mirror of
				https://github.com/smaeul/u-boot.git
				synced 2025-10-22 16:48:14 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			664 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			664 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (C) Copyright 2001
 | |
|  * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
 | |
|  *
 | |
|  * See file CREDITS for list of people who contributed to this
 | |
|  * project.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 of
 | |
|  * the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 | |
|  * MA 02111-1307 USA
 | |
|  */
 | |
| 
 | |
| /* sdram_init.c - automatic memory sizing */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <74xx_7xx.h>
 | |
| #include <galileo/memory.h>
 | |
| #include <galileo/pci.h>
 | |
| #include <galileo/gt64260R.h>
 | |
| #include <net.h>
 | |
| 
 | |
| #include "eth.h"
 | |
| #include "mpsc.h"
 | |
| #include "i2c.h"
 | |
| #include "64260.h"
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| /* #define	DEBUG */
 | |
| #define	MAP_PCI
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #define DP(x) x
 | |
| #else
 | |
| #define DP(x)
 | |
| #endif
 | |
| 
 | |
| #define GB         (1 << 30)
 | |
| 
 | |
| /* structure to store the relevant information about an sdram bank */
 | |
| typedef struct sdram_info {
 | |
| 	uchar drb_size;
 | |
| 	uchar registered, ecc;
 | |
| 	uchar tpar;
 | |
| 	uchar tras_clocks;
 | |
| 	uchar burst_len;
 | |
| 	uchar banks, slot;
 | |
| 	int size;		/* detected size, not from I2C but from dram_size() */
 | |
| } sdram_info_t;
 | |
| 
 | |
| #ifdef DEBUG
 | |
| void dump_dimm_info (struct sdram_info *d)
 | |
| {
 | |
| 	static const char *ecc_legend[] = { "", " Parity", " ECC" };
 | |
| 
 | |
| 	printf ("dimm%s %sDRAM: %dMibytes:\n",
 | |
| 		ecc_legend[d->ecc],
 | |
| 		d->registered ? "R" : "", (d->size >> 20));
 | |
| 	printf ("  drb=%d tpar=%d tras=%d burstlen=%d banks=%d slot=%d\n",
 | |
| 		d->drb_size, d->tpar, d->tras_clocks, d->burst_len,
 | |
| 		d->banks, d->slot);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| memory_map_bank (unsigned int bankNo,
 | |
| 		 unsigned int bankBase, unsigned int bankLength)
 | |
| {
 | |
| #ifdef DEBUG
 | |
| 	if (bankLength > 0) {
 | |
| 		printf ("mapping bank %d at %08x - %08x\n",
 | |
| 			bankNo, bankBase, bankBase + bankLength - 1);
 | |
| 	} else {
 | |
| 		printf ("unmapping bank %d\n", bankNo);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	memoryMapBank (bankNo, bankBase, bankLength);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef MAP_PCI
 | |
| static int
 | |
| memory_map_bank_pci (unsigned int bankNo,
 | |
| 		     unsigned int bankBase, unsigned int bankLength)
 | |
| {
 | |
| 	PCI_HOST host;
 | |
| 
 | |
| 	for (host = PCI_HOST0; host <= PCI_HOST1; host++) {
 | |
| 		const int features =
 | |
| 			PREFETCH_ENABLE |
 | |
| 			DELAYED_READ_ENABLE |
 | |
| 			AGGRESSIVE_PREFETCH |
