mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-26 01:28:14 +00:00 
			
		
		
		
	After some header file cleanups to add missing include files, remove common.h from all files in the lib directory. This primarily means just dropping the line but in a few cases we need to add in other header files now. Reviewed-by: Simon Glass <sjg@chromium.org> Signed-off-by: Tom Rini <trini@konsulko.com>
		
			
				
	
	
		
			361 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (c) 2013, Google Inc.
 | |
|  */
 | |
| 
 | |
| #ifndef USE_HOSTCC
 | |
| #include <fdtdec.h>
 | |
| #include <log.h>
 | |
| #include <asm/types.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <linux/errno.h>
 | |
| #include <asm/types.h>
 | |
| #include <asm/unaligned.h>
 | |
| #else
 | |
| #include "fdt_host.h"
 | |
| #include "mkimage.h"
 | |
| #include <fdt_support.h>
 | |
| #endif
 | |
| #include <u-boot/rsa.h>
 | |
| #include <u-boot/rsa-mod-exp.h>
 | |
| 
 | |
| #define UINT64_MULT32(v, multby)  (((uint64_t)(v)) * ((uint32_t)(multby)))
 | |
| 
 | |
| #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
 | |
| #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))
 | |
| 
 | |
| static inline uint64_t fdt64_to_cpup(const void *p)
 | |
| {
 | |
| 	fdt64_t w;
 | |
| 
 | |
| 	memcpy(&w, p, sizeof(w));
 | |
| 	return fdt64_to_cpu(w);
 | |
| }
 | |
| 
 | |
| /* Default public exponent for backward compatibility */
 | |
| #define RSA_DEFAULT_PUBEXP	65537
 | |
| 
 | |
| /**
 | |
|  * subtract_modulus() - subtract modulus from the given value
 | |
|  *
 | |
|  * @key:	Key containing modulus to subtract
 | |
|  * @num:	Number to subtract modulus from, as little endian word array
 | |
|  */
 | |
| static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
 | |
| {
 | |
| 	int64_t acc = 0;
 | |
| 	uint i;
 | |
| 
 | |
| 	for (i = 0; i < key->len; i++) {
 | |
| 		acc += (uint64_t)num[i] - key->modulus[i];
 | |
| 		num[i] = (uint32_t)acc;
 | |
| 		acc >>= 32;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * greater_equal_modulus() - check if a value is >= modulus
 | |
|  *
 | |
|  * @key:	Key containing modulus to check
 | |
|  * @num:	Number to check against modulus, as little endian word array
 | |
|  * Return: 0 if num < modulus, 1 if num >= modulus
 | |
|  */
 | |
| static int greater_equal_modulus(const struct rsa_public_key *key,
 | |
| 				 uint32_t num[])
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = (int)key->len - 1; i >= 0; i--) {
 | |
| 		if (num[i] < key->modulus[i])
 | |
| 			return 0;
 | |
| 		if (num[i] > key->modulus[i])
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 1;  /* equal */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * montgomery_mul_add_step() - Perform montgomery multiply-add step
 | |
|  *
 | |
|  * Operation: montgomery result[] += a * b[] / n0inv % modulus
 | |
|  *
 | |
|  * @key:	RSA key
 | |
|  * @result:	Place to put result, as little endian word array
 | |
|  * @a:		Multiplier
 | |
|  * @b:		Multiplicand, as little endian word array
 | |
|  */
 | |
| static void montgomery_mul_add_step(const struct rsa_public_key *key,
 | |
| 		uint32_t result[], const uint32_t a, const uint32_t b[])
 | |
| {
 | |
| 	uint64_t acc_a, acc_b;
 | |
| 	uint32_t d0;
 | |
| 	uint i;
 | |
| 
 | |
| 	acc_a = (uint64_t)a * b[0] + result[0];
 | |
| 	d0 = (uint32_t)acc_a * key->n0inv;
 | |
| 	acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
 | |
| 	for (i = 1; i < key->len; i++) {
 | |
| 		acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
 | |
| 		acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
 | |
| 				(uint32_t)acc_a;
 | |
| 		result[i - 1] = (uint32_t)acc_b;
 | |
| 	}
 | |
| 
 | |
| 	acc_a = (acc_a >> 32) + (acc_b >> 32);
 | |
| 
 | |
| 	result[i - 1] = (uint32_t)acc_a;
 | |
| 
 | |
| 	if (acc_a >> 32)
 | |
| 		subtract_modulus(key, result);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * montgomery_mul() - Perform montgomery mutitply
 | |
