winamp/Src/external_dependencies/openmpt-trunk/soundlib/Load_psm.cpp

1422 lines
40 KiB
C++
Raw Normal View History

2024-09-24 13:54:57 +01:00
/*
* Load_psm.cpp
* ------------
* Purpose: PSM16 and new PSM (ProTracker Studio / Epic MegaGames MASI) module loader
* Notes : This is partly based on http://www.shikadi.net/moddingwiki/ProTracker_Studio_Module
* and partly reverse-engineered. Also thanks to the author of foo_dumb, the source code gave me a few clues. :)
* Authors: Johannes Schultz
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#ifdef LIBOPENMPT_BUILD
#define MPT_PSM_USE_REAL_SUBSONGS
#endif
OPENMPT_NAMESPACE_BEGIN
////////////////////////////////////////////////////////////
//
// New PSM support starts here. PSM16 structs are below.
//
// PSM File Header
struct PSMFileHeader
{
char formatID[4]; // "PSM " (new format)
uint32le fileSize; // Filesize - 12
char fileInfoID[4]; // "FILE"
};
MPT_BINARY_STRUCT(PSMFileHeader, 12)
// RIFF-style Chunk
struct PSMChunk
{
// 32-Bit chunk identifiers
enum ChunkIdentifiers
{
idTITL = MagicLE("TITL"),
idSDFT = MagicLE("SDFT"),
idPBOD = MagicLE("PBOD"),
idSONG = MagicLE("SONG"),
idDATE = MagicLE("DATE"),
idOPLH = MagicLE("OPLH"),
idPPAN = MagicLE("PPAN"),
idPATT = MagicLE("PATT"),
idDSAM = MagicLE("DSAM"),
idDSMP = MagicLE("DSMP"),
};
uint32le id;
uint32le length;
size_t GetLength() const
{
return length;
}
ChunkIdentifiers GetID() const
{
return static_cast<ChunkIdentifiers>(id.get());
}
};
MPT_BINARY_STRUCT(PSMChunk, 8)
// Song Information
struct PSMSongHeader
{
char songType[9]; // Mostly "MAINSONG " (But not in Extreme Pinball!)
uint8 compression; // 1 - uncompressed
uint8 numChannels; // Number of channels
};
MPT_BINARY_STRUCT(PSMSongHeader, 11)
// Regular sample header
struct PSMSampleHeader
{
uint8le flags;
char fileName[8]; // Filename of the original module (without extension)
char sampleID[4]; // Identifier like "INS0" (only last digit of sample ID, i.e. sample 1 and sample 11 are equal) or "I0 "
char sampleName[33];
uint8le unknown1[6]; // 00 00 00 00 00 FF
uint16le sampleNumber;
uint32le sampleLength;
uint32le loopStart;
uint32le loopEnd; // FF FF FF FF = end of sample
uint8le unknown3;
uint8le finetune; // unused? always 0
uint8le defaultVolume;
uint32le unknown4;
uint32le c5Freq; // MASI ignores the high 16 bits
char padding[19];
// Convert header data to OpenMPT's internal format
void ConvertToMPT(ModSample &mptSmp) const
{
mptSmp.Initialize();
mptSmp.filename = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, fileName);
mptSmp.nC5Speed = c5Freq;
mptSmp.nLength = sampleLength;
mptSmp.nLoopStart = loopStart;
// Note that we shouldn't add + 1 for MTM conversions here (e.g. the OMF 2097 music),
// but I think there is no way to figure out the original format, and in the case of the OMF 2097 soundtrack
// it doesn't make a huge audible difference anyway (no chip samples are used).
// On the other hand, sample 8 of MUSIC_A.PSM from Extreme Pinball will sound detuned if we don't adjust the loop end here.
if(loopEnd)
mptSmp.nLoopEnd = loopEnd + 1;
mptSmp.nVolume = (defaultVolume + 1) * 2;
mptSmp.uFlags.set(CHN_LOOP, (flags & 0x80) != 0);
LimitMax(mptSmp.nLoopEnd, mptSmp.nLength);
LimitMax(mptSmp.nLoopStart, mptSmp.nLoopEnd);
}
};
MPT_BINARY_STRUCT(PSMSampleHeader, 96)
// Sinaria sample header (and possibly other games)
struct PSMSinariaSampleHeader
{
uint8le flags;
char fileName[8]; // Filename of the original module (without extension)
char sampleID[8]; // INS0...INS99999
char sampleName[33];
uint8le unknown1[6]; // 00 00 00 00 00 FF
uint16le sampleNumber;
uint32le sampleLength;
uint32le loopStart;
uint32le loopEnd;
uint16le unknown3;
uint8le finetune; // Appears to be unused
uint8le defaultVolume;
uint32le unknown4;
uint16le c5Freq;
char padding[16];
// Convert header data to OpenMPT's internal format
void ConvertToMPT(ModSample &mptSmp) const
{
mptSmp.Initialize();
mptSmp.filename = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, fileName);
mptSmp.nC5Speed = c5Freq;
mptSmp.nLength = sampleLength;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
mptSmp.nVolume = (defaultVolume + 1) * 2;
mptSmp.uFlags.set(CHN_LOOP, (flags & 0x80) != 0);
LimitMax(mptSmp.nLoopEnd, mptSmp.nLength);
LimitMax(mptSmp.nLoopStart, mptSmp.nLoopEnd);
}
};
MPT_BINARY_STRUCT(PSMSinariaSampleHeader, 96)
struct PSMSubSong // For internal use (pattern conversion)
{
std::vector<uint8> channelPanning, channelVolume;
std::vector<bool> channelSurround;
ORDERINDEX startOrder = ORDERINDEX_INVALID, endOrder = ORDERINDEX_INVALID, restartPos = 0;
uint8 defaultTempo = 125, defaultSpeed = 6;
char songName[10] = {};
PSMSubSong()
: channelPanning(MAX_BASECHANNELS, 128)
