigned char secondary_address,
 | |
| 			 unsigned int flags,
 | |
| 			 unsigned short size,
 | |
| 			 unsigned char *dataout)
 | |
| {
 | |
| 	volatile I2C_BD *txbd;
 | |
| 	int i,j;
 | |
| 
 | |
| 	PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
 | |
| 			address, secondary_address, flags, size));
 | |
| 
 | |
| 	/* trying to send message larger than BD */
 | |
| 	if (size > I2C_RXTX_LEN)
 | |
| 	  return I2CERR_MSG_TOO_LONG;
 | |
| 
 | |
| 	/* no more free bds */
 | |
| 	if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
 | |
| 	  return I2CERR_NO_BUFFERS;
 | |
| 
 | |
| 	txbd = (I2C_BD *)state->txbd;
 | |
| 	txbd->addr = state->tx_buf;
 | |
| 
 | |
| 	PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
 | |
| 
 | |
|     if (flags & I2CF_START_COND)
 | |
|     {
 | |
| 	PRINTD(("[I2C] Formatting addresses...\n"));
 | |
| 	if (flags & I2CF_ENABLE_SECONDARY)
 | |
| 	{
 | |
| 		txbd->length = size + 2;  /* Length of message plus dest addresses */
 | |
| 		txbd->addr[0] = address << 1;
 | |
| 		txbd->addr[1] = secondary_address;
 | |
| 		i = 2;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		txbd->length = size + 1;  /* Length of message plus dest address */
 | |
| 		txbd->addr[0] = address << 1;  /* Write destination address to BD */
 | |
| 		i = 1;
 | |
| 	}
 | |
|     }
 | |
|     else
 | |
|     {
 | |
| 	txbd->length = size;  /* Length of message */
 | |
| 	i = 0;
 | |
|     }
 | |
| 
 | |
| 	/* set up txbd */
 | |
| 	txbd->status = BD_SC_READY;
 | |
| 	if (flags & I2CF_START_COND)
 | |
| 	  txbd->status |= BD_I2C_TX_START;
 | |
| 	if (flags & I2CF_STOP_COND)
 | |
| 	  txbd->status |= BD_SC_LAST | BD_SC_WRAP;
 | |
| 
 | |
| 	/* Copy data to send into buffer */
 | |
| 	PRINTD(("[I2C] copy data...\n"));
 | |
| 	for(j = 0; j < size; i++, j++)
 | |
| 	  txbd->addr[i] = dataout[j];
 | |
| 
 | |
| 	PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
 | |
| 		   txbd->length,
 | |
| 		   txbd->status,
 | |
| 		   txbd->addr[0],
 | |
| 		   txbd->addr[1]));
 | |
| 
 | |
| 	/* advance state */
 | |
| 	state->tx_buf += txbd->length;
 | |
| 	state->tx_space -= txbd->length;
 | |
| 	state->tx_idx++;
 | |
| 	state->txbd = (void*)(txbd + 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static
 | |
| int i2c_receive(i2c_state_t *state,
 | |
| 				unsigned char address,
 | |
| 				unsigned char secondary_address,
 | |
| 				unsigned int flags,
 | |
| 				unsigned short size_to_expect,
 | |
| 				unsigned char *datain)
 | |
| {
 | |
| 	volatile I2C_BD *rxbd, *txbd;
 | |
| 
 | |
| 	PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
 | |
| 
 | |
| 	/* Expected to receive too much */
 | |
| 	if (size_to_expect > I2C_RXTX_LEN)
 | |
| 	  return I2CERR_MSG_TOO_LONG;
 | |
| 
 | |
| 	/* no more free bds */
 | |
| 	if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
 | |
| 		 || state->tx_space < 2)
 | |
| 	  return I2CERR_NO_BUFFERS;
 | |
| 
 | |
| 	rxbd = (I2C_BD *)state->rxbd;
 | |
| 	txbd = (I2C_BD *)state->txbd;
 | |
| 
 | |
| 	PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
 | |
| 	PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
 | |
| 
 | |
| 	txbd->addr = state->tx_buf;
 | |
| 
 | |
| 	/* set up TXBD for destination address */
 | |
| 	if (flags & I2CF_ENABLE_SECONDARY)
 | |
| 	{
 | |
| 		txbd->length = 2;
 | |
| 		txbd->addr[0] = address << 1;   /* Write data */
 | |
| 		txbd->addr[1] = secondary_address;  /* Internal address */
