winamp/Src/external_dependencies/openmpt-trunk/soundlib/Sndfile.cpp

2084 lines
57 KiB
C++
Raw Normal View History

2024-09-24 13:54:57 +01:00
/*
* Sndfile.cpp
* -----------
* Purpose: Core class of the playback engine. Every song is represented by a CSoundFile object.
* Notes : (currently none)
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#ifdef MODPLUG_TRACKER
#include "../mptrack/Mptrack.h" // For CTrackApp::OpenURL
#include "../mptrack/TrackerSettings.h"
#include "../mptrack/Moddoc.h"
#include "../mptrack/Reporting.h"
#include "../mptrack/Mainfrm.h"
#endif // MODPLUG_TRACKER
#ifdef MPT_EXTERNAL_SAMPLES
#include "../common/mptFileIO.h"
#endif // MPT_EXTERNAL_SAMPLES
#include "../common/version.h"
#include "../soundlib/AudioCriticalSection.h"
#include "../common/serialization_utils.h"
#include "Sndfile.h"
#include "Tables.h"
#include "mod_specifications.h"
#include "tuningcollection.h"
#include "plugins/PluginManager.h"
#include "plugins/PlugInterface.h"
#include "../common/mptStringBuffer.h"
#include "../common/FileReader.h"
#include "Container.h"
#include "OPL.h"
#include "mpt/io/io.hpp"
#include "mpt/io/io_stdstream.hpp"
#ifndef NO_ARCHIVE_SUPPORT
#include "../unarchiver/unarchiver.h"
#endif // NO_ARCHIVE_SUPPORT
OPENMPT_NAMESPACE_BEGIN
bool SettingCacheCompleteFileBeforeLoading()
{
#ifdef MODPLUG_TRACKER
return TrackerSettings::Instance().MiscCacheCompleteFileBeforeLoading;
#else
return false;
#endif
}
mpt::ustring FileHistory::AsISO8601() const
{
tm date = loadDate;
if(openTime > 0)
{
// Calculate the date when editing finished.
double openSeconds = static_cast<double>(openTime) / HISTORY_TIMER_PRECISION;
tm tmpLoadDate = loadDate;
int64 loadDateSinceEpoch = mpt::Date::Unix::FromUTC(tmpLoadDate);
int64 saveDateSinceEpoch = loadDateSinceEpoch + mpt::saturate_round<int64>(openSeconds);
date = mpt::Date::Unix(saveDateSinceEpoch).AsUTC();
}
return mpt::Date::ToShortenedISO8601(date);
}
CSoundFile::PlayState::PlayState()
{
std::fill(std::begin(Chn), std::end(Chn), ModChannel{});
m_midiMacroScratchSpace.reserve(kMacroLength); // Note: If macros ever become variable-length, the scratch space needs to be at least one byte longer than the longest macro in the file for end-of-SysEx insertion to stay allocation-free in the mixer!
}
//////////////////////////////////////////////////////////
// CSoundFile
#ifdef MODPLUG_TRACKER
const NoteName *CSoundFile::m_NoteNames = NoteNamesFlat;
#endif
CSoundFile::CSoundFile() :
#ifndef MODPLUG_TRACKER
m_NoteNames(NoteNamesSharp),
#endif
m_pModSpecs(&ModSpecs::itEx),
m_nType(MOD_TYPE_NONE),
Patterns(*this),
#ifdef MODPLUG_TRACKER
m_MIDIMapper(*this),
#endif
Order(*this),
m_PRNG(mpt::make_prng<mpt::fast_prng>(mpt::global_prng())),
m_visitedRows(*this)
{
MemsetZero(MixSoundBuffer);
MemsetZero(MixRearBuffer);
MemsetZero(MixFloatBuffer);
#ifdef MODPLUG_TRACKER
m_bChannelMuteTogglePending.reset();
m_nDefaultRowsPerBeat = m_PlayState.m_nCurrentRowsPerBeat = (TrackerSettings::Instance().m_nRowHighlightBeats) ? TrackerSettings::Instance().m_nRowHighlightBeats : 4;
m_nDefaultRowsPerMeasure = m_PlayState.m_nCurrentRowsPerMeasure = (TrackerSettings::Instance().m_nRowHighlightMeasures >= m_nDefaultRowsPerBeat) ? TrackerSettings::Instance().m_nRowHighlightMeasures : m_nDefaultRowsPerBeat * 4;
#else
m_nDefaultRowsPerBeat = m_PlayState.m_nCurrentRowsPerBeat = 4;
m_nDefaultRowsPerMeasure = m_PlayState.m_nCurrentRowsPerMeasure = 16;
#endif // MODPLUG_TRACKER
MemsetZero(Instruments);
Clear(m_szNames);
m_pTuningsTuneSpecific = new CTuningCollection();
}
CSoundFile::~CSoundFile()
{
Destroy();
delete m_pTuningsTuneSpecific;
m_pTuningsTuneSpecific = nullptr;
}
void CSoundFile::AddToLog(LogLevel level, const mpt::ustring &text) const
{
if(m_pCustomLog)
{
m_pCustomLog->AddToLog(level, text);
} else
{
#ifdef MODPLUG_TRACKER
if(GetpModDoc()) GetpModDoc()->AddToLog(level, text);
#else
MPT_LOG_GLOBAL(level, "soundlib", text);
#endif
}
}
// Global variable initializer for loader functions
void CSoundFile::InitializeGlobals(MODTYPE type)
{
// Do not add or change any of these values! And if you do, review each and every loader to check if they require these defaults!
m_nType = type;
MODTYPE bestType = GetBestSaveFormat();
m_playBehaviour = GetDefaultPlaybackBehaviour(bestType);
SetModSpecsPointer(m_pModSpecs, bestType);
// Delete instruments in case some previously called loader already created them.
for(INSTRUMENTINDEX i = 1; i <= m_nInstruments; i++)
{
delete Instruments[i];
Instruments[i] = nullptr;
}
m_ContainerType = MOD_CONTAINERTYPE_NONE;
m_nChannels = 0;
m_nInstruments = 0;
m_nSamples = 0;
m_nSamplePreAmp = 48;
m_nVSTiVolume = 48;
m_OPLVolumeFactor = m_OPLVolumeFactorScale;
m_nDefaultSpeed = 6;
m_nDefaultTempo.Set(125);
m_nDefaultGlobalVolume = MAX_GLOBAL_VOLUME;
m_SongFlags.reset();
m_nMinPeriod = 16;
m_nMaxPeriod = 32767;
m_nResampling = SRCMODE_DEFAULT;
m_dwLastSavedWithVersion = Version(0);
m_dwCreatedWithVersion = Version(0);
SetMixLevels(MixLevels::Compatible);
Patterns.ClearPatterns();
Order.Initialize();
m_songName.clear();
m_songArtist.clear();
m_songMessage.clear();
m_modFormat = ModFormatDetails();
m_FileHistory.clear();
m_tempoSwing.clear();
#ifdef MPT_EXTERNAL_SAMPLES
m_samplePaths.clear();
#endif // MPT_EXTERNAL_SAMPLES
// Note: we do not use the Amiga resampler for DBM as it's a multichannel format and can make use of higher-quality Amiga soundcards instead of Paula.
if(GetType() & (/*MOD_TYPE_DBM | */MOD_TYPE_DIGI | MOD_TYPE_MED | MOD_TYPE_MOD | MOD_TYPE_OKT | MOD_TYPE_SFX | MOD_TYPE_STP))
{
m_SongFlags.set(SONG_ISAMIGA);
}
}
void CSoundFile::InitializeChannels()
{
for(CHANNELINDEX nChn = 0; nChn < MAX_BASECHANNELS; nChn++)
{
InitChannel(nChn);
}
}
struct FileFormatLoader
{
decltype(CSoundFile::ProbeFileHeaderXM) *prober;
decltype(&CSoundFile::ReadXM) loader;
};
#ifdef MODPLUG_TRACKER
#define MPT_DECLARE_FORMAT(format) { nullptr, &CSoundFile::Read ## format }
#else
#define MPT_DECLARE_FORMAT(format) { CSoundFile::ProbeFileHeader ## format, &CSoundFile::Read ## format }
#endif
// All module format loaders, in the order they should be executed.
