mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-11-03 21:48:15 +00:00 
			
		
		
		
	Signed-off-by: Wolfgang Denk <wd@denx.de> [trini: Fixup common/cmd_io.c] Signed-off-by: Tom Rini <trini@ti.com>
		
			
				
	
	
		
			378 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			378 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*-------------------------------------------------------------------------
 | 
						|
 * Filename:      mini_inflate.c
 | 
						|
 * Version:       $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $
 | 
						|
 * Copyright:     Copyright (C) 2001, Russ Dill
 | 
						|
 * Author:        Russ Dill <Russ.Dill@asu.edu>
 | 
						|
 * Description:   Mini inflate implementation (RFC 1951)
 | 
						|
 *-----------------------------------------------------------------------*/
 | 
						|
/*
 | 
						|
 * SPDX-License-Identifier:	GPL-2.0+
 | 
						|
 */
 | 
						|
 | 
						|
#include <config.h>
 | 
						|
#include <jffs2/mini_inflate.h>
 | 
						|
 | 
						|
/* The order that the code lengths in section 3.2.7 are in */
 | 
						|
static unsigned char huffman_order[] = {16, 17, 18,  0,  8,  7,  9,  6, 10,  5,
 | 
						|
					11,  4, 12,  3, 13,  2, 14,  1, 15};
 | 
						|
 | 
						|
inline void cramfs_memset(int *s, const int c, size n)
 | 
						|
{
 | 
						|
	n--;
 | 
						|
	for (;n > 0; n--) s[n] = c;
 | 
						|
	s[0] = c;
 | 
						|
}
 | 
						|
 | 
						|
/* associate a stream with a block of data and reset the stream */
 | 
						|
static void init_stream(struct bitstream *stream, unsigned char *data,
 | 
						|
			void *(*inflate_memcpy)(void *, const void *, size))
 | 
						|
{
 | 
						|
	stream->error = NO_ERROR;
 | 
						|
	stream->memcpy = inflate_memcpy;
 | 
						|
	stream->decoded = 0;
 | 
						|
	stream->data = data;
 | 
						|
	stream->bit = 0;	/* The first bit of the stream is the lsb of the
 | 
						|
				 * first byte */
 | 
						|
 | 
						|
	/* really sorry about all this initialization, think of a better way,
 | 
						|
	 * let me know and it will get cleaned up */
 | 
						|
	stream->codes.bits = 8;
 | 
						|
	stream->codes.num_symbols = 19;
 | 
						|
	stream->codes.lengths = stream->code_lengths;
 | 
						|
	stream->codes.symbols = stream->code_symbols;
 | 
						|
	stream->codes.count = stream->code_count;
 | 
						|
	stream->codes.first = stream->code_first;
 | 
						|
	stream->codes.pos = stream->code_pos;
 | 
						|
 | 
						|
	stream->lengths.bits = 16;
 | 
						|
	stream->lengths.num_symbols = 288;
 | 
						|
	stream->lengths.lengths = stream->length_lengths;
 | 
						|
	stream->lengths.symbols = stream->length_symbols;
 | 
						|
	stream->lengths.count = stream->length_count;
 | 
						|
	stream->lengths.first = stream->length_first;
 | 
						|
	stream->lengths.pos = stream->length_pos;
 | 
						|
 | 
						|
	stream->distance.bits = 16;
 | 
						|
	stream->distance.num_symbols = 32;
 | 
						|
	stream->distance.lengths = stream->distance_lengths;
 | 
						|
	stream->distance.symbols = stream->distance_symbols;
 | 
						|
	stream->distance.count = stream->distance_count;
 | 
						|
	stream->distance.first = stream->distance_first;
 | 
						|
	stream->distance.pos = stream->distance_pos;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* pull 'bits' bits out of the stream. The last bit pulled it returned as the
 | 
						|
 * msb. (section 3.1.1)
 | 
						|
 */
 | 
						|
inline unsigned long pull_bits(struct bitstream *stream,
 | 
						|
			       const unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned long ret;
 | 
						|
	int i;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	for (i = 0; i < bits; i++) {
 | 
						|
		ret += ((*(stream->data) >> stream->bit) & 1) << i;
 | 
						|
 | 
						|
		/* if, before incrementing, we are on bit 7,
 | 
						|
		 * go to the lsb of the next byte */
 | 
						|
		if (stream->bit++ == 7) {
 | 
						|
			stream->bit = 0;
 | 
						|
			stream->data++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