, channelVolume(MAX_BASECHANNELS, 64)
, channelSurround(MAX_BASECHANNELS, false)
{ }
};
// Portamento effect conversion (depending on format version)
static uint8 ConvertPSMPorta(uint8 param, bool sinariaFormat)
{
if(sinariaFormat)
return param;
if(param < 4)
return (param | 0xF0);
else
return (param >> 2);
}
// Read a Pattern ID (something like "P0 " or "P13 ", or "PATT0 " in Sinaria)
static PATTERNINDEX ReadPSMPatternIndex(FileReader &file, bool &sinariaFormat)
{
char patternID[5];
uint8 offset = 1;
file.ReadString<mpt::String::spacePadded>(patternID, 4);
if(!memcmp(patternID, "PATT", 4))
{
file.ReadString<mpt::String::spacePadded>(patternID, 4);
sinariaFormat = true;
offset = 0;
}
return ConvertStrTo<uint16>(&patternID[offset]);
}
static bool ValidateHeader(const PSMFileHeader &fileHeader)
{
if(!std::memcmp(fileHeader.formatID, "PSM ", 4)
&& !std::memcmp(fileHeader.fileInfoID, "FILE", 4))
{
return true;
}
#ifdef MPT_PSM_DECRYPT
if(!std::memcmp(fileHeader.formatID, "QUP$", 4)
&& !std::memcmp(fileHeader.fileInfoID, "OSWQ", 4))
{
return true;
}
#endif
return false;
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderPSM(MemoryFileReader file, const uint64 *pfilesize)
{
PSMFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(fileHeader))
{
return ProbeFailure;
}
PSMChunk chunkHeader;
if(!file.ReadStruct(chunkHeader))
{
return ProbeWantMoreData;
}
if(chunkHeader.length == 0)
{
return ProbeFailure;
}
if((chunkHeader.id & 0x7F7F7F7Fu) != chunkHeader.id) // ASCII?
{
return ProbeFailure;
}
MPT_UNREFERENCED_PARAMETER(pfilesize);
return ProbeSuccess;
}
bool CSoundFile::ReadPSM(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
PSMFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return false;
}
#ifdef MPT_PSM_DECRYPT
// CONVERT.EXE /K - I don't think any game ever used this.
std::vector<std::byte> decrypted;
if(!memcmp(fileHeader.formatID, "QUP$", 4)
&& !memcmp(fileHeader.fileInfoID, "OSWQ", 4))
{
if(loadFlags == onlyVerifyHeader)
return true;
file.Rewind();
decrypted.resize(file.GetLength());
file.ReadRaw(decrypted.data(), decrypted.size());
uint8 i = 0;
for(auto &c : decrypted)
{
c -= ++i;
}
file = FileReader(mpt::as_span(decrypted));
file.ReadStruct(fileHeader);
}
#endif // MPT_PSM_DECRYPT
// Check header
if(!ValidateHeader(fileHeader))
{
return false;
}
ChunkReader chunkFile(file);
ChunkReader::ChunkList<PSMChunk> chunks;
if(loadFlags == onlyVerifyHeader)
chunks = chunkFile.ReadChunksUntil<PSMChunk>(1, PSMChunk::idSDFT);
else
chunks = chunkFile.ReadChunks<PSMChunk>(1);
// "SDFT" - Format info (song data starts here)
if(!chunks.GetChunk(PSMChunk::idSDFT).ReadMagic("MAINSONG"))
return false;
else if(loadFlags == onlyVerifyHeader)
return true;
// Yep, this seems to be a valid file.
InitializeGlobals(MOD_TYPE_PSM);
m_SongFlags = SONG_ITOLDEFFECTS | SONG_ITCOMPATGXX;
// "TITL" - Song Title
FileReader titleChunk = chunks.GetChunk(PSMChunk::idTITL);
titleChunk.ReadString<mpt::String::spacePadded>(m_songName, titleChunk.GetLength());
Order().clear();
// Subsong setup
std::vector<PSMSubSong> subsongs;
bool subsongPanningDiffers = false; // Do we have subsongs with different panning positions?
bool sinariaFormat = false; // The game "Sinaria" uses a slightly modified PSM structure - in some ways it's more like PSM16 (e.g. effects).
// "SONG" - Subsong information (channel count etc)
auto songChunks = chunks.GetAllChunks(PSMChunk::idSONG);
for(ChunkReader chunk : songChunks)
{
PSMSongHeader songHeader;
if(!chunk.ReadStruct(songHeader)
|| songHeader.compression != 0x01) // No compression for PSM files
{
return false;
}
// Subsongs *might* have different channel count
m_nChannels = Clamp(static_cast<CHANNELINDEX>(songHeader.numChannels), m_nChannels, MAX_BASECHANNELS);
PSMSubSong subsong;
mpt::String::WriteAutoBuf(subsong.songName) = mpt::String::ReadBuf(mpt::String::nullTerminated, songHeader.songType);
#ifdef MPT_PSM_USE_REAL_SUBSONGS
if(!Order().empty())
{
// Add a new sequence for this subsong
if(Order.AddSequence() == SEQUENCEINDEX_INVALID)
break;
}
Order().SetName(mpt::ToUnicode(mpt::Charset::CP437, subsong.songName));
#endif // MPT_PSM_USE_REAL_SUBSONGS
// Read "Sub chunks"
auto subChunks = chunk.ReadChunks<PSMChunk>(1);
for(const auto &subChunkIter : subChunks.chunks)
{
FileReader subChunk(subChunkIter.GetData());
PSMChunk subChunkHead = subChunkIter.GetHeader();
switch(subChunkHead.GetID())
{
#if 0
case PSMChunk::idDATE: // "DATE" - Conversion date (YYMMDD)
if(subChunkHead.GetLength() == 6)
{
char cversion[7];
subChunk.ReadString<mpt::String::maybeNullTerminated>(cversion, 6);
uint32 version = ConvertStrTo<uint32>(cversion);
// Sinaria song dates (just to go sure...)