// This order matters, depending on the format, due to some unfortunate
// clashes or lack of magic bytes that can lead to mis-detection of some formats.
// Apart from that, more common formats with sane magic bytes are also found
// at the top of the list to match the most common cases more quickly.
static constexpr FileFormatLoader ModuleFormatLoaders[] =
{
MPT_DECLARE_FORMAT(XM),
MPT_DECLARE_FORMAT(IT),
MPT_DECLARE_FORMAT(S3M),
MPT_DECLARE_FORMAT(STM),
MPT_DECLARE_FORMAT(MED),
MPT_DECLARE_FORMAT(MTM),
MPT_DECLARE_FORMAT(MDL),
MPT_DECLARE_FORMAT(DBM),
MPT_DECLARE_FORMAT(FAR),
MPT_DECLARE_FORMAT(AMS),
MPT_DECLARE_FORMAT(AMS2),
MPT_DECLARE_FORMAT(OKT),
MPT_DECLARE_FORMAT(PTM),
MPT_DECLARE_FORMAT(ULT),
MPT_DECLARE_FORMAT(DMF),
MPT_DECLARE_FORMAT(DSM),
MPT_DECLARE_FORMAT(AMF_Asylum),
MPT_DECLARE_FORMAT(AMF_DSMI),
MPT_DECLARE_FORMAT(PSM),
MPT_DECLARE_FORMAT(PSM16),
MPT_DECLARE_FORMAT(MT2),
MPT_DECLARE_FORMAT(ITP),
#if defined(MODPLUG_TRACKER) || defined(MPT_FUZZ_TRACKER)
// These make little sense for a module player library
MPT_DECLARE_FORMAT(UAX),
MPT_DECLARE_FORMAT(WAV),
MPT_DECLARE_FORMAT(MID),
#endif // MODPLUG_TRACKER || MPT_FUZZ_TRACKER
MPT_DECLARE_FORMAT(GDM),
MPT_DECLARE_FORMAT(IMF),
MPT_DECLARE_FORMAT(DIGI),
MPT_DECLARE_FORMAT(DTM),
MPT_DECLARE_FORMAT(PLM),
MPT_DECLARE_FORMAT(AM),
MPT_DECLARE_FORMAT(J2B),
MPT_DECLARE_FORMAT(PT36),
MPT_DECLARE_FORMAT(SymMOD),
MPT_DECLARE_FORMAT(MUS_KM),
MPT_DECLARE_FORMAT(FMT),
MPT_DECLARE_FORMAT(SFX),
MPT_DECLARE_FORMAT(STP),
MPT_DECLARE_FORMAT(DSym),
MPT_DECLARE_FORMAT(STX),
MPT_DECLARE_FORMAT(MOD),
MPT_DECLARE_FORMAT(ICE),
MPT_DECLARE_FORMAT(669),
MPT_DECLARE_FORMAT(C67),
MPT_DECLARE_FORMAT(MO3),
MPT_DECLARE_FORMAT(M15),
};
#undef MPT_DECLARE_FORMAT
CSoundFile::ProbeResult CSoundFile::ProbeAdditionalSize(MemoryFileReader &file, const uint64 *pfilesize, uint64 minimumAdditionalSize)
{
const uint64 availableFileSize = file.GetLength();
const uint64 fileSize = (pfilesize ? *pfilesize : file.GetLength());
//const uint64 validFileSize = std::min(fileSize, static_cast<uint64>(ProbeRecommendedSize));
const uint64 goalSize = file.GetPosition() + minimumAdditionalSize;
//const uint64 goalMinimumSize = std::min(goalSize, static_cast<uint64>(ProbeRecommendedSize));
if(pfilesize)
{
if(availableFileSize < std::min(fileSize, static_cast<uint64>(ProbeRecommendedSize)))
{
if(availableFileSize < goalSize)
{
return ProbeWantMoreData;
}
} else
{
if(fileSize < goalSize)
{
return ProbeFailure;
}
}
return ProbeSuccess;
}
return ProbeSuccess;
}
#define MPT_DO_PROBE( storedResult , call ) \
do { \
ProbeResult lastResult = call ; \
if(lastResult == ProbeSuccess) { \
return ProbeSuccess; \
} else if(lastResult == ProbeWantMoreData) { \
storedResult = ProbeWantMoreData; \
} \
} while(0) \
/**/
CSoundFile::ProbeResult CSoundFile::Probe(ProbeFlags flags, mpt::span<const std::byte> data, const uint64 *pfilesize)
{
ProbeResult result = ProbeFailure;
if(pfilesize && (*pfilesize < data.size()))
{
throw std::out_of_range("");
}
if(!data.data())
{
throw std::invalid_argument("");
}
MemoryFileReader file(data);
if(flags & ProbeContainers)
{
#if !defined(MPT_WITH_ANCIENT)
MPT_DO_PROBE(result, ProbeFileHeaderMMCMP(file, pfilesize));
MPT_DO_PROBE(result, ProbeFileHeaderPP20(file, pfilesize));
MPT_DO_PROBE(result, ProbeFileHeaderXPK(file, pfilesize));
#endif // !MPT_WITH_ANCIENT
MPT_DO_PROBE(result, ProbeFileHeaderUMX(file, pfilesize));
}
if(flags & ProbeModules)
{
for(const auto &format : ModuleFormatLoaders)
{
if(format.prober != nullptr)
{
MPT_DO_PROBE(result, format.prober(file, pfilesize));
}
}
}
if(pfilesize)
{
if((result == ProbeWantMoreData) && (mpt::saturate_cast<std::size_t>(*pfilesize) <= data.size()))
{
// If the prober wants more data but we already reached EOF,
// probing must fail.
result = ProbeFailure;
}
} else
{
if((result == ProbeWantMoreData) && (data.size() >= ProbeRecommendedSize))
{
// If the prober wants more daat but we already provided the recommended required maximum,
// just return success as this is the best we can do for the suggestesd probing size.