inline int pull_bit(struct bitstream *stream)
 | 
						|
{
 | 
						|
	int ret = ((*(stream->data) >> stream->bit) & 1);
 | 
						|
	if (stream->bit++ == 7) {
 | 
						|
		stream->bit = 0;
 | 
						|
		stream->data++;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* discard bits up to the next whole byte */
 | 
						|
static void discard_bits(struct bitstream *stream)
 | 
						|
{
 | 
						|
	if (stream->bit != 0) {
 | 
						|
		stream->bit = 0;
 | 
						|
		stream->data++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* No decompression, the data is all literals (section 3.2.4) */
 | 
						|
static void decompress_none(struct bitstream *stream, unsigned char *dest)
 | 
						|
{
 | 
						|
	unsigned int length;
 | 
						|
 | 
						|
	discard_bits(stream);
 | 
						|
	length = *(stream->data++);
 | 
						|
	length += *(stream->data++) << 8;
 | 
						|
	pull_bits(stream, 16);	/* throw away the inverse of the size */
 | 
						|
 | 
						|
	stream->decoded += length;
 | 
						|
	stream->memcpy(dest, stream->data, length);
 | 
						|
	stream->data += length;
 | 
						|
}
 | 
						|
 | 
						|
/* Read in a symbol from the stream (section 3.2.2) */
 | 
						|
static int read_symbol(struct bitstream *stream, struct huffman_set *set)
 | 
						|
{
 | 
						|
	int bits = 0;
 | 
						|
	int code = 0;
 | 
						|
	while (!(set->count[bits] && code < set->first[bits] +
 | 
						|
					     set->count[bits])) {
 | 
						|
		code = (code << 1) + pull_bit(stream);
 | 
						|
		if (++bits > set->bits) {
 | 
						|
			/* error decoding (corrupted data?) */
 | 
						|
			stream->error = CODE_NOT_FOUND;
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return set->symbols[set->pos[bits] + code - set->first[bits]];
 | 
						|
}
 | 
						|
 | 
						|
/* decompress a stream of data encoded with the passed length and distance
 | 
						|
 * huffman codes */
 | 
						|
static void decompress_huffman(struct bitstream *stream, unsigned char *dest)
 | 
						|
{
 | 
						|
	struct huffman_set *lengths = &(stream->lengths);
 | 
						|
	struct huffman_set *distance = &(stream->distance);
 | 
						|
 | 
						|
	int symbol, length, dist, i;
 | 
						|
 | 
						|
	do {
 | 
						|
		if ((symbol = read_symbol(stream, lengths)) < 0) return;
 | 
						|
		if (symbol < 256) {
 | 
						|
			*(dest++) = symbol; /* symbol is a literal */
 | 
						|
			stream->decoded++;
 | 
						|
		} else if (symbol > 256) {
 | 
						|
			/* Determine the length of the repitition
 | 
						|
			 * (section 3.2.5) */
 | 
						|
			if (symbol < 265) length = symbol - 254;
 | 
						|
			else if (symbol == 285) length = 258;
 | 
						|
			else {
 | 
						|
				length = pull_bits(stream, (symbol - 261) >> 2);
 | 
						|
				length += (4 << ((symbol - 261) >> 2)) + 3;
 | 
						|
				length += ((symbol - 1) % 4) <<
 | 
						|
					  ((symbol - 261) >> 2);
 | 
						|
			}
 | 
						|
 | 
						|
			/* Determine how far back to go */
 | 
						|
			if ((symbol = read_symbol(stream, distance)) < 0)
 | 
						|
				return;
 | 
						|
			if (symbol < 4) dist = symbol + 1;
 | 
						|
			else {
 | 
						|
				dist = pull_bits(stream, (symbol - 2) >> 1);
 | 
						|
				dist += (2 << ((symbol - 2) >> 1)) + 1;
 | 
						|
				dist += (symbol % 2) << ((symbol - 2) >> 1);
 | 
						|
			}
 | 
						|
			stream->decoded += length;
 | 
						|
			for (i = 0; i < length; i++) {
 | 
						|
				*dest = dest[-dist];
 | 
						|
				dest++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} while (symbol != 256); /* 256 is the end of the data block */
 | 
						|
}
 | 
						|
 | 
						|
/* Fill the lookup tables (section 3.2.2) */
 | 
						|
static void fill_code_tables(struct huffman_set *set)
 | 
						|
{
 | 
						|
	int code = 0, i, length;
 | 
						|
 | 
						|
	/* fill in the first code of each bit length, and the pos pointer */
 | 
						|
	set->pos[0] = 0;
 | 
						|
	for (i = 1; i < set->bits; i++) {
 | 
						|
		code = (code + set->count[i - 1]) << 1;
 | 