if(version == 800211 || version == 940902 || version == 940903 ||
version == 940906 || version == 940914 || version == 941213)
sinariaFormat = true;
}
break;
#endif
case PSMChunk::idOPLH: // "OPLH" - Order list, channel + module settings
if(subChunkHead.GetLength() >= 9)
{
// First two bytes = Number of chunks that follow
//uint16 totalChunks = subChunk.ReadUint16LE();
subChunk.Skip(2);
// Now, the interesting part begins!
uint16 chunkCount = 0, firstOrderChunk = uint16_max;
// "Sub sub chunks" (grrrr, silly format)
while(subChunk.CanRead(1))
{
uint8 opcode = subChunk.ReadUint8();
if(!opcode)
{
// Last chunk was reached.
break;
}
// Note: This is more like a playlist than a collection of global values.
// In theory, a tempo item inbetween two order items should modify the
// tempo when switching patterns. No module uses this feature in practice
// though, so we can keep our loader simple.
// Unimplemented opcodes do nothing or freeze MASI.
switch(opcode)
{
case 0x01: // Play order list item
{
if(subsong.startOrder == ORDERINDEX_INVALID)
subsong.startOrder = Order().GetLength();
subsong.endOrder = Order().GetLength();
PATTERNINDEX pat = ReadPSMPatternIndex(subChunk, sinariaFormat);
if(pat == 0xFF)
pat = Order.GetInvalidPatIndex();
else if(pat == 0xFE)
pat = Order.GetIgnoreIndex();
Order().push_back(pat);
// Decide whether this is the first order chunk or not (for finding out the correct restart position)
if(firstOrderChunk == uint16_max)
firstOrderChunk = chunkCount;
}
break;
// 0x02: Play Range
// 0x03: Jump Loop
case 0x04: // Jump Line (Restart position)
{
uint16 restartChunk = subChunk.ReadUint16LE();
if(restartChunk >= firstOrderChunk)
subsong.restartPos = static_cast<ORDERINDEX>(restartChunk - firstOrderChunk); // Close enough - we assume that order list is continuous (like in any real-world PSM)
Order().SetRestartPos(subsong.restartPos);
}
break;
// 0x05: Channel Flip
// 0x06: Transpose
case 0x07: // Default Speed
subsong.defaultSpeed = subChunk.ReadUint8();
break;
case 0x08: // Default Tempo
subsong.defaultTempo = subChunk.ReadUint8();
break;
case 0x0C: // Sample map table
// Never seems to be different, so...
// This is probably a part of the never-implemented "mini programming language" mentioned in the PSM docs.
// Output of PLAY.EXE: "SMapTabl from pos 0 to pos -1 starting at 0 and adding 1 to it each time"
// It appears that this maps e.g. what is "I0" in the file to sample 1.
// If we were being fancy, we could implement this, but in practice it won't matter.
{
uint8 mapTable[6];
if(!subChunk.ReadArray(mapTable)
|| mapTable[0] != 0x00 || mapTable[1] != 0xFF // "0 to -1" (does not seem to do anything)
|| mapTable[2] != 0x00 || mapTable[3] != 0x00 // "at 0" (actually this appears to be the adding part - changing this to 0x01 0x00 offsets all samples by 1)
|| mapTable[4] != 0x01 || mapTable[5] != 0x00) // "adding 1" (does not seem to do anything)
{
return false;
}
}
break;
case 0x0D: // Channel panning table - can be set using CONVERT.EXE /E
{
const auto [chn, pan, type] = subChunk.ReadArray<uint8, 3>();
if(chn < subsong.channelPanning.size())
{
switch(type)
{
case 0: // use panning
subsong.channelPanning[chn] = pan ^ 128;
subsong.channelSurround[chn] = false;
break;
case 2: // surround
subsong.channelPanning[chn] = 128;
subsong.channelSurround[chn] = true;
break;
case 4: // center
subsong.channelPanning[chn] = 128;
subsong.channelSurround[chn] = false;
break;
}
if(subsongPanningDiffers == false && subsongs.size() > 0)
{
if(subsongs.back().channelPanning[chn] != subsong.channelPanning[chn]
|| subsongs.back().channelSurround[chn] != subsong.channelSurround[chn])
subsongPanningDiffers = true;
}
}
}
break;
case 0x0E: // Channel volume table (0...255) - can be set using CONVERT.EXE /E, is 255 in all "official" PSMs except for some OMF 2097 tracks
{
const auto [chn, vol] = subChunk.ReadArray<uint8, 2>();
if(chn < subsong.channelVolume.size())
{
subsong.channelVolume[chn] = (vol / 4u) + 1;
}
}
break;
default:
// Should never happen in "real" PSM files. But in this case, we have to quit as we don't know how big the chunk really is.
return false;
}
chunkCount++;
}
}
break;
case PSMChunk::idPPAN: // PPAN - Channel panning table (used in Sinaria)
// In some Sinaria tunes, this is actually longer than 2 * channels...