result = ProbeSuccess;
}
}
return result;
}
bool CSoundFile::Create(FileReader file, ModLoadingFlags loadFlags, CModDoc *pModDoc)
{
m_nMixChannels = 0;
#ifdef MODPLUG_TRACKER
m_pModDoc = pModDoc;
#else
MPT_UNUSED(pModDoc);
m_nFreqFactor = m_nTempoFactor = 65536;
#endif // MODPLUG_TRACKER
Clear(m_szNames);
#ifndef NO_PLUGINS
std::fill(std::begin(m_MixPlugins), std::end(m_MixPlugins), SNDMIXPLUGIN());
#endif // NO_PLUGINS
if(CreateInternal(file, loadFlags))
return true;
#ifndef NO_ARCHIVE_SUPPORT
if(!(loadFlags & skipContainer) && file.IsValid())
{
CUnarchiver unarchiver(file);
if(unarchiver.ExtractBestFile(GetSupportedExtensions(true)))
{
if(CreateInternal(unarchiver.GetOutputFile(), loadFlags))
{
// Read archive comment if there is no song comment
if(m_songMessage.empty())
{
m_songMessage.assign(mpt::ToCharset(mpt::Charset::Locale, unarchiver.GetComment()));
}
return true;
}
}
}
#endif
return false;
}
bool CSoundFile::CreateInternal(FileReader file, ModLoadingFlags loadFlags)
{
if(file.IsValid())
{
std::vector<ContainerItem> containerItems;
MODCONTAINERTYPE packedContainerType = MOD_CONTAINERTYPE_NONE;
if(!(loadFlags & skipContainer))
{
ContainerLoadingFlags containerLoadFlags = (loadFlags == onlyVerifyHeader) ? ContainerOnlyVerifyHeader : ContainerUnwrapData;
#if !defined(MPT_WITH_ANCIENT)
if(packedContainerType == MOD_CONTAINERTYPE_NONE && UnpackXPK(containerItems, file, containerLoadFlags)) packedContainerType = MOD_CONTAINERTYPE_XPK;
if(packedContainerType == MOD_CONTAINERTYPE_NONE && UnpackPP20(containerItems, file, containerLoadFlags)) packedContainerType = MOD_CONTAINERTYPE_PP20;
if(packedContainerType == MOD_CONTAINERTYPE_NONE && UnpackMMCMP(containerItems, file, containerLoadFlags)) packedContainerType = MOD_CONTAINERTYPE_MMCMP;
#endif // !MPT_WITH_ANCIENT
if(packedContainerType == MOD_CONTAINERTYPE_NONE && UnpackUMX(containerItems, file, containerLoadFlags)) packedContainerType = MOD_CONTAINERTYPE_UMX;
if(packedContainerType != MOD_CONTAINERTYPE_NONE)
{
if(loadFlags == onlyVerifyHeader)
{
return true;
}
if(!containerItems.empty())
{
// cppcheck false-positive
// cppcheck-suppress containerOutOfBounds
file = containerItems[0].file;
}
}
}
if(loadFlags & skipModules)
{
return false;
}
// Try all module format loaders
bool loaderSuccess = false;
for(const auto &format : ModuleFormatLoaders)
{
loaderSuccess = (this->*(format.loader))(file, loadFlags);
if(loaderSuccess)
break;
}
if(!loaderSuccess)
{
m_nType = MOD_TYPE_NONE;
m_ContainerType = MOD_CONTAINERTYPE_NONE;
}
if(loadFlags == onlyVerifyHeader)
{
return loaderSuccess;
}
if(packedContainerType != MOD_CONTAINERTYPE_NONE && m_ContainerType == MOD_CONTAINERTYPE_NONE)
{
m_ContainerType = packedContainerType;
}
m_visitedRows.Initialize(true);
} else
{
// New song
InitializeGlobals();
m_visitedRows.Initialize(true);
m_dwCreatedWithVersion = Version::Current();
}
// Adjust channels
const auto muteFlag = GetChannelMuteFlag();
for(CHANNELINDEX chn = 0; chn < MAX_BASECHANNELS; chn++)
{
LimitMax(ChnSettings[chn].nVolume, uint16(64));
if(ChnSettings[chn].nPan > 256)
ChnSettings[chn].nPan = 128;
if(ChnSettings[chn].nMixPlugin > MAX_MIXPLUGINS)
ChnSettings[chn].nMixPlugin = 0;
m_PlayState.Chn[chn].Reset(ModChannel::resetTotal, *this, chn, muteFlag);
}
// Checking samples, load external samples
for(SAMPLEINDEX nSmp = 1; nSmp <= m_nSamples; nSmp++)
{
ModSample &sample = Samples[nSmp];
#ifdef MPT_EXTERNAL_SAMPLES
if(SampleHasPath(nSmp))
{
mpt::PathString filename = GetSamplePath(nSmp);
if(file.GetOptionalFileName())
{
filename = filename.RelativePathToAbsolute(file.GetOptionalFileName()->GetPath());
} else if(GetpModDoc() != nullptr)
{
filename = filename.RelativePathToAbsolute(GetpModDoc()->GetPathNameMpt().GetPath());
}
filename = filename.Simplify();
if(!LoadExternalSample(nSmp, filename))
{
#ifndef MODPLUG_TRACKER
// OpenMPT has its own way of reporting this error in CModDoc.
AddToLog(LogError, MPT_UFORMAT("Unable to load sample {}: {}")(i, filename.ToUnicode()));
#endif // MODPLUG_TRACKER
}
} else
{
sample.uFlags.reset(SMP_KEEPONDISK);
}
#endif // MPT_EXTERNAL_SAMPLES
if(sample.HasSampleData())
{
sample.PrecomputeLoops(*this, false);
} else if(!sample.uFlags[SMP_KEEPONDISK])
{
sample.nLength = 0;
sample.nLoopStart = 0;
sample.nLoopEnd = 0;
sample.nSustainStart = 0;
sample.nSustainEnd = 0;
sample.uFlags.reset(CHN_LOOP | CHN_PINGPONGLOOP | CHN_SUSTAINLOOP | CHN_PINGPONGSUSTAIN);
}
if(sample.nGlobalVol > 64) sample.nGlobalVol = 64;
if(sample.uFlags[CHN_ADLIB] && m_opl == nullptr) InitOPL();
}
// Check invalid instruments
INSTRUMENTINDEX maxInstr = 0;
for(INSTRUMENTINDEX i = 0; i <= m_nInstruments; i++)
{
if(Instruments[i] != nullptr)
{
maxInstr = i;
Instruments[i]->Sanitize(GetType());
}
}
m_nInstruments = maxInstr;
// Set default play state values
if(!m_nDefaultTempo.GetInt())
m_nDefaultTempo.Set(125);
else
LimitMax(m_nDefaultTempo, TEMPO(uint16_max, 0));
if(!m_nDefaultSpeed)
m_nDefaultSpeed = 6;
if(m_nDefaultRowsPerMeasure < m_nDefaultRowsPerBeat)
m_nDefaultRowsPerMeasure = m_nDefaultRowsPerBeat;
LimitMax(m_nDefaultRowsPerBeat, MAX_ROWS_PER_BEAT);
LimitMax(m_nDefaultRowsPerMeasure, MAX_ROWS_PER_BEAT);
LimitMax(m_nDefaultGlobalVolume, MAX_GLOBAL_VOLUME);
if(!m_tempoSwing.empty())
m_tempoSwing.resize(m_nDefaultRowsPerBeat);
m_PlayState.m_nMusicSpeed = m_nDefaultSpeed;
m_PlayState.m_nMusicTempo = m_nDefaultTempo;
m_PlayState.m_nCurrentRowsPerBeat = m_nDefaultRowsPerBeat;
m_PlayState.m_nCurrentRowsPerMeasure = m_nDefaultRowsPerMeasure;
m_PlayState.m_nGlobalVolume = static_cast<int32>(m_nDefaultGlobalVolume);
m_PlayState.ResetGlobalVolumeRamping();
m_PlayState.m_nNextOrder = 0;
m_PlayState.m_nCurrentOrder = 0;
m_PlayState.m_nPattern = 0;
m_PlayState.m_nBufferCount = 0;
m_PlayState.m_dBufferDiff = 0;
m_PlayState.m_nTickCount = TICKS_ROW_FINISHED;
m_PlayState.m_nNextRow = 0;
m_PlayState.m_nRow = 0;
m_PlayState.m_nPatternDelay = 0;
m_PlayState.m_nFrameDelay = 0;
m_PlayState.m_nextPatStartRow = 0;
m_PlayState.m_nSeqOverride = ORDERINDEX_INVALID;
if(UseFinetuneAndTranspose())
m_playBehaviour.reset(kPeriodsAreHertz);
m_nMaxOrderPosition = 0;
RecalculateSamplesPerTick();
for(auto &order : Order)
{
order.Shrink();
if(order.GetRestartPos() >= order.size())
{
order.SetRestartPos(0);
}
}
if(GetType() == MOD_TYPE_NONE)
{
return false;
}
SetModSpecsPointer(m_pModSpecs, GetBestSaveFormat());
// When reading a file made with an older version of MPT, it might be necessary to upgrade some settings automatically.