 | |
| 		txbd->status = BD_SC_READY;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		txbd->length = 1 + size_to_expect;
 | |
| 		txbd->addr[0] = (address << 1) | 0x01;
 | |
| 		txbd->status = BD_SC_READY;
 | |
| 		memset(&txbd->addr[1], 0, txbd->length);
 | |
| 	}
 | |
| 
 | |
| 	/* set up rxbd for reception */
 | |
| 	rxbd->status = BD_SC_EMPTY;
 | |
| 	rxbd->length = size_to_expect;
 | |
| 	rxbd->addr = datain;
 | |
| 
 | |
| 	txbd->status |= BD_I2C_TX_START;
 | |
| 	if (flags & I2CF_STOP_COND)
 | |
| 	{
 | |
| 		txbd->status |= BD_SC_LAST | BD_SC_WRAP;
 | |
| 		rxbd->status |= BD_SC_WRAP;
 | |
| 	}
 | |
| 
 | |
| 	PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
 | |
| 		   txbd->length,
 | |
| 		   txbd->status,
 | |
| 		   txbd->addr[0],
 | |
| 		   txbd->addr[1]));
 | |
| 	PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
 | |
| 		   rxbd->length,
 | |
| 		   rxbd->status,
 | |
| 		   rxbd->addr[0],
 | |
| 		   rxbd->addr[1]));
 | |
| 
 | |
| 	/* advance state */
 | |
| 	state->tx_buf += txbd->length;
 | |
| 	state->tx_space -= txbd->length;
 | |
| 	state->tx_idx++;
 | |
| 	state->txbd = (void*)(txbd + 1);
 | |
| 	state->rx_idx++;
 | |
| 	state->rxbd = (void*)(rxbd + 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static
 | |
| int i2c_doio(i2c_state_t *state)
 | |
| {
 | |
| 	volatile immap_t *immap = (immap_t *)CFG_IMMR ;
 | |
| 	volatile iic_t *iip;
 | |
| 	volatile i2c8260_t *i2c	= (i2c8260_t *)&immap->im_i2c;
 | |
| 	volatile I2C_BD *txbd, *rxbd;
 | |
| 	int  n, i, b, rxcnt = 0, rxtimeo = 0, txcnt = 0, txtimeo = 0, rc = 0;
 | |
| 	uint dpaddr;
 | |
| 
 | |
| 	PRINTD(("[I2C] i2c_doio\n"));
 | |
| 
 | |
| 	if (state->tx_idx <= 0 && state->rx_idx <= 0) {
 | |
| 		PRINTD(("[I2C] No I/O is queued\n"));
 | |
| 		return I2CERR_QUEUE_EMPTY;
 | |
| 	}
 | |
| 
 | |
| 	dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
 | |
| 	iip = (iic_t *)&immap->im_dprambase[dpaddr];
 | |
| 	iip->iic_rbptr = iip->iic_rbase;
 | |
| 	iip->iic_tbptr = iip->iic_tbase;
 | |
| 
 | |
| 	/* Enable I2C */
 | |
| 	PRINTD(("[I2C] Enabling I2C...\n"));
 | |
| 	i2c->i2c_i2mod |= 0x01;
 | |
| 
 | |
| 	/* Begin transmission */
 | |
| 	i2c->i2c_i2com |= 0x80;
 | |
| 
 | |
| 	/* Loop until transmit & receive completed */
 | |
| 
 | |
| 	if ((n = state->tx_idx) > 0) {
 | |
| 
 | |
| 		txbd = ((I2C_BD*)state->txbd) - n;
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			txtimeo += TOUT_LOOP * txbd->length;
 | |
| 			txbd++;
 | |
| 		}
 | |
| 
 | |
| 		txbd--; /* wait until last in list is done */
 | |
| 
 | |
| 		PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
 | |
| 
 | |
| 		udelay(START_DELAY_US);	/* give it time to start */
 | |
| 		while((txbd->status & BD_SC_READY) && (++txcnt < txtimeo)) {
 | |
| 			udelay(DELAY_US);
 | |
| 			if (ctrlc())
 | |
| 				return (-1);
 | |
| 			__asm__ __volatile__ ("eieio");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (txcnt < txtimeo && (n = state->rx_idx) > 0) {
 | |
| 
 | |
| 		rxbd = ((I2C_BD*)state->rxbd) - n;
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			rxtimeo += TOUT_LOOP * rxbd->length;
 | |
| 			rxbd++;
 | |
| 		}
 | |
| 
 | |
| 		rxbd--; /* wait until last in list is done */
 | |
| 
 | |
| 		PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
 | |
| 
 | |
| 		udelay(START_DELAY_US);	/* give it time to start */
 | |
| 		while((rxbd->status & BD_SC_EMPTY) && (++rxcnt < rxtimeo)) {