MPT_ASSERT(subChunkHead.GetLength() >= m_nChannels * 2u);
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
if(!subChunk.CanRead(2))
break;
const auto [type, pan] = subChunk.ReadArray<uint8, 2>();
switch(type)
{
case 0: // use panning
subsong.channelPanning[chn] = pan ^ 128;
subsong.channelSurround[chn] = false;
break;
case 2: // surround
subsong.channelPanning[chn] = 128;
subsong.channelSurround[chn] = true;
break;
case 4: // center
subsong.channelPanning[chn] = 128;
subsong.channelSurround[chn] = false;
break;
default:
break;
}
}
break;
case PSMChunk::idPATT: // PATT - Pattern list
// We don't really need this.
break;
case PSMChunk::idDSAM: // DSAM - Sample list
// We don't need this either.
break;
default:
break;
}
}
// Attach this subsong to the subsong list - finally, all "sub sub sub ..." chunks are parsed.
if(subsong.startOrder != ORDERINDEX_INVALID && subsong.endOrder != ORDERINDEX_INVALID)
{
// Separate subsongs by "---" patterns
Order().push_back();
subsongs.push_back(subsong);
}
}
#ifdef MPT_PSM_USE_REAL_SUBSONGS
Order.SetSequence(0);
#endif // MPT_PSM_USE_REAL_SUBSONGS
if(subsongs.empty())
return false;
// DSMP - Samples
if(loadFlags & loadSampleData)
{
auto sampleChunks = chunks.GetAllChunks(PSMChunk::idDSMP);
for(auto &chunk : sampleChunks)
{
SAMPLEINDEX smp;
if(!sinariaFormat)
{
// Original header
PSMSampleHeader sampleHeader;
if(!chunk.ReadStruct(sampleHeader))
continue;
smp = static_cast<SAMPLEINDEX>(sampleHeader.sampleNumber + 1);
if(smp > 0 && smp < MAX_SAMPLES)
{
m_nSamples = std::max(m_nSamples, smp);
sampleHeader.ConvertToMPT(Samples[smp]);
m_szNames[smp] = mpt::String::ReadBuf(mpt::String::nullTerminated, sampleHeader.sampleName);
}
} else
{
// Sinaria uses a slightly different sample header
PSMSinariaSampleHeader sampleHeader;
if(!chunk.ReadStruct(sampleHeader))
continue;
smp = static_cast<SAMPLEINDEX>(sampleHeader.sampleNumber + 1);
if(smp > 0 && smp < MAX_SAMPLES)
{
m_nSamples = std::max(m_nSamples, smp);
sampleHeader.ConvertToMPT(Samples[smp]);
m_szNames[smp] = mpt::String::ReadBuf(mpt::String::nullTerminated, sampleHeader.sampleName);
}
}
if(smp > 0 && smp < MAX_SAMPLES)
{
SampleIO(
SampleIO::_8bit,
SampleIO::mono,
SampleIO::littleEndian,
SampleIO::deltaPCM).ReadSample(Samples[smp], chunk);
}
}
}
// Make the default variables of the first subsong global
m_nDefaultSpeed = subsongs[0].defaultSpeed;
m_nDefaultTempo.Set(subsongs[0].defaultTempo);
Order().SetRestartPos(subsongs[0].restartPos);
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
ChnSettings[chn].Reset();
ChnSettings[chn].nVolume = subsongs[0].channelVolume[chn];
ChnSettings[chn].nPan = subsongs[0].channelPanning[chn];
ChnSettings[chn].dwFlags.set(CHN_SURROUND, subsongs[0].channelSurround[chn]);
}
m_modFormat.formatName = sinariaFormat ? U_("Epic MegaGames MASI (New Version / Sinaria)") : U_("Epic MegaGames MASI (New Version)");
m_modFormat.type = U_("psm");
m_modFormat.charset = mpt::Charset::CP437;
if(!(loadFlags & loadPatternData) || m_nChannels == 0)
{
return true;
}
// "PBOD" - Pattern data of a single pattern
// Now that we know the number of channels, we can go through all the patterns.
auto pattChunks = chunks.GetAllChunks(PSMChunk::idPBOD);
Patterns.ResizeArray(static_cast<PATTERNINDEX>(pattChunks.size()));
for(auto &chunk : pattChunks)
{
if(chunk.GetLength() != chunk.ReadUint32LE() // Same value twice
|| !chunk.LengthIsAtLeast(8))
{
continue;
}
PATTERNINDEX pat = ReadPSMPatternIndex(chunk, sinariaFormat);
uint16 numRows = chunk.ReadUint16LE();
if(!Patterns.Insert(pat, numRows))
{
continue;
}
enum
{
noteFlag = 0x80,
instrFlag = 0x40,
volFlag = 0x20,
effectFlag = 0x10,
};
// Read pattern.
for(ROWINDEX row = 0; row < numRows; row++)
{
PatternRow rowBase = Patterns[pat].GetRow(row);
uint16 rowSize = chunk.ReadUint16LE();
if(rowSize <= 2)
{
continue;
}
FileReader rowChunk = chunk.ReadChunk(rowSize - 2);
while(rowChunk.CanRead(3))
{
const auto [flags, channel] = rowChunk.ReadArray<uint8, 2>();
// Point to the correct channel
ModCommand &m = rowBase[std::min(static_cast<CHANNELINDEX>(m_nChannels - 1), static_cast<CHANNELINDEX>(channel))];
if(flags & noteFlag)
{
// Note present
uint8 note = rowChunk.ReadUint8();
if(!sinariaFormat)
{
if(note == 0xFF) // Can be found in a few files but is apparently not supported by MASI
note = NOTE_NOTECUT;
else
if(note < 129) note = (note & 0x0F) + 12 * (note >> 4) + 13;
} else
{
if(note < 85) note += 36;
}
m.note = note;
}
if(flags & instrFlag)
{
// Instrument present
m.instr = rowChunk.ReadUint8() + 1;
}
if(flags & volFlag)
{
// Volume present
uint8 vol = rowChunk.ReadUint8();
m.volcmd = VOLCMD_VOLUME;
m.vol = (std::min(vol, uint8(127)) + 1) / 2;
}
if(flags & effectFlag)
{
// Effect present - convert
const auto [command, param] = rowChunk.ReadArray<uint8, 2>();
m.param = param;
// This list is annoyingly similar to PSM16, but not quite identical.