if(m_dwLastSavedWithVersion)
{
UpgradeModule();
}
#ifndef NO_PLUGINS
// Load plugins
#ifdef MODPLUG_TRACKER
mpt::ustring notFoundText;
#endif // MODPLUG_TRACKER
std::vector<const SNDMIXPLUGININFO *> notFoundIDs;
if((loadFlags & (loadPluginData | loadPluginInstance)) == (loadPluginData | loadPluginInstance))
{
for(PLUGINDEX plug = 0; plug < MAX_MIXPLUGINS; plug++)
{
auto &plugin = m_MixPlugins[plug];
if(plugin.IsValidPlugin())
{
#ifdef MODPLUG_TRACKER
// Provide some visual feedback
{
mpt::ustring s = MPT_UFORMAT("Loading Plugin FX{}: {} ({})")(
mpt::ufmt::dec0<2>(plug + 1),
mpt::ToUnicode(mpt::Charset::UTF8, plugin.Info.szLibraryName),
mpt::ToUnicode(mpt::Charset::Locale, plugin.Info.szName));
CMainFrame::GetMainFrame()->SetHelpText(mpt::ToCString(s));
}
#endif // MODPLUG_TRACKER
CreateMixPluginProc(plugin, *this);
if(plugin.pMixPlugin)
{
// Plugin was found
plugin.pMixPlugin->RestoreAllParameters(plugin.defaultProgram);
} else
{
// Plugin not found - add to list
bool found = std::find_if(notFoundIDs.cbegin(), notFoundIDs.cend(),
[&plugin](const SNDMIXPLUGININFO *info) { return info->dwPluginId2 == plugin.Info.dwPluginId2 && info->dwPluginId1 == plugin.Info.dwPluginId1; }) != notFoundIDs.cend();
if(!found)
{
notFoundIDs.push_back(&plugin.Info);
#ifdef MODPLUG_TRACKER
notFoundText.append(plugin.GetLibraryName());
notFoundText.append(UL_("\n"));
#else
AddToLog(LogWarning, U_("Plugin not found: ") + plugin.GetLibraryName());
#endif // MODPLUG_TRACKER
}
}
}
}
}
// Set up mix levels (also recalculates plugin mix levels - must be done after plugins were loaded)
SetMixLevels(m_nMixLevels);
#ifdef MODPLUG_TRACKER
// Display a nice message so the user sees which plugins are missing
// TODO: Use IDD_MODLOADING_WARNINGS dialog (NON-MODAL!) to display all warnings that are encountered when loading a module.
if(!notFoundIDs.empty())
{
if(notFoundIDs.size() == 1)
{
notFoundText = UL_("The following plugin has not been found:\n\n") + notFoundText + UL_("\nDo you want to search for it online?");
} else
{
notFoundText = UL_("The following plugins have not been found:\n\n") + notFoundText + UL_("\nDo you want to search for them online?");
}
if(Reporting::Confirm(notFoundText, U_("OpenMPT - Plugins missing"), false, true) == cnfYes)
{
mpt::ustring url = U_("https://resources.openmpt.org/plugins/search.php?p=");
for(const auto &id : notFoundIDs)
{
url += mpt::ufmt::HEX0<8>(id->dwPluginId2.get());
url += mpt::ToUnicode(mpt::Charset::UTF8, id->szLibraryName);
url += UL_("%0a");
}
CTrackApp::OpenURL(mpt::PathString::FromUnicode(url));
}
}
#endif // MODPLUG_TRACKER
#endif // NO_PLUGINS
return true;
}
bool CSoundFile::Destroy()
{
for(auto &chn : m_PlayState.Chn)
{
chn.pModInstrument = nullptr;
chn.pModSample = nullptr;
chn.pCurrentSample = nullptr;
chn.nLength = 0;
}
Patterns.DestroyPatterns();
m_songName.clear();
m_songArtist.clear();
m_songMessage.clear();
m_FileHistory.clear();
#ifdef MPT_EXTERNAL_SAMPLES
m_samplePaths.clear();
#endif // MPT_EXTERNAL_SAMPLES
for(auto &smp : Samples)
{
smp.FreeSample();
}
for(auto &ins : Instruments)
{
delete ins;
ins = nullptr;
}
#ifndef NO_PLUGINS
for(auto &plug : m_MixPlugins)
{
plug.Destroy();
}
#endif // NO_PLUGINS
m_nType = MOD_TYPE_NONE;
m_ContainerType = MOD_CONTAINERTYPE_NONE;
m_nChannels = m_nSamples = m_nInstruments = 0;
return true;
}
//////////////////////////////////////////////////////////////////////////
// Misc functions
void CSoundFile::SetDspEffects(uint32 DSPMask)
{
m_MixerSettings.DSPMask = DSPMask;
InitPlayer(false);
}
void CSoundFile::SetPreAmp(uint32 nVol)
{
if (nVol < 1) nVol = 1;
if (nVol > 0x200) nVol = 0x200; // x4 maximum
#ifndef NO_AGC
if ((nVol < m_MixerSettings.m_nPreAmp) && (nVol) && (m_MixerSettings.DSPMask & SNDDSP_AGC))
{
m_AGC.Adjust(m_MixerSettings.m_nPreAmp, nVol);
}
#endif
m_MixerSettings.m_nPreAmp = nVol;
}
double CSoundFile::GetCurrentBPM() const
{
double bpm;
if (m_nTempoMode == TempoMode::Modern)
{
// With modern mode, we trust that true bpm is close enough to what user chose.
// This avoids oscillation due to tick-to-tick corrections.