 | |
| 			READ_LINE_AGGRESSIVE_PREFETCH |
 | |
| 			READ_MULTI_AGGRESSIVE_PREFETCH |
 | |
| 			MAX_BURST_4 | PCI_NO_SWAP;
 | |
| 
 | |
| 		pciMapMemoryBank (host, bankNo, bankBase, bankLength);
 | |
| 
 | |
| 		pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase,
 | |
| 				       bankLength);
 | |
| 
 | |
| 		pciSetRegionFeatures (host, bankNo, features, bankBase,
 | |
| 				      bankLength);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| 
 | |
| /* much of this code is based on (or is) the code in the pip405 port */
 | |
| /* thanks go to the authors of said port - Josh */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * translate ns.ns/10 coding of SPD timing values
 | |
|  * into 10 ps unit values
 | |
|  */
 | |
| static inline unsigned short NS10to10PS (unsigned char spd_byte)
 | |
| {
 | |
| 	unsigned short ns, ns10;
 | |
| 
 | |
| 	/* isolate upper nibble */
 | |
| 	ns = (spd_byte >> 4) & 0x0F;
 | |
| 	/* isolate lower nibble */
 | |
| 	ns10 = (spd_byte & 0x0F);
 | |
| 
 | |
| 	return (ns * 100 + ns10 * 10);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * translate ns coding of SPD timing values
 | |
|  * into 10 ps unit values
 | |
|  */
 | |
| static inline unsigned short NSto10PS (unsigned char spd_byte)
 | |
| {
 | |
| 	return (spd_byte * 100);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ZUMA_V2
 | |
| static int check_dimm (uchar slot, sdram_info_t * info)
 | |
| {
 | |
| 	/* assume 2 dimms, 2 banks each 256M - we dont have an
 | |
| 	 * dimm i2c so rely on the detection routines later */
 | |
| 
 | |
| 	memset (info, 0, sizeof (*info));
 | |
| 
 | |
| 	info->slot = slot;
 | |
| 	info->banks = 2;	/* Detect later */
 | |
| 	info->registered = 0;
 | |
| 	info->drb_size = 32;	/* 16 - 256MBit, 32 - 512MBit
 | |
| 				   but doesn't matter, both do same
 | |
| 				   thing in setup_sdram() */
 | |
| 	info->tpar = 3;
 | |
| 	info->tras_clocks = 5;
 | |
| 	info->burst_len = 4;
 | |
| #ifdef CONFIG_ECC
 | |
| 	info->ecc = 0;		/* Detect later */
 | |
| #endif /* CONFIG_ECC */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #elif defined(CONFIG_P3G4)
 | |
| 
 | |
| static int check_dimm (uchar slot, sdram_info_t * info)
 | |
| {
 | |
| 	memset (info, 0, sizeof (*info));
 | |
| 
 | |
| 	if (slot)
 | |
| 		return 0;
 | |
| 
 | |
| 	info->slot = slot;
 | |
| 	info->banks = 1;
 | |
| 	info->registered = 0;
 | |
| 	info->drb_size = 4;
 | |
| 	info->tpar = 3;
 | |
| 	info->tras_clocks = 6;
 | |
| 	info->burst_len = 4;
 | |
| #ifdef CONFIG_ECC
 | |
| 	info->ecc = 2;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else  /* ! CONFIG_ZUMA_V2 && ! CONFIG_P3G4 */
 | |
| 
 | |
| /* This code reads the SPD chip on the sdram and populates
 | |
|  * the array which is passed in with the relevant information */
 | |
| static int check_dimm (uchar slot, sdram_info_t * info)
 | |
| {
 | |
| 	uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
 | |
| 	int ret;