switch(command)
{
// Volslides
case 0x01: // fine volslide up
m.command = CMD_VOLUMESLIDE;
if (sinariaFormat) m.param = (m.param << 4) | 0x0F;
else m.param = ((m.param & 0x1E) << 3) | 0x0F;
break;
case 0x02: // volslide up
m.command = CMD_VOLUMESLIDE;
if (sinariaFormat) m.param = 0xF0 & (m.param << 4);
else m.param = 0xF0 & (m.param << 3);
break;
case 0x03: // fine volslide down
m.command = CMD_VOLUMESLIDE;
if (sinariaFormat) m.param |= 0xF0;
else m.param = 0xF0 | (m.param >> 1);
break;
case 0x04: // volslide down
m.command = CMD_VOLUMESLIDE;
if (sinariaFormat) m.param &= 0x0F;
else if(m.param < 2) m.param |= 0xF0; else m.param = (m.param >> 1) & 0x0F;
break;
// Portamento
case 0x0B: // fine portamento up
m.command = CMD_PORTAMENTOUP;
m.param = 0xF0 | ConvertPSMPorta(m.param, sinariaFormat);
break;
case 0x0C: // portamento up
m.command = CMD_PORTAMENTOUP;
m.param = ConvertPSMPorta(m.param, sinariaFormat);
break;
case 0x0D: // fine portamento down
m.command = CMD_PORTAMENTODOWN;
m.param = 0xF0 | ConvertPSMPorta(m.param, sinariaFormat);
break;
case 0x0E: // portamento down
m.command = CMD_PORTAMENTODOWN;
m.param = ConvertPSMPorta(m.param, sinariaFormat);
break;
case 0x0F: // tone portamento
m.command = CMD_TONEPORTAMENTO;
if(!sinariaFormat) m.param >>= 2;
break;
case 0x11: // glissando control
m.command = CMD_S3MCMDEX;
m.param = 0x10 | (m.param & 0x01);
break;
case 0x10: // tone portamento + volslide up
m.command = CMD_TONEPORTAVOL;
m.param = m.param & 0xF0;
break;
case 0x12: // tone portamento + volslide down
m.command = CMD_TONEPORTAVOL;
m.param = (m.param >> 4) & 0x0F;
break;
case 0x13: // ScreamTracker command S - actually hangs / crashes MASI
m.command = CMD_S3MCMDEX;
break;
// Vibrato
case 0x15: // vibrato
m.command = CMD_VIBRATO;
break;
case 0x16: // vibrato waveform
m.command = CMD_S3MCMDEX;
m.param = 0x30 | (m.param & 0x0F);
break;
case 0x17: // vibrato + volslide up
m.command = CMD_VIBRATOVOL;
m.param = 0xF0 | m.param;
break;
case 0x18: // vibrato + volslide down
m.command = CMD_VIBRATOVOL;
break;
// Tremolo
case 0x1F: // tremolo
m.command = CMD_TREMOLO;
break;
case 0x20: // tremolo waveform
m.command = CMD_S3MCMDEX;
m.param = 0x40 | (m.param & 0x0F);
break;
// Sample commands
case 0x29: // 3-byte offset - we only support the middle byte.
m.command = CMD_OFFSET;
m.param = rowChunk.ReadUint8();
rowChunk.Skip(1);
break;
case 0x2A: // retrigger
m.command = CMD_RETRIG;
break;
case 0x2B: // note cut
m.command = CMD_S3MCMDEX;
m.param = 0xC0 | (m.param & 0x0F);
break;
case 0x2C: // note delay
m.command = CMD_S3MCMDEX;
m.param = 0xD0 | (m.param & 0x0F);
break;
// Position change
case 0x33: // position jump - MASI seems to ignore this command, and CONVERT.EXE never writes it
m.command = CMD_POSITIONJUMP;
m.param /= 2u; // actually it is probably just an index into the order table
rowChunk.Skip(1);
break;
case 0x34: // pattern break
m.command = CMD_PATTERNBREAK;
// When converting from S3M, the parameter is double-BDC-encoded (wtf!)
// When converting from MOD, it's in binary.
// MASI ignores the parameter entirely, and so do we.
m.param = 0;
break;
case 0x35: // loop pattern
m.command = CMD_S3MCMDEX;
m.param = 0xB0 | (m.param & 0x0F);
break;
case 0x36: // pattern delay
m.command = CMD_S3MCMDEX;
m.param = 0xE0 | (m.param & 0x0F);
break;
// speed change
case 0x3D: // set speed
m.command = CMD_SPEED;
break;
case 0x3E: // set tempo
m.command = CMD_TEMPO;
break;
// misc commands
case 0x47: // arpeggio
m.command = CMD_ARPEGGIO;
break;
case 0x48: // set finetune
m.command = CMD_S3MCMDEX;
m.param = 0x20 | (m.param & 0x0F);
break;
case 0x49: // set balance
m.command = CMD_S3MCMDEX;
m.param = 0x80 | (m.param & 0x0F);
break;
default:
m.command = CMD_NONE;
break;
}
}
}
}
}
if(subsongs.size() > 1)
{
// Write subsong "configuration" to patterns (only if there are multiple subsongs)
for(size_t i = 0; i < subsongs.size(); i++)
{
#ifdef MPT_PSM_USE_REAL_SUBSONGS
ModSequence &order = Order(static_cast<SEQUENCEINDEX>(i));
#else
ModSequence &order = Order();
#endif // MPT_PSM_USE_REAL_SUBSONGS
const PSMSubSong &subsong = subsongs[i];
PATTERNINDEX startPattern = order[subsong.startOrder];
if(Patterns.IsValidPat(startPattern))
{
startPattern = order.EnsureUnique(subsong.startOrder);
// Subsongs with different panning setup -> write to pattern (MUSIC_C.PSM)
// Don't write channel volume for now, as there is no real-world module which needs it.