bpm = m_PlayState.m_nMusicTempo.ToDouble();
} else
{
//with other modes, we calculate it:
double ticksPerBeat = m_PlayState.m_nMusicSpeed * m_PlayState.m_nCurrentRowsPerBeat; //ticks/beat = ticks/row * rows/beat
double samplesPerBeat = m_PlayState.m_nSamplesPerTick * ticksPerBeat; //samps/beat = samps/tick * ticks/beat
bpm = m_MixerSettings.gdwMixingFreq / samplesPerBeat * 60; //beats/sec = samps/sec / samps/beat
} //beats/min = beats/sec * 60
return bpm;
}
void CSoundFile::ResetPlayPos()
{
const auto muteFlag = GetChannelMuteFlag();
for(CHANNELINDEX i = 0; i < MAX_CHANNELS; i++)
m_PlayState.Chn[i].Reset(ModChannel::resetSetPosFull, *this, i, muteFlag);
m_visitedRows.Initialize(true);
m_SongFlags.reset(SONG_FADINGSONG | SONG_ENDREACHED);
m_PlayState.m_nGlobalVolume = m_nDefaultGlobalVolume;
m_PlayState.m_nMusicSpeed = m_nDefaultSpeed;
m_PlayState.m_nMusicTempo = m_nDefaultTempo;
// Do not ramp global volume when starting playback
m_PlayState.ResetGlobalVolumeRamping();
m_PlayState.m_nNextOrder = 0;
m_PlayState.m_nNextRow = 0;
m_PlayState.m_nTickCount = TICKS_ROW_FINISHED;
m_PlayState.m_nBufferCount = 0;
m_PlayState.m_nPatternDelay = 0;
m_PlayState.m_nFrameDelay = 0;
m_PlayState.m_nextPatStartRow = 0;
m_PlayState.m_lTotalSampleCount = 0;
}
void CSoundFile::SetCurrentOrder(ORDERINDEX nOrder)
{
while(nOrder < Order().size() && !Order().IsValidPat(nOrder))
nOrder++;
if(nOrder >= Order().size())
return;
for(auto &chn : m_PlayState.Chn)
{
chn.nPeriod = 0;
chn.nNote = NOTE_NONE;
chn.nPortamentoDest = 0;
chn.nCommand = 0;
chn.nPatternLoopCount = 0;
chn.nPatternLoop = 0;
chn.nVibratoPos = chn.nTremoloPos = chn.nPanbrelloPos = 0;
//IT compatibility 15. Retrigger
if(m_playBehaviour[kITRetrigger])
{
chn.nRetrigCount = 0;
chn.nRetrigParam = 1;
}
chn.nTremorCount = 0;
}
#ifndef NO_PLUGINS
// Stop hanging notes from VST instruments as well
StopAllVsti();
#endif // NO_PLUGINS
if (!nOrder)
{
ResetPlayPos();
} else
{
m_PlayState.m_nNextOrder = nOrder;
m_PlayState.m_nRow = m_PlayState.m_nNextRow = 0;
m_PlayState.m_nPattern = 0;
m_PlayState.m_nTickCount = TICKS_ROW_FINISHED;
m_PlayState.m_nBufferCount = 0;
m_PlayState.m_nPatternDelay = 0;
m_PlayState.m_nFrameDelay = 0;
m_PlayState.m_nextPatStartRow = 0;
}
m_SongFlags.reset(SONG_FADINGSONG | SONG_ENDREACHED);
}
void CSoundFile::SuspendPlugins()
{
#ifndef NO_PLUGINS
for(auto &plug : m_MixPlugins)
{
IMixPlugin *pPlugin = plug.pMixPlugin;
if(pPlugin != nullptr && pPlugin->IsResumed())
{
pPlugin->NotifySongPlaying(false);
pPlugin->HardAllNotesOff();
pPlugin->Suspend();
}
}
#endif // NO_PLUGINS
}
void CSoundFile::ResumePlugins()
{
#ifndef NO_PLUGINS
for(auto &plugin : m_MixPlugins)
{
IMixPlugin *pPlugin = plugin.pMixPlugin;
if(pPlugin != nullptr && !pPlugin->IsResumed())
{
pPlugin->NotifySongPlaying(true);
pPlugin->Resume();
}
}
#endif // NO_PLUGINS
}
void CSoundFile::StopAllVsti()
{
#ifndef NO_PLUGINS
for(auto &plugin : m_MixPlugins)
{
IMixPlugin *pPlugin = plugin.pMixPlugin;
if(pPlugin != nullptr && pPlugin->IsResumed())
{
pPlugin->HardAllNotesOff();
}
}
#endif // NO_PLUGINS
}
void CSoundFile::SetMixLevels(MixLevels levels)
{
m_nMixLevels = levels;
m_PlayConfig.SetMixLevels(m_nMixLevels);
RecalculateGainForAllPlugs();
}
void CSoundFile::RecalculateGainForAllPlugs()
{
#ifndef NO_PLUGINS
for(auto &plugin : m_MixPlugins)
{
if(plugin.pMixPlugin != nullptr)
plugin.pMixPlugin->RecalculateGain();
}
#endif // NO_PLUGINS
}
void CSoundFile::ResetChannels()
{
m_SongFlags.reset(SONG_FADINGSONG | SONG_ENDREACHED);
m_PlayState.m_nBufferCount = 0;
for(auto &chn : m_PlayState.Chn)
{
chn.nROfs = chn.nLOfs = 0;
chn.nLength = 0;
if(chn.dwFlags[CHN_ADLIB] && m_opl)
{
CHANNELINDEX c = static_cast<CHANNELINDEX>(std::distance(std::begin(m_PlayState.Chn), &chn));
m_opl->NoteCut(c);
}
}
}
#ifdef MODPLUG_TRACKER
void CSoundFile::PatternTranstionChnSolo(const CHANNELINDEX chnIndex)
{
if(chnIndex >= m_nChannels)
return;
for(CHANNELINDEX i = 0; i < m_nChannels; i++)
{
m_bChannelMuteTogglePending[i] = !ChnSettings[i].dwFlags[CHN_MUTE];
}
m_bChannelMuteTogglePending[chnIndex] = ChnSettings[chnIndex].dwFlags[CHN_MUTE];
}
void CSoundFile::PatternTransitionChnUnmuteAll()
{
for(CHANNELINDEX i = 0; i < m_nChannels; i++)
{
m_bChannelMuteTogglePending[i] = ChnSettings[i].dwFlags[CHN_MUTE];
}
}
#endif // MODPLUG_TRACKER
void CSoundFile::LoopPattern(PATTERNINDEX nPat, ROWINDEX nRow)
{
if(!Patterns.IsValidPat(nPat))
{
m_SongFlags.reset(SONG_PATTERNLOOP);
} else
{
if(nRow >= Patterns[nPat].GetNumRows()) nRow = 0;
m_PlayState.m_nPattern = nPat;
m_PlayState.m_nRow = m_PlayState.m_nNextRow = nRow;
m_PlayState.m_nTickCount = TICKS_ROW_FINISHED;
m_PlayState.m_nPatternDelay = 0;
m_PlayState.m_nFrameDelay = 0;
m_PlayState.m_nextPatStartRow = 0;
m_SongFlags.set(SONG_PATTERNLOOP);
}
m_PlayState.m_nBufferCount = 0;
}
void CSoundFile::DontLoopPattern(PATTERNINDEX nPat, ROWINDEX nRow)
{
if(!Patterns.IsValidPat(nPat)) nPat = 0;
if(nRow >= Patterns[nPat].GetNumRows()) nRow = 0;
m_PlayState.m_nPattern = nPat;
m_PlayState.m_nRow = m_PlayState.m_nNextRow = nRow;
m_PlayState.m_nTickCount = TICKS_ROW_FINISHED;
m_PlayState.m_nPatternDelay = 0;
m_PlayState.m_nFrameDelay = 0;
m_PlayState.m_nBufferCount = 0;
m_PlayState.m_nextPatStartRow = 0;
m_SongFlags.reset(SONG_PATTERNLOOP);
}
void CSoundFile::SetDefaultPlaybackBehaviour(MODTYPE type)
{
m_playBehaviour = GetDefaultPlaybackBehaviour(type);
}
PlayBehaviourSet CSoundFile::GetSupportedPlaybackBehaviour(MODTYPE type)
{
PlayBehaviourSet playBehaviour;
switch(type)
{
case MOD_TYPE_MPT:
case MOD_TYPE_IT:
playBehaviour.set(MSF_COMPATIBLE_PLAY);
playBehaviour.set(kPeriodsAreHertz);
playBehaviour.set(kTempoClamp);
playBehaviour.set(kPerChannelGlobalVolSlide);
playBehaviour.set(kPanOverride);
playBehaviour.set(kITInstrWithoutNote);
playBehaviour.set(kITVolColFinePortamento);
playBehaviour.set(kITArpeggio);
playBehaviour.set(kITOutOfRangeDelay);
playBehaviour.set(kITPortaMemoryShare);
playBehaviour.set(kITPatternLoopTargetReset);
playBehaviour.set(kITFT2PatternLoop);
playBehaviour.set(kITPingPongNoReset);
playBehaviour.set(kITEnvelopeReset);