 | |
| 	uchar rows, cols, sdram_banks, supp_cal, width, cal_val;
 | |
| 	ulong tmemclk;
 | |
| 	uchar trp_clocks, trcd_clocks;
 | |
| 	uchar data[128];
 | |
| 
 | |
| 	get_clocks ();
 | |
| 
 | |
| 	tmemclk = 1000000000 / (gd->bus_clk / 100);	/* in 10 ps units */
 | |
| 
 | |
| #ifdef CONFIG_EVB64260_750CX
 | |
| 	if (0 != slot) {
 | |
| 		printf ("check_dimm: The EVB-64260-750CX only has 1 DIMM,");
 | |
| 		printf ("            called with slot=%d insetad!\n", slot);
 | |
| 		return 0;
 | |
| 	}
 | |
| #endif
 | |
| 	DP (puts ("before i2c read\n"));
 | |
| 
 | |
| 	ret = i2c_read (addr, 0, 128, data, 0);
 | |
| 
 | |
| 	DP (puts ("after i2c read\n"));
 | |
| 
 | |
| 	/* zero all the values */
 | |
| 	memset (info, 0, sizeof (*info));
 | |
| 
 | |
| 	if (ret) {
 | |
| 		DP (printf ("No DIMM in slot %d [err = %x]\n", slot, ret));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* first, do some sanity checks */
 | |
| 	if (data[2] != 0x4) {
 | |
| 		printf ("Not SDRAM in slot %d\n", slot);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* get various information */
 | |
| 	rows = data[3];
 | |
| 	cols = data[4];
 | |
| 	info->banks = data[5];
 | |
| 	sdram_banks = data[17];
 | |
| 	width = data[13] & 0x7f;
 | |
| 
 | |
| 	DP (printf
 | |
| 	    ("sdram_banks: %d, banks: %d\n", sdram_banks, info->banks));
 | |
| 
 | |
| 	/* check if the memory is registered */
 | |
| 	if (data[21] & (BIT1 | BIT4))
 | |
| 		info->registered = 1;
 | |
| 
 | |
| #ifdef CONFIG_ECC
 | |
| 	/* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */
 | |
| 	info->ecc = (data[11] & 2) >> 1;
 | |
| #endif
 | |
| 
 | |
| 	/* bit 1 is CL2, bit 2 is CL3 */
 | |
| 	supp_cal = (data[18] & 0x6) >> 1;
 | |
| 
 | |
| 	/* compute the relevant clock values */
 | |
| 	trp_clocks = (NSto10PS (data[27]) + (tmemclk - 1)) / tmemclk;
 | |
| 	trcd_clocks = (NSto10PS (data[29]) + (tmemclk - 1)) / tmemclk;
 | |
| 	info->tras_clocks = (NSto10PS (data[30]) + (tmemclk - 1)) / tmemclk;
 | |
| 
 | |
| 	DP (printf ("trp = %d\ntrcd_clocks = %d\ntras_clocks = %d\n",
 | |
| 		    trp_clocks, trcd_clocks, info->tras_clocks));
 | |
| 
 | |
| 	/* try a CAS latency of 3 first... */
 | |
| 	cal_val = 0;
 | |
| 	if (supp_cal & 3) {
 | |
| 		if (NS10to10PS (data[9]) <= tmemclk)
 | |
| 			cal_val = 3;
 | |
| 	}
 | |
| 
 | |
| 	/* then 2... */
 | |
| 	if (supp_cal & 2) {
 | |
| 		if (NS10to10PS (data[23]) <= tmemclk)
 | |
| 			cal_val = 2;
 | |
| 	}
 | |
| 
 | |
| 	DP (printf ("cal_val = %d\n", cal_val));
 | |
| 
 | |
| 	/* bummer, did't work... */
 | |
| 	if (cal_val == 0) {
 | |
| 		DP (printf ("Couldn't find a good CAS latency\n"));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* get the largest delay -- these values need to all be the same
 | |
| 	 * see Res#6 */
 | |
| 	info->tpar = cal_val;
 | |
| 	if (trp_clocks > info->tpar)
 | |
| 		info->tpar = trp_clocks;
 | |
| 	if (trcd_clocks > info->tpar)
 | |
| 		info->tpar = trcd_clocks;