 | |
| 			udelay(DELAY_US);
 | |
| 			if (ctrlc())
 | |
| 				return (-1);
 | |
| 			__asm__ __volatile__ ("eieio");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Turn off I2C */
 | |
| 	i2c->i2c_i2mod &= ~0x01;
 | |
| 
 | |
| 	if ((n = state->tx_idx) > 0) {
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			txbd = ((I2C_BD*)state->txbd) - (n - i);
 | |
| 			if ((b = txbd->status & BD_I2C_TX_ERR) != 0) {
 | |
| 				if (state->err_cb != NULL)
 | |
| 					(*state->err_cb)(I2CECB_TX_ERR|b, i,
 | |
| 						state->cb_data);
 | |
| 				if (rc == 0)
 | |
| 					rc = I2CERR_IO_ERROR;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((n = state->rx_idx) > 0) {
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			rxbd = ((I2C_BD*)state->rxbd) - (n - i);
 | |
| 			if ((b = rxbd->status & BD_I2C_RX_ERR) != 0) {
 | |
| 				if (state->err_cb != NULL)
 | |
| 					(*state->err_cb)(I2CECB_RX_ERR|b, i,
 | |
| 						state->cb_data);
 | |
| 				if (rc == 0)
 | |
| 					rc = I2CERR_IO_ERROR;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((txtimeo > 0 && txcnt >= txtimeo) || \
 | |
| 	    (rxtimeo > 0 && rxcnt >= rxtimeo)) {
 | |
| 		if (state->err_cb != NULL)
 | |
| 			(*state->err_cb)(I2CECB_TIMEOUT, -1, state->cb_data);
 | |
| 		if (rc == 0)
 | |
| 			rc = I2CERR_TIMEOUT;
 | |
| 	}
 | |
| 
 | |
| 	return (rc);
 | |
| }
 | |
| 
 | |
| static void
 | |
| i2c_probe_callback(int flags, int xnum, void *data)
 | |
| {
 | |
| 	/*
 | |
| 	 * the only acceptable errors are a transmit NAK or a receive
 | |
| 	 * overrun - tx NAK means the device does not exist, rx OV
 | |
| 	 * means the device must have responded to the slave address
 | |
| 	 * even though the transfer failed
 | |
| 	 */
 | |
| 	if (flags == (I2CECB_TX_ERR|I2CECB_TX_NAK))
 | |
| 		*(int *)data |= 1;
 | |
| 	if (flags == (I2CECB_RX_ERR|I2CECB_RX_OV))
 | |
| 		*(int *)data |= 2;
 | |
| }
 | |
| 
 | |
| int
 | |
| i2c_probe(uchar chip)
 | |
| {
 | |
| 	i2c_state_t state;
 | |
| 	int rc, err_flag;
 | |
| 	uchar buf[1];
 | |
| 
 | |
| 	i2c_newio(&state);
 | |
| 
 | |
| 	state.err_cb = i2c_probe_callback;
 | |
| 	state.cb_data = (void *) &err_flag;
 | |
| 	err_flag = 0;
 | |
| 
 | |
| 	rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
 | |
| 
 | |
| 	if (rc != 0)
 | |
| 		return (rc);	/* probe failed */
 | |
| 
 | |
| 	rc = i2c_doio(&state);
 | |
| 
 | |
| 	if (rc == 0)
 | |
| 		return (0);	/* device exists - read succeeded */
 | |
| 
 | |
| 	if (rc == I2CERR_TIMEOUT)
 | |
| 		return (-1);	/* device does not exist - timeout */
 | |
| 
 | |
| 	if (rc != I2CERR_IO_ERROR || err_flag == 0)
 | |
| 		return (rc);	/* probe failed */
 | |
| 
 | |
| 	if (err_flag & 1)
 | |
| 		return (-1);	/* device does not exist - had transmit NAK */
 | |
| 
 | |
| 	return (0);	/* device exists - had receive overrun */
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
 | |
| {
 | |
| 	i2c_state_t state;
 | |
| 	uchar xaddr[4];
 | |
| 	int rc;
 | |
| 
 | |
| 	xaddr[0] = (addr >> 24) & 0xFF;
 | |
| 	xaddr[1] = (addr >> 16) & 0xFF;
 | |
| 	xaddr[2] = (addr >>  8) & 0xFF;
 | |
| 	xaddr[3] =  addr        & 0xFF;
 | |
| 
 | |
| #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
 | |
| 	 /*
 | |
| 	  * EEPROM chips that implement "address overflow" are ones
 | |
| 	  * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
 | |
| 	  * and the extra bits end up in the "chip address" bit slots.