playBehaviour.set(kITClearOldNoteAfterCut);
playBehaviour.set(kITVibratoTremoloPanbrello);
playBehaviour.set(kITTremor);
playBehaviour.set(kITRetrigger);
playBehaviour.set(kITMultiSampleBehaviour);
playBehaviour.set(kITPortaTargetReached);
playBehaviour.set(kITPatternLoopBreak);
playBehaviour.set(kITOffset);
playBehaviour.set(kITSwingBehaviour);
playBehaviour.set(kITNNAReset);
playBehaviour.set(kITSCxStopsSample);
playBehaviour.set(kITEnvelopePositionHandling);
playBehaviour.set(kITPortamentoInstrument);
playBehaviour.set(kITPingPongMode);
playBehaviour.set(kITRealNoteMapping);
playBehaviour.set(kITHighOffsetNoRetrig);
playBehaviour.set(kITFilterBehaviour);
playBehaviour.set(kITNoSurroundPan);
playBehaviour.set(kITShortSampleRetrig);
playBehaviour.set(kITPortaNoNote);
playBehaviour.set(kITFT2DontResetNoteOffOnPorta);
playBehaviour.set(kITVolColMemory);
playBehaviour.set(kITPortamentoSwapResetsPos);
playBehaviour.set(kITEmptyNoteMapSlot);
playBehaviour.set(kITFirstTickHandling);
playBehaviour.set(kITSampleAndHoldPanbrello);
playBehaviour.set(kITClearPortaTarget);
playBehaviour.set(kITPanbrelloHold);
playBehaviour.set(kITPanningReset);
playBehaviour.set(kITPatternLoopWithJumps);
playBehaviour.set(kITInstrWithNoteOff);
playBehaviour.set(kITMultiSampleInstrumentNumber);
playBehaviour.set(kRowDelayWithNoteDelay);
playBehaviour.set(kITInstrWithNoteOffOldEffects);
playBehaviour.set(kITDoNotOverrideChannelPan);
playBehaviour.set(kITDCTBehaviour);
playBehaviour.set(kITPitchPanSeparation);
if(type == MOD_TYPE_MPT)
{
playBehaviour.set(kOPLFlexibleNoteOff);
playBehaviour.set(kOPLwithNNA);
playBehaviour.set(kOPLNoteOffOnNoteChange);
}
break;
case MOD_TYPE_XM:
playBehaviour.set(MSF_COMPATIBLE_PLAY);
playBehaviour.set(kFT2VolumeRamping);
playBehaviour.set(kTempoClamp);
playBehaviour.set(kPerChannelGlobalVolSlide);
playBehaviour.set(kPanOverride);
playBehaviour.set(kITFT2PatternLoop);
playBehaviour.set(kITFT2DontResetNoteOffOnPorta);
playBehaviour.set(kFT2Arpeggio);
playBehaviour.set(kFT2Retrigger);
playBehaviour.set(kFT2VolColVibrato);
playBehaviour.set(kFT2PortaNoNote);
playBehaviour.set(kFT2KeyOff);
playBehaviour.set(kFT2PanSlide);
playBehaviour.set(kFT2ST3OffsetOutOfRange);
playBehaviour.set(kFT2RestrictXCommand);
playBehaviour.set(kFT2RetrigWithNoteDelay);
playBehaviour.set(kFT2SetPanEnvPos);
playBehaviour.set(kFT2PortaIgnoreInstr);
playBehaviour.set(kFT2VolColMemory);
playBehaviour.set(kFT2LoopE60Restart);
playBehaviour.set(kFT2ProcessSilentChannels);
playBehaviour.set(kFT2ReloadSampleSettings);
playBehaviour.set(kFT2PortaDelay);
playBehaviour.set(kFT2Transpose);
playBehaviour.set(kFT2PatternLoopWithJumps);
playBehaviour.set(kFT2PortaTargetNoReset);
playBehaviour.set(kFT2EnvelopeEscape);
playBehaviour.set(kFT2Tremor);
playBehaviour.set(kFT2OutOfRangeDelay);
playBehaviour.set(kFT2Periods);
playBehaviour.set(kFT2PanWithDelayedNoteOff);
playBehaviour.set(kFT2VolColDelay);
playBehaviour.set(kFT2FinetunePrecision);
playBehaviour.set(kFT2NoteOffFlags);
playBehaviour.set(kRowDelayWithNoteDelay);
playBehaviour.set(kFT2MODTremoloRampWaveform);
playBehaviour.set(kFT2PortaUpDownMemory);
playBehaviour.set(kFT2PanSustainRelease);
playBehaviour.set(kFT2NoteDelayWithoutInstr);
playBehaviour.set(kFT2PortaResetDirection);
break;
case MOD_TYPE_S3M:
playBehaviour.set(MSF_COMPATIBLE_PLAY);
playBehaviour.set(kTempoClamp);
playBehaviour.set(kPanOverride);
playBehaviour.set(kITPanbrelloHold);
playBehaviour.set(kFT2ST3OffsetOutOfRange);
playBehaviour.set(kST3NoMutedChannels);
playBehaviour.set(kST3PortaSampleChange);
playBehaviour.set(kST3EffectMemory);
playBehaviour.set(kST3VibratoMemory);
playBehaviour.set(KST3PortaAfterArpeggio);
playBehaviour.set(kRowDelayWithNoteDelay);
playBehaviour.set(kST3OffsetWithoutInstrument);
playBehaviour.set(kST3RetrigAfterNoteCut);
playBehaviour.set(kST3SampleSwap);
playBehaviour.set(kOPLNoteOffOnNoteChange);
playBehaviour.set(kApplyUpperPeriodLimit);
break;
case MOD_TYPE_MOD:
playBehaviour.set(kMODVBlankTiming);
playBehaviour.set(kMODOneShotLoops);
playBehaviour.set(kMODIgnorePanning);
playBehaviour.set(kMODSampleSwap);
playBehaviour.set(kMODOutOfRangeNoteDelay);
playBehaviour.set(kMODTempoOnSecondTick);
playBehaviour.set(kRowDelayWithNoteDelay);
playBehaviour.set(kFT2MODTremoloRampWaveform);
break;
default:
playBehaviour.set(MSF_COMPATIBLE_PLAY);
playBehaviour.set(kPeriodsAreHertz);
playBehaviour.set(kTempoClamp);
playBehaviour.set(kPanOverride);
break;
}
return playBehaviour;
}
PlayBehaviourSet CSoundFile::GetDefaultPlaybackBehaviour(MODTYPE type)
{
PlayBehaviourSet playBehaviour;
switch(type)
{
case MOD_TYPE_MPT:
playBehaviour.set(kPeriodsAreHertz);
playBehaviour.set(kPerChannelGlobalVolSlide);
playBehaviour.set(kPanOverride);
playBehaviour.set(kITArpeggio);
playBehaviour.set(kITPortaMemoryShare);
playBehaviour.set(kITPatternLoopTargetReset);
playBehaviour.set(kITFT2PatternLoop);
playBehaviour.set(kITPingPongNoReset);
playBehaviour.set(kITClearOldNoteAfterCut);
playBehaviour.set(kITVibratoTremoloPanbrello);
playBehaviour.set(kITMultiSampleBehaviour);
playBehaviour.set(kITPortaTargetReached);
playBehaviour.set(kITPatternLoopBreak);
playBehaviour.set(kITSwingBehaviour);
playBehaviour.set(kITSCxStopsSample);
playBehaviour.set(kITEnvelopePositionHandling);
playBehaviour.set(kITPingPongMode);
playBehaviour.set(kITRealNoteMapping);
playBehaviour.set(kITPortaNoNote);
playBehaviour.set(kITVolColMemory);
playBehaviour.set(kITFirstTickHandling);
playBehaviour.set(kITClearPortaTarget);
playBehaviour.set(kITSampleAndHoldPanbrello);
playBehaviour.set(kITPanbrelloHold);
playBehaviour.set(kITPanningReset);
playBehaviour.set(kITInstrWithNoteOff);
playBehaviour.set(kOPLFlexibleNoteOff);
playBehaviour.set(kITDoNotOverrideChannelPan);
playBehaviour.set(kITDCTBehaviour);
playBehaviour.set(kOPLwithNNA);
playBehaviour.set(kITPitchPanSeparation);
break;
case MOD_TYPE_S3M:
playBehaviour = GetSupportedPlaybackBehaviour(type);
// Default behaviour was chosen to follow GUS, so kST3PortaSampleChange is enabled and kST3SampleSwap is disabled.