						|
		set->first[i] = code;
 | 
						|
		set->pos[i] = set->pos[i - 1] + set->count[i - 1];
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill in the table of symbols in order of their huffman code */
 | 
						|
	for (i = 0; i < set->num_symbols; i++) {
 | 
						|
		if ((length = set->lengths[i]))
 | 
						|
			set->symbols[set->pos[length]++] = i;
 | 
						|
	}
 | 
						|
 | 
						|
	/* reset the pos pointer */
 | 
						|
	for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i];
 | 
						|
}
 | 
						|
 | 
						|
static void init_code_tables(struct huffman_set *set)
 | 
						|
{
 | 
						|
	cramfs_memset(set->lengths, 0, set->num_symbols);
 | 
						|
	cramfs_memset(set->count, 0, set->bits);
 | 
						|
	cramfs_memset(set->first, 0, set->bits);
 | 
						|
}
 | 
						|
 | 
						|
/* read in the huffman codes for dynamic decoding (section 3.2.7) */
 | 
						|
static void decompress_dynamic(struct bitstream *stream, unsigned char *dest)
 | 
						|
{
 | 
						|
	/* I tried my best to minimize the memory footprint here, while still
 | 
						|
	 * keeping up performance. I really dislike the _lengths[] tables, but
 | 
						|
	 * I see no way of eliminating them without a sizable performance
 | 
						|
	 * impact. The first struct table keeps track of stats on each bit
 | 
						|
	 * length. The _length table keeps a record of the bit length of each
 | 
						|
	 * symbol. The _symbols table is for looking up symbols by the huffman
 | 
						|
	 * code (the pos element points to the first place in the symbol table
 | 
						|
	 * where that bit length occurs). I also hate the initization of these
 | 
						|
	 * structs, if someone knows how to compact these, lemme know. */
 | 
						|
 | 
						|
	struct huffman_set *codes = &(stream->codes);
 | 
						|
	struct huffman_set *lengths = &(stream->lengths);
 | 
						|
	struct huffman_set *distance = &(stream->distance);
 | 
						|
 | 
						|
	int hlit = pull_bits(stream, 5) + 257;
 | 
						|
	int hdist = pull_bits(stream, 5) + 1;
 | 
						|
	int hclen = pull_bits(stream, 4) + 4;
 | 
						|
	int length, curr_code, symbol, i, last_code;
 | 
						|
 | 
						|
	last_code = 0;
 | 
						|
 | 
						|
	init_code_tables(codes);
 | 
						|
	init_code_tables(lengths);
 | 
						|
	init_code_tables(distance);
 | 
						|
 | 
						|
	/* fill in the count of each bit length' as well as the lengths
 | 
						|
	 * table */
 | 
						|
	for (i = 0; i < hclen; i++) {
 | 
						|
		length = pull_bits(stream, 3);
 | 
						|
		codes->lengths[huffman_order[i]] = length;
 | 
						|
		if (length) codes->count[length]++;
 | 
						|
 | 
						|
	}
 | 
						|
	fill_code_tables(codes);
 | 
						|
 | 
						|
	/* Do the same for the length codes, being carefull of wrap through
 | 
						|
	 * to the distance table */
 | 
						|
	curr_code = 0;
 | 
						|
	while (curr_code < hlit) {
 | 
						|
		if ((symbol = read_symbol(stream, codes)) < 0) return;
 | 
						|
		if (symbol == 0) {
 | 
						|
			curr_code++;
 | 
						|
			last_code = 0;
 | 
						|
		} else if (symbol < 16) { /* Literal length */
 | 
						|
			lengths->lengths[curr_code] =  last_code = symbol;
 | 
						|
			lengths->count[symbol]++;
 | 
						|
			curr_code++;
 | 
						|
		} else if (symbol == 16) { /* repeat the last symbol 3 - 6
 | 
						|
					    * times */
 | 
						|
			length = 3 + pull_bits(stream, 2);
 | 
						|
			for (;length; length--, curr_code++)
 | 
						|
				if (curr_code < hlit) {
 | 
						|
					lengths->lengths[curr_code] =
 | 
						|
						last_code;
 | 
						|
					lengths->count[last_code]++;
 | 
						|
				} else { /* wrap to the distance table */
 | 
						|
					distance->lengths[curr_code - hlit] =
 | 
						|
						last_code;
 | 
						|
					distance->count[last_code]++;
 | 
						|
				}
 | 
						|
		} else if (symbol == 17) { /* repeat a bit length 0 */
 | 
						|
			curr_code += 3 + pull_bits(stream, 3);
 | 
						|
			last_code = 0;
 | 
						|
		} else { /* same, but more times */
 | 
						|