 | |
| 
 | |
| 	DP (printf ("tpar set to: %d\n", info->tpar));
 | |
| 
 | |
| #ifdef CONFIG_SYS_BROKEN_CL2
 | |
| 	if (info->tpar == 2) {
 | |
| 		info->tpar = 3;
 | |
| 		DP (printf ("tpar fixed-up to: %d\n", info->tpar));
 | |
| 	}
 | |
| #endif
 | |
| 	/* compute the module DRB size */
 | |
| 	info->drb_size =
 | |
| 		(((1 << (rows + cols)) * sdram_banks) * width) / _16M;
 | |
| 
 | |
| 	DP (printf ("drb_size set to: %d\n", info->drb_size));
 | |
| 
 | |
| 	/* find the burst len */
 | |
| 	info->burst_len = data[16] & 0xf;
 | |
| 	if ((info->burst_len & 8) == 8) {
 | |
| 		info->burst_len = 1;
 | |
| 	} else if ((info->burst_len & 4) == 4) {
 | |
| 		info->burst_len = 0;
 | |
| 	} else {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	info->slot = slot;
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* ! CONFIG_ZUMA_V2 */
 | |
| 
 | |
| static int setup_sdram_common (sdram_info_t info[2])
 | |
| {
 | |
| 	ulong tmp;
 | |
| 	int tpar = 2, tras_clocks = 5, registered = 1, ecc = 2;
 | |
| 
 | |
| 	if (!info[0].banks && !info[1].banks)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (info[0].banks) {
 | |
| 		if (info[0].tpar > tpar)
 | |
| 			tpar = info[0].tpar;
 | |
| 		if (info[0].tras_clocks > tras_clocks)
 | |
| 			tras_clocks = info[0].tras_clocks;
 | |
| 		if (!info[0].registered)
 | |
| 			registered = 0;
 | |
| 		if (info[0].ecc != 2)
 | |
| 			ecc = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (info[1].banks) {
 | |
| 		if (info[1].tpar > tpar)
 | |
| 			tpar = info[1].tpar;
 | |
| 		if (info[1].tras_clocks > tras_clocks)
 | |
| 			tras_clocks = info[1].tras_clocks;
 | |
| 		if (!info[1].registered)
 | |
| 			registered = 0;
 | |
| 		if (info[1].ecc != 2)
 | |
| 			ecc = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* SDRAM configuration */
 | |
| 	tmp = GTREGREAD (SDRAM_CONFIGURATION);
 | |
| 
 | |
| 	/* Turn on physical interleave if both DIMMs
 | |
| 	 * have even numbers of banks. */
 | |
| 	if ((info[0].banks == 0 || info[0].banks == 2) &&
 | |
| 	    (info[1].banks == 0 || info[1].banks == 2)) {
 | |
| 		/* physical interleave on */
 | |
| 		tmp &= ~(1 << 15);
 | |
| 	} else {
 | |
| 		/* physical interleave off */
 | |
| 		tmp |= (1 << 15);
 | |
| 	}
 | |
| 
 | |
| 	tmp |= (registered << 17);
 | |
| 
 | |
| 	/* Use buffer 1 to return read data to the CPU
 | |
| 	 * See Res #12 */
 | |
| 	tmp |= (1 << 26);
 | |
| 
 | |
| 	GT_REG_WRITE (SDRAM_CONFIGURATION, tmp);
 | |
| 	DP (printf ("SDRAM config: %08x\n", GTREGREAD (SDRAM_CONFIGURATION)));
 | |
| 
 | |
| 	/* SDRAM timing */
 | |
| 	tmp = (((tpar == 3) ? 2 : 1) |
 | |
| 	       (((tpar == 3) ? 2 : 1) << 2) |
 | |
| 	       (((tpar == 3) ? 2 : 1) << 4) | (tras_clocks << 8));
 | |
| 
 | |
| #ifdef CONFIG_ECC
 | |
| 	/* Setup ECC */
 | |
| 	if (ecc == 2)
 | |
| 		tmp |= 1 << 13;
 | |
| #endif /* CONFIG_ECC */
 | |
| 
 | |
| 	GT_REG_WRITE (SDRAM_TIMING, tmp);
 | |
| 	DP (printf ("SDRAM timing: %08x (%d,%d,%d,%d)\n",