|  *
 | |
|  * Operation: montgomery result[] = a[] * b[] / n0inv % modulus
 | |
|  *
 | |
|  * @key:	RSA key
 | |
|  * @result:	Place to put result, as little endian word array
 | |
|  * @a:		Multiplier, as little endian word array
 | |
|  * @b:		Multiplicand, as little endian word array
 | |
|  */
 | |
| static void montgomery_mul(const struct rsa_public_key *key,
 | |
| 		uint32_t result[], uint32_t a[], const uint32_t b[])
 | |
| {
 | |
| 	uint i;
 | |
| 
 | |
| 	for (i = 0; i < key->len; ++i)
 | |
| 		result[i] = 0;
 | |
| 	for (i = 0; i < key->len; ++i)
 | |
| 		montgomery_mul_add_step(key, result, a[i], b);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * num_pub_exponent_bits() - Number of bits in the public exponent
 | |
|  *
 | |
|  * @key:	RSA key
 | |
|  * @num_bits:	Storage for the number of public exponent bits
 | |
|  */
 | |
| static int num_public_exponent_bits(const struct rsa_public_key *key,
 | |
| 		int *num_bits)
 | |
| {
 | |
| 	uint64_t exponent;
 | |
| 	int exponent_bits;
 | |
| 	const uint max_bits = (sizeof(exponent) * 8);
 | |
| 
 | |
| 	exponent = key->exponent;
 | |
| 	exponent_bits = 0;
 | |
| 
 | |
| 	if (!exponent) {
 | |
| 		*num_bits = exponent_bits;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
 | |
| 		if (!(exponent >>= 1)) {
 | |
| 			*num_bits = exponent_bits;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_public_exponent_bit_set() - Check if a bit in the public exponent is set
 | |
|  *
 | |
|  * @key:	RSA key
 | |
|  * @pos:	The bit position to check
 | |
|  */
 | |
| static int is_public_exponent_bit_set(const struct rsa_public_key *key,
 | |
| 		int pos)
 | |
| {
 | |
| 	return key->exponent & (1ULL << pos);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pow_mod() - in-place public exponentiation
 | |
|  *
 | |
|  * @key:	RSA key
 | |
|  * @inout:	Big-endian word array containing value and result
 | |
|  */
 | |
| static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
 | |
| {
 | |
| 	uint32_t *result, *ptr;
 | |
| 	uint i;
 | |
| 	int j, k;
 | |
| 
 | |
| 	/* Sanity check for stack size - key->len is in 32-bit words */
 | |
| 	if (key->len > RSA_MAX_KEY_BITS / 32) {
 | |
| 		debug("RSA key words %u exceeds maximum %d\n", key->len,
 | |
| 		      RSA_MAX_KEY_BITS / 32);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	uint32_t val[key->len], acc[key->len], tmp[key->len];
 | |
| 	uint32_t a_scaled[key->len];
 | |
| 	result = tmp;  /* Re-use location. */
 | |
| 
 | |
| 	/* Convert from big endian byte array to little endian word array. */
 | |
| 	for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
 | |
| 		val[i] = get_unaligned_be32(ptr);
 | |
| 
 | |
| 	if (0 != num_public_exponent_bits(key, &k))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (k < 2) {
 | |
| 		debug("Public exponent is too short (%d bits, minimum 2)\n",
 | |
| 		      k);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_public_exponent_bit_set(key, 0)) {
 | |
| 		debug("LSB of RSA public exponent must be set.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* the bit at e[k-1] is 1 by definition, so start with: C := M */
 | |
| 	montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
 | |
| 	/* retain scaled version for intermediate use */
 | |
| 	memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));
 | |
| 
 | |
| 	for (j = k - 2; j > 0; --j) {
 | |
| 		montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
 | |
| 
 | |
| 		if (is_public_exponent_bit_set(key, j)) {
 | |
| 			/* acc = tmp * val / R mod n */
 | |
| 			montgomery_mul(key, acc, tmp, a_scaled);
 | |
| 		} else {
 | |
| 			/* e[j] == 0, copy tmp back to acc for next operation */
 | |
| 			memcpy(acc, tmp, key->len * sizeof(acc[0]));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* the bit at e[0] is always 1 */
 | |
| 	montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
 | |
| 	montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