if(subsongPanningDiffers)
{
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
if(subsong.channelSurround[chn])
Patterns[startPattern].WriteEffect(EffectWriter(CMD_S3MCMDEX, 0x91).Row(0).Channel(chn).RetryNextRow());
else
Patterns[startPattern].WriteEffect(EffectWriter(CMD_PANNING8, subsong.channelPanning[chn]).Row(0).Channel(chn).RetryNextRow());
}
}
// Write default tempo/speed to pattern
Patterns[startPattern].WriteEffect(EffectWriter(CMD_SPEED, subsong.defaultSpeed).Row(0).RetryNextRow());
Patterns[startPattern].WriteEffect(EffectWriter(CMD_TEMPO, subsong.defaultTempo).Row(0).RetryNextRow());
}
#ifndef MPT_PSM_USE_REAL_SUBSONGS
// Add restart position to the last pattern
PATTERNINDEX endPattern = order[subsong.endOrder];
if(Patterns.IsValidPat(endPattern))
{
endPattern = order.EnsureUnique(subsong.endOrder);
ROWINDEX lastRow = Patterns[endPattern].GetNumRows() - 1;
auto m = Patterns[endPattern].cbegin();
for(uint32 cell = 0; cell < m_nChannels * Patterns[endPattern].GetNumRows(); cell++, m++)
{
if(m->command == CMD_PATTERNBREAK || m->command == CMD_POSITIONJUMP)
{
lastRow = cell / m_nChannels;
break;
}
}
Patterns[endPattern].WriteEffect(EffectWriter(CMD_POSITIONJUMP, mpt::saturate_cast<ModCommand::PARAM>(subsong.startOrder + subsong.restartPos)).Row(lastRow).RetryPreviousRow());
}
// Set the subsong name to all pattern names
for(ORDERINDEX ord = subsong.startOrder; ord <= subsong.endOrder; ord++)
{
if(Patterns.IsValidIndex(order[ord]))
Patterns[order[ord]].SetName(subsong.songName);
}
#endif // MPT_PSM_USE_REAL_SUBSONGS
}
}
return true;
}
////////////////////////////////
//
// PSM16 support starts here.
//
struct PSM16FileHeader
{
char formatID[4]; // "PSM\xFE" (PSM16)
char songName[59]; // Song title, padded with nulls
uint8le lineEnd; // $1A
uint8le songType; // Song Type bitfield
uint8le formatVersion; // $10
uint8le patternVersion; // 0 or 1
uint8le songSpeed; // 1 ... 255
uint8le songTempo; // 32 ... 255
uint8le masterVolume; // 0 ... 255
uint16le songLength; // 0 ... 255 (number of patterns to play in the song)
uint16le songOrders; // 0 ... 255 (same as previous value as no subsongs are present)
uint16le numPatterns; // 1 ... 255
uint16le numSamples; // 1 ... 255
uint16le numChannelsPlay; // 0 ... 32 (max. number of channels to play)
uint16le numChannelsReal; // 0 ... 32 (max. number of channels to process)
uint32le orderOffset; // Pointer to order list
uint32le panOffset; // Pointer to pan table
uint32le patOffset; // Pointer to pattern data
uint32le smpOffset; // Pointer to sample headers
uint32le commentsOffset; // Pointer to song comment
uint32le patSize; // Size of all patterns
char filler[40];
};
MPT_BINARY_STRUCT(PSM16FileHeader, 146)
struct PSM16SampleHeader
{
enum SampleFlags
{
smpMask = 0x7F,
smp16Bit = 0x04,
smpUnsigned = 0x08,
smpDelta = 0x10,
smpPingPong = 0x20,
smpLoop = 0x80,
};
char filename[13]; // null-terminated
char name[24]; // ditto
uint32le offset; // in file
uint32le memoffset; // not used
uint16le sampleNumber; // 1 ... 255
uint8le flags; // sample flag bitfield
uint32le length; // in bytes
uint32le loopStart; // in samples?
uint32le loopEnd; // in samples?
uint8le finetune; // Low nibble = MOD finetune, high nibble = transpose (7 = center)
uint8le volume; // default volume
uint16le c2freq; // Middle-C frequency, which has to be combined with the finetune and transpose.
// Convert sample header to OpenMPT's internal format
void ConvertToMPT(ModSample &mptSmp) const
{
mptSmp.Initialize();
mptSmp.filename = mpt::String::ReadBuf(mpt::String::nullTerminated, filename);
mptSmp.nLength = length;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
// It seems like that finetune and transpose are added to the already given c2freq... That's a double WTF!
// Why on earth would you want to use both systems at the same time?
mptSmp.nC5Speed = c2freq;
mptSmp.Transpose(((finetune ^ 0x08) - 0x78) / (12.0 * 16.0));
mptSmp.nVolume = std::min(volume.get(), uint8(64)) * 4u;
mptSmp.uFlags.reset();
if(flags & PSM16SampleHeader::smp16Bit)
{
mptSmp.uFlags.set(CHN_16BIT);
mptSmp.nLength /= 2u;
}
if(flags & PSM16SampleHeader::smpPingPong)
{
mptSmp.uFlags.set(CHN_PINGPONGLOOP);
}
if(flags & PSM16SampleHeader::smpLoop)
{
mptSmp.uFlags.set(CHN_LOOP);
}
}
// Retrieve the internal sample format flags for this sample.