 | |
| 		    GTREGREAD (SDRAM_TIMING), tpar, tpar, tpar, tras_clocks));
 | |
| 
 | |
| 	/* SDRAM address decode register */
 | |
| 	/* program this with the default value */
 | |
| 	GT_REG_WRITE (SDRAM_ADDRESS_DECODE, 0x2);
 | |
| 	DP (printf ("SDRAM decode: %08x\n",
 | |
| 		    GTREGREAD (SDRAM_ADDRESS_DECODE)));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* sets up the GT properly with information passed in */
 | |
| static int setup_sdram (sdram_info_t * info)
 | |
| {
 | |
| 	ulong tmp, check;
 | |
| 	ulong *addr = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* sanity checking */
 | |
| 	if (!info->banks)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* ---------------------------- */
 | |
| 	/* Program the GT with the discovered data */
 | |
| 
 | |
| 	/* bank parameters */
 | |
| 	tmp = (0xf << 16);	/* leave all virt bank pages open */
 | |
| 
 | |
| 	DP (printf ("drb_size: %d\n", info->drb_size));
 | |
| 	switch (info->drb_size) {
 | |
| 	case 1:
 | |
| 		tmp |= (1 << 14);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 	case 8:
 | |
| 		tmp |= (2 << 14);
 | |
| 		break;
 | |
| 	case 16:
 | |
| 	case 32:
 | |
| 		tmp |= (3 << 14);
 | |
| 		break;
 | |
| 	default:
 | |
| 		printf ("Error in dram size calculation\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* SDRAM bank parameters */
 | |
| 	/* the param registers for slot 1 (banks 2+3) are offset by 0x8 */
 | |
| 	GT_REG_WRITE (SDRAM_BANK0PARAMETERS + (info->slot * 0x8), tmp);
 | |
| 	GT_REG_WRITE (SDRAM_BANK1PARAMETERS + (info->slot * 0x8), tmp);
 | |
| 	DP (printf
 | |
| 	    ("SDRAM bankparam slot %d (bank %d+%d): %08lx\n", info->slot,
 | |
| 	     info->slot * 2, (info->slot * 2) + 1, tmp));
 | |
| 
 | |
| 	/* set the SDRAM configuration for each bank */
 | |
| 	for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) {
 | |
| 		DP (printf ("*** Running a MRS cycle for bank %d ***\n", i));
 | |
| 
 | |
| 		/* map the bank */
 | |
| 		memory_map_bank (i, 0, GB / 4);
 | |
| 
 | |
| 		/* set SDRAM mode */
 | |
| 		GT_REG_WRITE (SDRAM_OPERATION_MODE, 0x3);
 | |
| 		check = GTREGREAD (SDRAM_OPERATION_MODE);
 | |
| 
 | |
| 		/* dummy write */
 | |
| 		*addr = 0;
 | |
| 
 | |
| 		/* wait for the command to complete */
 | |
| 		while ((GTREGREAD (SDRAM_OPERATION_MODE) & (1 << 31)) == 0);
 | |
| 
 | |
| 		/* switch back to normal operation mode */
 | |
| 		GT_REG_WRITE (SDRAM_OPERATION_MODE, 0);
 | |
| 		check = GTREGREAD (SDRAM_OPERATION_MODE);
 | |
| 
 | |
| 		/* unmap the bank */
 | |
| 		memory_map_bank (i, 0, 0);
 | |
| 		DP (printf ("*** MRS cycle for bank %d done ***\n", i));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check memory range for valid RAM. A simple memory test determines
 | |
|  * the actually available RAM size between addresses `base' and
 | |
|  * `base + maxsize'. Some (not all) hardware errors are detected:
 | |
|  * - short between address lines
 | |