 | |
| 	  * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
 | |
| 	  * chips.
 | |
| 	  *
 | |
| 	  * Note that we consider the length of the address field to still
 | |
| 	  * be one byte because the extra address bits are hidden in the
 | |
| 	  * chip address.
 | |
| 	  */
 | |
| 	chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
 | |
| #endif
 | |
| 
 | |
| 	i2c_newio(&state);
 | |
| 
 | |
| 	rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
 | |
| 	if (rc != 0) {
 | |
| 		printf("i2c_read: i2c_send failed (%d)\n", rc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
 | |
| 	if (rc != 0) {
 | |
| 		printf("i2c_read: i2c_receive failed (%d)\n", rc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	rc = i2c_doio(&state);
 | |
| 	if (rc != 0) {
 | |
| 		printf("i2c_read: i2c_doio failed (%d)\n", rc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
 | |
| {
 | |
| 	i2c_state_t state;
 | |
| 	uchar xaddr[4];
 | |
| 	int rc;
 | |
| 
 | |
| 	xaddr[0] = (addr >> 24) & 0xFF;
 | |
| 	xaddr[1] = (addr >> 16) & 0xFF;
 | |
| 	xaddr[2] = (addr >>  8) & 0xFF;
 | |
| 	xaddr[3] =  addr        & 0xFF;
 | |
| 
 | |
| #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
 | |
| 	 /*
 | |
| 	  * EEPROM chips that implement "address overflow" are ones
 | |
| 	  * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
 | |
| 	  * and the extra bits end up in the "chip address" bit slots.
 | |
| 	  * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
 | |
| 	  * chips.
 | |
| 	  *
 | |
| 	  * Note that we consider the length of the address field to still
 | |
| 	  * be one byte because the extra address bits are hidden in the
 | |
| 	  * chip address.
 | |
| 	  */
 | |
| 	chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
 | |
| #endif
 | |
| 
 | |
| 	i2c_newio(&state);
 | |
| 
 | |
| 	rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
 | |
| 	if (rc != 0) {
 | |
| 		printf("i2c_write: first i2c_send failed (%d)\n", rc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
 | |
| 	if (rc != 0) {
 | |
| 		printf("i2c_write: second i2c_send failed (%d)\n", rc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	rc = i2c_doio(&state);
 | |
| 	if (rc != 0) {
 | |
| 		printf("i2c_write: i2c_doio failed (%d)\n", rc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| uchar
 | |
| i2c_reg_read(uchar chip, uchar reg)
 | |
| {
 | |
| 	uchar buf;
 | |
| 
 | |
| 	i2c_read(chip, reg, 1, &buf, 1);
 | |
| 
 | |
| 	return (buf);
 | |
| }
 | |
| 
 | |
| void
 | |
| i2c_reg_write(uchar chip, uchar reg, uchar val)
 | |
| {
 | |
| 	i2c_write(chip, reg, 1, &val, 1);
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_HARD_I2C */
 |