SampleIO GetSampleFormat() const
{
SampleIO sampleIO(
(flags & PSM16SampleHeader::smp16Bit) ? SampleIO::_16bit : SampleIO::_8bit,
SampleIO::mono,
SampleIO::littleEndian,
SampleIO::signedPCM);
if(flags & PSM16SampleHeader::smpUnsigned)
{
sampleIO |= SampleIO::unsignedPCM;
} else if((flags & PSM16SampleHeader::smpDelta) || (flags & PSM16SampleHeader::smpMask) == 0)
{
sampleIO |= SampleIO::deltaPCM;
}
return sampleIO;
}
};
MPT_BINARY_STRUCT(PSM16SampleHeader, 64)
struct PSM16PatternHeader
{
uint16le size; // includes header bytes
uint8le numRows; // 1 ... 64
uint8le numChans; // 1 ... 32
};
MPT_BINARY_STRUCT(PSM16PatternHeader, 4)
static bool ValidateHeader(const PSM16FileHeader &fileHeader)
{
if(std::memcmp(fileHeader.formatID, "PSM\xFE", 4)
|| fileHeader.lineEnd != 0x1A
|| (fileHeader.formatVersion != 0x10 && fileHeader.formatVersion != 0x01) // why is this sometimes 0x01?
|| fileHeader.patternVersion != 0 // 255ch pattern version not supported (did anyone use this?)
|| (fileHeader.songType & 3) != 0
|| fileHeader.numChannelsPlay > MAX_BASECHANNELS
|| fileHeader.numChannelsReal > MAX_BASECHANNELS
|| std::max(fileHeader.numChannelsPlay, fileHeader.numChannelsReal) == 0)
{
return false;
}
return true;
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderPSM16(MemoryFileReader file, const uint64 *pfilesize)
{
PSM16FileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(fileHeader))
{
return ProbeFailure;
}
MPT_UNREFERENCED_PARAMETER(pfilesize);
return ProbeSuccess;
}
bool CSoundFile::ReadPSM16(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
// Is it a valid PSM16 file?
PSM16FileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return false;
}
if(!ValidateHeader(fileHeader))
{
return false;
}
if(loadFlags == onlyVerifyHeader)
{
return true;
}
// Seems to be valid!
InitializeGlobals(MOD_TYPE_PSM);
m_modFormat.formatName = U_("Epic MegaGames MASI (Old Version)");
m_modFormat.type = U_("psm");
m_modFormat.charset = mpt::Charset::CP437;
m_nChannels = Clamp(CHANNELINDEX(fileHeader.numChannelsPlay), CHANNELINDEX(fileHeader.numChannelsReal), MAX_BASECHANNELS);
m_nSamplePreAmp = fileHeader.masterVolume;
if(m_nSamplePreAmp == 255)
{
// Most of the time, the master volume value makes sense... Just not when it's 255.
m_nSamplePreAmp = 48;
}
m_nDefaultSpeed = fileHeader.songSpeed;
m_nDefaultTempo.Set(fileHeader.songTempo);
m_songName = mpt::String::ReadBuf(mpt::String::spacePadded, fileHeader.songName);
// Read orders
if(fileHeader.orderOffset > 4 && file.Seek(fileHeader.orderOffset - 4) && file.ReadMagic("PORD"))
{
ReadOrderFromFile<uint8>(Order(), file, fileHeader.songOrders);
}
// Read pan positions
if(fileHeader.panOffset > 4 && file.Seek(fileHeader.panOffset - 4) && file.ReadMagic("PPAN"))
{
for(CHANNELINDEX i = 0; i < 32; i++)
{
ChnSettings[i].Reset();
ChnSettings[i].nPan = ((15 - (file.ReadUint8() & 0x0F)) * 256 + 8) / 15; // 15 seems to be left and 0 seems to be right...
// ChnSettings[i].dwFlags = (i >= fileHeader.numChannelsPlay) ? CHN_MUTE : 0; // don't mute channels, as muted channels are completely ignored in S3M
}
}
// Read samples
if(fileHeader.smpOffset > 4 && file.Seek(fileHeader.smpOffset - 4) && file.ReadMagic("PSAH"))
{
FileReader sampleChunk = file.ReadChunk(fileHeader.numSamples * sizeof(PSM16SampleHeader));
for(SAMPLEINDEX fileSample = 0; fileSample < fileHeader.numSamples; fileSample++)
{
PSM16SampleHeader sampleHeader;
if(!sampleChunk.ReadStruct(sampleHeader))
{
break;
}
const SAMPLEINDEX smp = sampleHeader.sampleNumber;
if(smp > 0 && smp < MAX_SAMPLES && !Samples[smp].HasSampleData())
{
m_nSamples = std::max(m_nSamples, smp);
sampleHeader.ConvertToMPT(Samples[smp]);
m_szNames[smp] = mpt::String::ReadBuf(mpt::String::nullTerminated, sampleHeader.name);
if(loadFlags & loadSampleData)
{
file.Seek(sampleHeader.offset);
sampleHeader.GetSampleFormat().ReadSample(Samples[smp], file);
}
}
}
}
// Read patterns
if(!(loadFlags & loadPatternData))
{
return true;
}
if(fileHeader.patOffset > 4 && file.Seek(fileHeader.patOffset - 4) && file.ReadMagic("PPAT"))
{
Patterns.ResizeArray(fileHeader.numPatterns);
for(PATTERNINDEX pat = 0; pat < fileHeader.numPatterns; pat++)
{
PSM16PatternHeader patternHeader;
if(!file.ReadStruct(patternHeader))
{
break;
}
if(patternHeader.size < sizeof(PSM16PatternHeader))
{
continue;
}
// Patterns are padded to 16 Bytes