 | |
| 	memcpy(result, acc, key->len * sizeof(result[0]));
 | |
| 
 | |
| 	/* Make sure result < mod; result is at most 1x mod too large. */
 | |
| 	if (greater_equal_modulus(key, result))
 | |
| 		subtract_modulus(key, result);
 | |
| 
 | |
| 	/* Convert to bigendian byte array */
 | |
| 	for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
 | |
| 		put_unaligned_be32(result[i], ptr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		dst[i] = fdt32_to_cpu(src[len - 1 - i]);
 | |
| }
 | |
| 
 | |
| int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
 | |
| 		struct key_prop *prop, uint8_t *out)
 | |
| {
 | |
| 	struct rsa_public_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!prop) {
 | |
| 		debug("%s: Skipping invalid prop", __func__);
 | |
| 		return -EBADF;
 | |
| 	}
 | |
| 	key.n0inv = prop->n0inv;
 | |
| 	key.len = prop->num_bits;
 | |
| 
 | |
| 	if (!prop->public_exponent)
 | |
| 		key.exponent = RSA_DEFAULT_PUBEXP;
 | |
| 	else
 | |
| 		key.exponent = fdt64_to_cpup(prop->public_exponent);
 | |
| 
 | |
| 	if (!key.len || !prop->modulus || !prop->rr) {
 | |
| 		debug("%s: Missing RSA key info", __func__);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* Sanity check for stack size */
 | |
| 	if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
 | |
| 		debug("RSA key bits %u outside allowed range %d..%d\n",
 | |
| 		      key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	key.len /= sizeof(uint32_t) * 8;
 | |
| 	uint32_t key1[key.len], key2[key.len];
 | |
| 
 | |
| 	key.modulus = key1;
 | |
| 	key.rr = key2;
 | |
| 	rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len);
 | |
| 	rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len);
 | |
| 	if (!key.modulus || !key.rr) {
 | |
| 		debug("%s: Out of memory", __func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	uint32_t buf[sig_len / sizeof(uint32_t)];
 | |
| 
 | |
| 	memcpy(buf, sig, sig_len);
 | |
| 
 | |
| 	ret = pow_mod(&key, buf);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	memcpy(out, buf, sig_len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_CMD_ZYNQ_RSA)
 | |
| /**
 | |
|  * zynq_pow_mod - in-place public exponentiation
 | |
|  *
 | |
|  * @keyptr:	RSA key
 | |
|  * @inout:	Big-endian word array containing value and result
 | |
|  * Return: 0 on successful calculation, otherwise failure error code
 | |
|  *
 | |
|  * FIXME: Use pow_mod() instead of zynq_pow_mod()
 | |
|  *        pow_mod calculation required for zynq is bit different from
 | |
|  *        pw_mod above here, hence defined zynq specific routine.
 | |
|  */
 | |
| int zynq_pow_mod(uint32_t *keyptr, uint32_t *inout)
 | |
| {
 | |
| 	u32 *result, *ptr;
 | |
| 	uint i;
 | |
| 	struct rsa_public_key *key;
 | |
| 	u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES];
 | |
| 
 | |
| 	key = (struct rsa_public_key *)keyptr;
 | |
| 
 | |
| 	/* Sanity check for stack size - key->len is in 32-bit words */
 | |
| 	if (key->len > RSA_MAX_KEY_BITS / 32) {
 | |
| 		debug("RSA key words %u exceeds maximum %d\n", key->len,
 | |
| 		      RSA_MAX_KEY_BITS / 32);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	result = tmp;  /* Re-use location. */
 | |
| 
 | |
| 	for (i = 0, ptr = inout; i < key->len; i++, ptr++)
 | |
| 		val[i] = *(ptr);
 | |
| 
 | |
| 	montgomery_mul(key, acc, val, key->rr);  /* axx = a * RR / R mod M */
 | |
| 	for (i = 0; i < 16; i += 2) {
 | |
| 		montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */
 | |
| 		montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */
 | |
| 	}
 | |
| 	montgomery_mul(key, result, acc, val);  /* result = XX * a / R mod M */
 | |
| 
 | |
| 	/* Make sure result < mod; result is at most 1x mod too large. */
 | |
| 	if (greater_equal_modulus(key, result))
 | |
| 		subtract_modulus(key, result);
 | |
| 
 | |
| 	for (i = 0, ptr = inout; i < key->len; i++, ptr++)
 | |
| 		*ptr = result[i];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 |