// For SoundBlaster behaviour, those two flags would need to be swapped.
playBehaviour.reset(kST3SampleSwap);
break;
case MOD_TYPE_XM:
playBehaviour = GetSupportedPlaybackBehaviour(type);
// Only set this explicitely for FT2-made XMs.
playBehaviour.reset(kFT2VolumeRamping);
break;
case MOD_TYPE_MOD:
playBehaviour.set(kRowDelayWithNoteDelay);
break;
default:
playBehaviour = GetSupportedPlaybackBehaviour(type);
break;
}
return playBehaviour;
}
MODTYPE CSoundFile::GetBestSaveFormat() const
{
switch(GetType())
{
case MOD_TYPE_MOD:
case MOD_TYPE_S3M:
case MOD_TYPE_XM:
case MOD_TYPE_IT:
case MOD_TYPE_MPT:
return GetType();
case MOD_TYPE_AMF0:
case MOD_TYPE_DIGI:
case MOD_TYPE_SFX:
case MOD_TYPE_STP:
return MOD_TYPE_MOD;
case MOD_TYPE_MED:
if(!m_nInstruments)
{
for(const auto &pat : Patterns)
{
if(pat.IsValid() && pat.GetNumRows() != 64)
return MOD_TYPE_XM;
}
return MOD_TYPE_MOD;
}
return MOD_TYPE_XM;
case MOD_TYPE_PSM:
if(GetNumChannels() > 16)
return MOD_TYPE_IT;
for(CHANNELINDEX i = 0; i < GetNumChannels(); i++)
{
if(ChnSettings[i].dwFlags[CHN_SURROUND] || ChnSettings[i].nVolume != 64)
{
return MOD_TYPE_IT;
break;
}
}
return MOD_TYPE_S3M;
case MOD_TYPE_669:
case MOD_TYPE_FAR:
case MOD_TYPE_STM:
case MOD_TYPE_DSM:
case MOD_TYPE_AMF:
case MOD_TYPE_MTM:
return MOD_TYPE_S3M;
case MOD_TYPE_AMS:
case MOD_TYPE_DMF:
case MOD_TYPE_DBM:
case MOD_TYPE_IMF:
case MOD_TYPE_J2B:
case MOD_TYPE_ULT:
case MOD_TYPE_OKT:
case MOD_TYPE_MT2:
case MOD_TYPE_MDL:
case MOD_TYPE_PTM:
case MOD_TYPE_DTM:
default:
return MOD_TYPE_IT;
case MOD_TYPE_MID:
return MOD_TYPE_MPT;
}
}
const char *CSoundFile::GetSampleName(SAMPLEINDEX nSample) const
{
MPT_ASSERT(nSample <= GetNumSamples());
if (nSample < MAX_SAMPLES)
{
return m_szNames[nSample].buf;
} else
{
return "";
}
}
const char *CSoundFile::GetInstrumentName(INSTRUMENTINDEX nInstr) const
{
if((nInstr >= MAX_INSTRUMENTS) || (!Instruments[nInstr]))
return "";
MPT_ASSERT(nInstr <= GetNumInstruments());
return Instruments[nInstr]->name.buf;
}
bool CSoundFile::InitChannel(CHANNELINDEX nChn)
{
if(nChn >= MAX_BASECHANNELS)
return true;
ChnSettings[nChn].Reset();
m_PlayState.Chn[nChn].Reset(ModChannel::resetTotal, *this, nChn, GetChannelMuteFlag());
#ifdef MODPLUG_TRACKER
if(GetpModDoc() != nullptr)
{
GetpModDoc()->SetChannelRecordGroup(nChn, RecordGroup::NoGroup);
}
#endif // MODPLUG_TRACKER
#ifdef MODPLUG_TRACKER
m_bChannelMuteTogglePending[nChn] = false;
#endif // MODPLUG_TRACKER
return false;
}
void CSoundFile::InitAmigaResampler()
{
if(m_SongFlags[SONG_ISAMIGA] && m_Resampler.m_Settings.emulateAmiga != Resampling::AmigaFilter::Off)
{
const Paula::State defaultState(GetSampleRate());
for(auto &chn : m_PlayState.Chn)
{
chn.paulaState = defaultState;
}
}
}
void CSoundFile::InitOPL()
{
if(!m_opl)
m_opl = std::make_unique<OPL>(m_MixerSettings.gdwMixingFreq);
}
// Detect samples that are referenced by an instrument, but actually not used in a song.
// Only works in instrument mode. Unused samples are marked as false in the vector.
SAMPLEINDEX CSoundFile::DetectUnusedSamples(std::vector<bool> &sampleUsed) const
{
sampleUsed.assign(GetNumSamples() + 1, false);
if(GetNumInstruments() == 0)
{
return 0;
}
SAMPLEINDEX unused = 0;
std::vector<ModCommand::INSTR> lastIns;
for(const auto &pat : Patterns) if(pat.IsValid())
{
lastIns.assign(GetNumChannels(), 0);
auto p = pat.cbegin();
for(ROWINDEX row = 0; row < pat.GetNumRows(); row++)
{
for(CHANNELINDEX c = 0; c < GetNumChannels(); c++, p++)
{
if(p->IsNote())
{
ModCommand::INSTR instr = p->instr;
if(!p->instr)
instr = lastIns[c];
INSTRUMENTINDEX minInstr = 1, maxInstr = GetNumInstruments();
if(instr > 0)
{
if(instr <= GetNumInstruments())
{
minInstr = maxInstr = instr;
}
lastIns[c] = instr;
} else
{
// No idea which instrument this note belongs to, so mark it used in any instruments.
}
for(INSTRUMENTINDEX i = minInstr; i <= maxInstr; i++)
{
if(const auto *pIns = Instruments[i]; pIns != nullptr)
{
SAMPLEINDEX n = pIns->Keyboard[p->note - NOTE_MIN];
if(n <= GetNumSamples())
sampleUsed[n] = true;
}
}
}
}
}
}
for (SAMPLEINDEX ichk = GetNumSamples(); ichk >= 1; ichk--)
{
if ((!sampleUsed[ichk]) && (Samples[ichk].HasSampleData())) unused++;
}
return unused;
}
// Destroy samples where keepSamples index is false. First sample is keepSamples[1]!