|  * - short between data lines
 | |
|  */
 | |
| static long int dram_size (long int *base, long int maxsize)
 | |
| {
 | |
| 	volatile long int *addr, *b = base;
 | |
| 	long int cnt, val, save1, save2;
 | |
| 
 | |
| #define STARTVAL (1<<20)	/* start test at 1M */
 | |
| 	for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long);
 | |
| 	     cnt <<= 1) {
 | |
| 		addr = base + cnt;	/* pointer arith! */
 | |
| 
 | |
| 		save1 = *addr;	/* save contents of addr */
 | |
| 		save2 = *b;	/* save contents of base */
 | |
| 
 | |
| 		*addr = cnt;	/* write cnt to addr */
 | |
| 		*b = 0;		/* put null at base */
 | |
| 
 | |
| 		/* check at base address */
 | |
| 		if ((*b) != 0) {
 | |
| 			*addr = save1;	/* restore *addr */
 | |
| 			*b = save2;	/* restore *b */
 | |
| 			return (0);
 | |
| 		}
 | |
| 		val = *addr;	/* read *addr */
 | |
| 
 | |
| 		*addr = save1;
 | |
| 		*b = save2;
 | |
| 
 | |
| 		if (val != cnt) {
 | |
| 			/* fix boundary condition.. STARTVAL means zero */
 | |
| 			if (cnt == STARTVAL / sizeof (long))
 | |
| 				cnt = 0;
 | |
| 			return (cnt * sizeof (long));
 | |
| 		}
 | |
| 	}
 | |
| 	return maxsize;
 | |
| }
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| 
 | |
| /* U-Boot interface function to SDRAM init - this is where all the
 | |
|  * controlling logic happens */
 | |
| phys_size_t initdram (int board_type)
 | |
| {
 | |
| 	ulong checkbank[4] = {[0 ... 3] = 0 };
 | |
| 	int bank_no;
 | |
| 	ulong total;
 | |
| 	int nhr;
 | |
| 	sdram_info_t dimm_info[2];
 | |
| 
 | |
| 
 | |
| 	/* first, use the SPD to get info about the SDRAM */
 | |
| 
 | |
| 	/* check the NHR bit and skip mem init if it's already done */
 | |
| 	nhr = get_hid0 () & (1 << 16);
 | |
| 
 | |
| 	if (nhr) {
 | |
| 		printf ("Skipping SDRAM setup due to NHR bit being set\n");
 | |
| 	} else {
 | |
| 		/* DIMM0 */
 | |
| 		check_dimm (0, &dimm_info[0]);
 | |
| 
 | |
| 		/* DIMM1 */
 | |
| #ifndef CONFIG_EVB64260_750CX	/* EVB64260_750CX has only 1 DIMM */
 | |
| 		check_dimm (1, &dimm_info[1]);
 | |
| #else  /* CONFIG_EVB64260_750CX */
 | |
| 		memset (&dimm_info[1], 0, sizeof (sdram_info_t));
 | |
| #endif
 | |
| 
 | |
| 		/* unmap all banks */
 | |
| 		memory_map_bank (0, 0, 0);
 | |
| 		memory_map_bank (1, 0, 0);
 | |
| 		memory_map_bank (2, 0, 0);
 | |
| 		memory_map_bank (3, 0, 0);
 | |
| 
 | |
| 		/* Now, program the GT with the correct values */
 | |
| 		if (setup_sdram_common (dimm_info)) {
 | |
| 			printf ("Setup common failed.\n");
 | |
| 		}
 | |
| 
 | |
| 		if (setup_sdram (&dimm_info[0])) {
 | |
| 			printf ("Setup for DIMM1 failed.\n");
 | |
| 		}
 | |
| 
 | |
| 		if (setup_sdram (&dimm_info[1])) {
 | |
| 			printf ("Setup for DIMM2 failed.\n");
 | |
| 		}
 | |
| 
 | |
| 		/* set the NHR bit */
 | |
| 		set_hid0 (get_hid0 () | (1 << 16));
 | |
| 	}
 | |
| 	/* next, size the SDRAM banks */
 | |
| 
 | |
| 	total = 0;
 | |
| 	if (dimm_info[0].banks > 0)
 | |
| 		checkbank[0] = 1;