FileReader patternChunk = file.ReadChunk(((patternHeader.size + 15) & ~15) - sizeof(PSM16PatternHeader));
if(!Patterns.Insert(pat, patternHeader.numRows))
{
continue;
}
enum
{
channelMask = 0x1F,
noteFlag = 0x80,
volFlag = 0x40,
effectFlag = 0x20,
};
ROWINDEX curRow = 0;
while(patternChunk.CanRead(1) && curRow < patternHeader.numRows)
{
uint8 chnFlag = patternChunk.ReadUint8();
if(chnFlag == 0)
{
curRow++;
continue;
}
ModCommand &m = *Patterns[pat].GetpModCommand(curRow, std::min(static_cast<CHANNELINDEX>(chnFlag & channelMask), static_cast<CHANNELINDEX>(m_nChannels - 1)));
if(chnFlag & noteFlag)
{
// note + instr present
const auto [note, instr] = patternChunk.ReadArray<uint8, 2>();
m.note = note + 36;
m.instr = instr;
}
if(chnFlag & volFlag)
{
// volume present
m.volcmd = VOLCMD_VOLUME;
m.vol = std::min(patternChunk.ReadUint8(), uint8(64));
}
if(chnFlag & effectFlag)
{
// effect present - convert
const auto [command, param] = patternChunk.ReadArray<uint8, 2>();
m.param = param;
switch(command)
{
// Volslides
case 0x01: // fine volslide up
m.command = CMD_VOLUMESLIDE;
m.param = (m.param << 4) | 0x0F;
break;
case 0x02: // volslide up
m.command = CMD_VOLUMESLIDE;
m.param = (m.param << 4) & 0xF0;
break;
case 0x03: // fine voslide down
m.command = CMD_VOLUMESLIDE;
m.param = 0xF0 | m.param;
break;
case 0x04: // volslide down
m.command = CMD_VOLUMESLIDE;
m.param = m.param & 0x0F;
break;
// Portamento
case 0x0A: // fine portamento up
m.command = CMD_PORTAMENTOUP;
m.param |= 0xF0;
break;
case 0x0B: // portamento down
m.command = CMD_PORTAMENTOUP;
break;
case 0x0C: // fine portamento down
m.command = CMD_PORTAMENTODOWN;
m.param |= 0xF0;
break;
case 0x0D: // portamento down
m.command = CMD_PORTAMENTODOWN;
break;
case 0x0E: // tone portamento
m.command = CMD_TONEPORTAMENTO;
break;
case 0x0F: // glissando control
m.command = CMD_S3MCMDEX;
m.param |= 0x10;
break;
case 0x10: // tone portamento + volslide up
m.command = CMD_TONEPORTAVOL;
m.param <<= 4;
break;
case 0x11: // tone portamento + volslide down
m.command = CMD_TONEPORTAVOL;
m.param &= 0x0F;
break;
// Vibrato
case 0x14: // vibrato
m.command = CMD_VIBRATO;
break;
case 0x15: // vibrato waveform
m.command = CMD_S3MCMDEX;
m.param |= 0x30;
break;
case 0x16: // vibrato + volslide up
m.command = CMD_VIBRATOVOL;
m.param <<= 4;
break;
case 0x17: // vibrato + volslide down
m.command = CMD_VIBRATOVOL;
m.param &= 0x0F;
break;
// Tremolo
case 0x1E: // tremolo
m.command = CMD_TREMOLO;
break;
case 0x1F: // tremolo waveform
m.command = CMD_S3MCMDEX;
m.param |= 0x40;
break;
// Sample commands
case 0x28: // 3-byte offset - we only support the middle byte.
m.command = CMD_OFFSET;
m.param = patternChunk.ReadUint8();
patternChunk.Skip(1);
break;
case 0x29: // retrigger
m.command = CMD_RETRIG;
m.param &= 0x0F;
break;
case 0x2A: // note cut
m.command = CMD_S3MCMDEX;
#ifdef MODPLUG_TRACKER
if(m.param == 0) // in S3M mode, SC0 is ignored, so we convert it to a note cut.
{
if(m.note == NOTE_NONE)
{
m.note = NOTE_NOTECUT;
m.command = CMD_NONE;
} else
{
m.param = 1;
}
}
#endif // MODPLUG_TRACKER
m.param |= 0xC0;
break;
case 0x2B: // note delay
m.command = CMD_S3MCMDEX;
m.param |= 0xD0;
break;
// Position change
case 0x32: // position jump
m.command = CMD_POSITIONJUMP;
break;
case 0x33: // pattern break
m.command = CMD_PATTERNBREAK;
break;
case 0x34: // loop pattern
m.command = CMD_S3MCMDEX;
m.param |= 0xB0;
break;
case 0x35: // pattern delay
m.command = CMD_S3MCMDEX;
m.param |= 0xE0;
break;
// speed change
case 0x3C: // set speed
m.command = CMD_SPEED;
break;
case 0x3D: // set tempo
m.command = CMD_TEMPO;
break;
// misc commands
case 0x46: // arpeggio
m.command = CMD_ARPEGGIO;
break;
case 0x47: // set finetune
m.command = CMD_S3MCMDEX;
m.param = 0x20 | (m.param & 0x0F);
break;
case 0x48: // set balance (panning?)
m.command = CMD_S3MCMDEX;
m.param = 0x80 | (m.param & 0x0F);
break;
default:
m.command = CMD_NONE;
break;
}
}
}
// Pattern break for short patterns (so saving the modules as S3M won't break it)
if(patternHeader.numRows != 64)
{
Patterns[pat].WriteEffect(EffectWriter(CMD_PATTERNBREAK, 0).Row(patternHeader.numRows - 1).RetryNextRow());
}
}
}
if(fileHeader.commentsOffset != 0)
{
file.Seek(fileHeader.commentsOffset);
m_songMessage.Read(file, file.ReadUint16LE(), SongMessage::leAutodetect);
}
return true;
}
OPENMPT_NAMESPACE_END