			curr_code += 11 + pull_bits(stream, 7);
 | 
						|
			last_code = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fill_code_tables(lengths);
 | 
						|
 | 
						|
	/* Fill the distance table, don't need to worry about wrapthrough
 | 
						|
	 * here */
 | 
						|
	curr_code -= hlit;
 | 
						|
	while (curr_code < hdist) {
 | 
						|
		if ((symbol = read_symbol(stream, codes)) < 0) return;
 | 
						|
		if (symbol == 0) {
 | 
						|
			curr_code++;
 | 
						|
			last_code = 0;
 | 
						|
		} else if (symbol < 16) {
 | 
						|
			distance->lengths[curr_code] = last_code = symbol;
 | 
						|
			distance->count[symbol]++;
 | 
						|
			curr_code++;
 | 
						|
		} else if (symbol == 16) {
 | 
						|
			length = 3 + pull_bits(stream, 2);
 | 
						|
			for (;length; length--, curr_code++) {
 | 
						|
				distance->lengths[curr_code] =
 | 
						|
					last_code;
 | 
						|
				distance->count[last_code]++;
 | 
						|
			}
 | 
						|
		} else if (symbol == 17) {
 | 
						|
			curr_code += 3 + pull_bits(stream, 3);
 | 
						|
			last_code = 0;
 | 
						|
		} else {
 | 
						|
			curr_code += 11 + pull_bits(stream, 7);
 | 
						|
			last_code = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fill_code_tables(distance);
 | 
						|
 | 
						|
	decompress_huffman(stream, dest);
 | 
						|
}
 | 
						|
 | 
						|
/* fill in the length and distance huffman codes for fixed encoding
 | 
						|
 * (section 3.2.6) */
 | 
						|
static void decompress_fixed(struct bitstream *stream, unsigned char *dest)
 | 
						|
{
 | 
						|
	/* let gcc fill in the initial values */
 | 
						|
	struct huffman_set *lengths = &(stream->lengths);
 | 
						|
	struct huffman_set *distance = &(stream->distance);
 | 
						|
 | 
						|
	cramfs_memset(lengths->count, 0, 16);
 | 
						|
	cramfs_memset(lengths->first, 0, 16);
 | 
						|
	cramfs_memset(lengths->lengths, 8, 144);
 | 
						|
	cramfs_memset(lengths->lengths + 144, 9, 112);
 | 
						|
	cramfs_memset(lengths->lengths + 256, 7, 24);
 | 
						|
	cramfs_memset(lengths->lengths + 280, 8, 8);
 | 
						|
	lengths->count[7] = 24;
 | 
						|
	lengths->count[8] = 152;
 | 
						|
	lengths->count[9] = 112;
 | 
						|
 | 
						|
	cramfs_memset(distance->count, 0, 16);
 | 
						|
	cramfs_memset(distance->first, 0, 16);
 | 
						|
	cramfs_memset(distance->lengths, 5, 32);
 | 
						|
	distance->count[5] = 32;
 | 
						|
 | 
						|
 | 
						|
	fill_code_tables(lengths);
 | 
						|
	fill_code_tables(distance);
 | 
						|
 | 
						|
 | 
						|
	decompress_huffman(stream, dest);
 | 
						|
}
 | 
						|
 | 
						|
/* returns the number of bytes decoded, < 0 if there was an error. Note that
 | 
						|
 * this function assumes that the block starts on a byte boundry
 | 
						|
 * (non-compliant, but I don't see where this would happen). section 3.2.3 */
 | 
						|
long decompress_block(unsigned char *dest, unsigned char *source,
 | 
						|
		      void *(*inflate_memcpy)(void *, const void *, size))
 | 
						|
{
 | 
						|
	int bfinal, btype;
 | 
						|
	struct bitstream stream;
 | 
						|
 | 
						|
	init_stream(&stream, source, inflate_memcpy);
 | 
						|
	do {
 | 
						|
		bfinal = pull_bit(&stream);
 | 
						|
		btype = pull_bits(&stream, 2);
 | 
						|
		if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded);
 | 
						|
		else if (btype == DYNAMIC_COMP)
 | 
						|
			decompress_dynamic(&stream, dest + stream.decoded);
 | 
						|
		else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded);
 | 
						|
		else stream.error = COMP_UNKNOWN;
 | 
						|
	} while (!bfinal && !stream.error);
 | 
						|
 | 
						|
#if 0
 | 
						|
	putstr("decompress_block start\r\n");
 | 
						|
	putLabeledWord("stream.error = ",stream.error);
 | 
						|
	putLabeledWord("stream.decoded = ",stream.decoded);
 | 
						|
	putLabeledWord("dest = ",dest);
 | 
						|
	putstr("decompress_block end\r\n");
 | 
						|
#endif
 | 
						|
	return stream.error ? -stream.error : stream.decoded;
 | 
						|
}
 |