 | |
| 	if (dimm_info[0].banks > 1)
 | |
| 		checkbank[1] = 1;
 | |
| 	if (dimm_info[0].banks > 2)
 | |
| 		printf ("Error, SPD claims DIMM1 has >2 banks\n");
 | |
| 
 | |
| 	if (dimm_info[1].banks > 0)
 | |
| 		checkbank[2] = 1;
 | |
| 	if (dimm_info[1].banks > 1)
 | |
| 		checkbank[3] = 1;
 | |
| 	if (dimm_info[1].banks > 2)
 | |
| 		printf ("Error, SPD claims DIMM2 has >2 banks\n");
 | |
| 
 | |
| 	/* Generic dram sizer: works even if we don't have i2c DIMMs,
 | |
| 	 * as long as the timing settings are more or less correct */
 | |
| 
 | |
| 	/*
 | |
| 	 * pass 1: size all the banks, using first bat (0-256M)
 | |
| 	 *         limitation: we only support 256M per bank due to
 | |
| 	 *         us only having 1 BAT for all DRAM
 | |
| 	 */
 | |
| 	for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) {
 | |
| 		/* skip over banks that are not populated */
 | |
| 		if (!checkbank[bank_no])
 | |
| 			continue;
 | |
| 
 | |
| 		DP (printf ("checking bank %d\n", bank_no));
 | |
| 
 | |
| 		memory_map_bank (bank_no, 0, GB / 4);
 | |
| 		checkbank[bank_no] = dram_size (NULL, GB / 4);
 | |
| 		memory_map_bank (bank_no, 0, 0);
 | |
| 
 | |
| 		DP (printf ("bank %d %08lx\n", bank_no, checkbank[bank_no]));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * pass 2: contiguously map each bank into physical address
 | |
| 	 *         space.
 | |
| 	 */
 | |
| 	dimm_info[0].banks = dimm_info[1].banks = 0;
 | |
| 	for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) {
 | |
| 		if (!checkbank[bank_no])
 | |
| 			continue;
 | |
| 
 | |
| 		dimm_info[bank_no / 2].banks++;
 | |
| 		dimm_info[bank_no / 2].size += checkbank[bank_no];
 | |
| 
 | |
| 		memory_map_bank (bank_no, total, checkbank[bank_no]);
 | |
| #ifdef MAP_PCI
 | |
| 		memory_map_bank_pci (bank_no, total, checkbank[bank_no]);
 | |
| #endif
 | |
| 		total += checkbank[bank_no];
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_ECC
 | |
| #ifdef CONFIG_ZUMA_V2
 | |
| 	/*
 | |
| 	 * We always enable ECC when bank 2 and 3 are unpopulated
 | |
| 	 * If we 2 or 3 are populated, we CAN'T support ECC.
 | |
| 	 * (Zuma boards only support ECC in banks 0 and 1; assume that
 | |
| 	 * in that configuration, ECC chips are mounted, even for stacked
 | |
| 	 * chips)
 | |
| 	 */
 | |
| 	if (checkbank[2] == 0 && checkbank[3] == 0) {
 | |
| 		dimm_info[0].ecc = 2;
 | |
| 		GT_REG_WRITE (SDRAM_TIMING,
 | |
| 			      GTREGREAD (SDRAM_TIMING) | (1 << 13));
 | |
| 		/* TODO: do we have to run MRS cycles again? */
 | |
| 	}
 | |
| #endif /* CONFIG_ZUMA_V2 */
 | |
| 
 | |
| 	if (GTREGREAD (SDRAM_TIMING) & (1 << 13)) {
 | |
| 		puts ("[ECC] ");
 | |
| 	}
 | |
| #endif /* CONFIG_ECC */
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	dump_dimm_info (&dimm_info[0]);
 | |
| 	dump_dimm_info (&dimm_info[1]);
 | |
| #endif
 | |
| 	/* TODO: return at MOST 256M? */
 | |
| 	/* return total > GB/4 ? GB/4 : total; */
 | |
| 	return total;
 | |
| }
 |