SAMPLEINDEX CSoundFile::RemoveSelectedSamples(const std::vector<bool> &keepSamples)
{
if(keepSamples.empty())
{
return 0;
}
SAMPLEINDEX nRemoved = 0;
for(SAMPLEINDEX nSmp = std::min(GetNumSamples(), static_cast<SAMPLEINDEX>(keepSamples.size() - 1)); nSmp >= 1; nSmp--)
{
if(!keepSamples[nSmp])
{
CriticalSection cs;
#ifdef MODPLUG_TRACKER
if(GetpModDoc())
{
GetpModDoc()->GetSampleUndo().PrepareUndo(nSmp, sundo_replace, "Remove Sample");
}
#endif // MODPLUG_TRACKER
if(DestroySample(nSmp))
{
m_szNames[nSmp] = "";
nRemoved++;
}
if((nSmp == GetNumSamples()) && (nSmp > 1)) m_nSamples--;
}
}
return nRemoved;
}
bool CSoundFile::DestroySample(SAMPLEINDEX nSample)
{
if(!nSample || nSample >= MAX_SAMPLES)
{
return false;
}
if(!Samples[nSample].HasSampleData())
{
return true;
}
ModSample &sample = Samples[nSample];
for(auto &chn : m_PlayState.Chn)
{
if(chn.pModSample == &sample)
{
chn.position.Set(0);
chn.nLength = 0;
chn.pCurrentSample = nullptr;
}
}
sample.FreeSample();
sample.nLength = 0;
sample.uFlags.reset(CHN_16BIT | CHN_STEREO);
sample.SetAdlib(false);
#ifdef MODPLUG_TRACKER
ResetSamplePath(nSample);
#endif
return true;
}
bool CSoundFile::DestroySampleThreadsafe(SAMPLEINDEX nSample)
{
CriticalSection cs;
return DestroySample(nSample);
}
std::unique_ptr<CTuning> CSoundFile::CreateTuning12TET(const mpt::ustring &name)
{
std::unique_ptr<CTuning> pT = CTuning::CreateGeometric(name, 12, 2, 15);
for(ModCommand::NOTE note = 0; note < 12; ++note)
{
pT->SetNoteName(note, mpt::ustring(NoteNamesSharp[note]));
}
return pT;
}
mpt::ustring CSoundFile::GetNoteName(const ModCommand::NOTE note, const INSTRUMENTINDEX inst) const
{
// For MPTM instruments with custom tuning, find the appropriate note name. Else, use default note names.
if(ModCommand::IsNote(note) && GetType() == MOD_TYPE_MPT && inst >= 1 && inst <= GetNumInstruments() && Instruments[inst] && Instruments[inst]->pTuning)
{
return Instruments[inst]->pTuning->GetNoteName(note - NOTE_MIDDLEC);
} else
{
return GetNoteName(note);
}
}
mpt::ustring CSoundFile::GetNoteName(const ModCommand::NOTE note) const
{
return GetNoteName(note, m_NoteNames);
}
mpt::ustring CSoundFile::GetNoteName(const ModCommand::NOTE note, const NoteName *noteNames)
{
if(ModCommand::IsSpecialNote(note))
{
// cppcheck false-positive
// cppcheck-suppress constStatement
const mpt::uchar specialNoteNames[][4] = { UL_("PCs"), UL_("PC "), UL_("~~~"), UL_("^^^"), UL_("===") };
static_assert(mpt::array_size<decltype(specialNoteNames)>::size == NOTE_MAX_SPECIAL - NOTE_MIN_SPECIAL + 1);
return specialNoteNames[note - NOTE_MIN_SPECIAL];
} else if(ModCommand::IsNote(note))
{
return mpt::ustring()
.append(noteNames[(note - NOTE_MIN) % 12])
.append(1, UC_('0') + (note - NOTE_MIN) / 12)
; // e.g. "C#" + "5"
} else if(note == NOTE_NONE)
{
return UL_("...");
}
return UL_("???");
}
#ifdef MODPLUG_TRACKER
void CSoundFile::SetDefaultNoteNames()
{
m_NoteNames = TrackerSettings::Instance().accidentalFlats ? NoteNamesFlat : NoteNamesSharp;
}
const NoteName *CSoundFile::GetDefaultNoteNames()
{
return m_NoteNames;
}
#endif // MODPLUG_TRACKER
void CSoundFile::SetModSpecsPointer(const CModSpecifications*& pModSpecs, const MODTYPE type)
{
switch(type)
{
case MOD_TYPE_MPT:
pModSpecs = &ModSpecs::mptm;
break;
case MOD_TYPE_IT:
pModSpecs = &ModSpecs::itEx;
break;
case MOD_TYPE_XM:
pModSpecs = &ModSpecs::xmEx;
break;
case MOD_TYPE_S3M:
pModSpecs = &ModSpecs::s3mEx;
break;
case MOD_TYPE_MOD:
default:
pModSpecs = &ModSpecs::mod;
break;
}
}
void CSoundFile::SetType(MODTYPE type)
{
m_nType = type;
m_playBehaviour = GetDefaultPlaybackBehaviour(GetBestSaveFormat());
SetModSpecsPointer(m_pModSpecs, GetBestSaveFormat());
}
#ifdef MODPLUG_TRACKER
void CSoundFile::ChangeModTypeTo(const MODTYPE newType, bool adjust)
{
const MODTYPE oldType = GetType();
m_nType = newType;
SetModSpecsPointer(m_pModSpecs, m_nType);
if(oldType == newType || !adjust)
return;
SetupMODPanning(); // Setup LRRL panning scheme if needed
// Only keep supported play behaviour flags
PlayBehaviourSet oldAllowedFlags = GetSupportedPlaybackBehaviour(oldType);
PlayBehaviourSet newAllowedFlags = GetSupportedPlaybackBehaviour(newType);
PlayBehaviourSet newDefaultFlags = GetDefaultPlaybackBehaviour(newType);
for(size_t i = 0; i < m_playBehaviour.size(); i++)
{
// If a flag is supported in both formats, keep its status
if(m_playBehaviour[i]) m_playBehaviour.set(i, newAllowedFlags[i]);
// Set allowed flags to their defaults if they were not supported in the old format
if(!oldAllowedFlags[i]) m_playBehaviour.set(i, newDefaultFlags[i]);
}
// Special case for OPL behaviour when converting from S3M to MPTM to retain S3M-like note-off behaviour
if(oldType == MOD_TYPE_S3M && newType == MOD_TYPE_MPT && m_opl)
m_playBehaviour.reset(kOPLFlexibleNoteOff);
Order.OnModTypeChanged(oldType);
Patterns.OnModTypeChanged(oldType);
m_modFormat.type = mpt::ToUnicode(mpt::Charset::UTF8, GetModSpecifications().fileExtension);
}
#endif // MODPLUG_TRACKER
ModMessageHeuristicOrder CSoundFile::GetMessageHeuristic() const
{
ModMessageHeuristicOrder result = ModMessageHeuristicOrder::Default;
switch(GetType())
{
case MOD_TYPE_MPT:
result = ModMessageHeuristicOrder::Samples;
break;
case MOD_TYPE_IT:
result = ModMessageHeuristicOrder::Samples;
break;
case MOD_TYPE_XM:
result = ModMessageHeuristicOrder::InstrumentsSamples;
break;
case MOD_TYPE_MDL:
result = ModMessageHeuristicOrder::InstrumentsSamples;
break;
case MOD_TYPE_IMF:
result = ModMessageHeuristicOrder::InstrumentsSamples;
break;
default:
result = ModMessageHeuristicOrder::Default;
break;
}
return result;
}
bool CSoundFile::SetTitle(const std::string &newTitle)
{
if(m_songName != newTitle)
{
m_songName = newTitle;
return true;
}
return false;
}
double CSoundFile::GetPlaybackTimeAt(ORDERINDEX ord, ROWINDEX row, bool updateVars, bool updateSamplePos)
{
const GetLengthType t = GetLength(updateVars ? (updateSamplePos ? eAdjustSamplePositions : eAdjust) : eNoAdjust, GetLengthTarget(ord, row)).back();
if(t.targetReached) return t.duration;
else return -1; //Given position not found from play sequence.
}
std::vector<SubSong> CSoundFile::GetAllSubSongs()
{
std::vector<SubSong> subSongs;
for(SEQUENCEINDEX seq = 0; seq < Order.GetNumSequences(); seq++)
{
const auto subSongsSeq = GetLength(eNoAdjust, GetLengthTarget(true).StartPos(seq, 0, 0));
subSongs.reserve(subSongs.size() + subSongsSeq.size());
for(const auto &song : subSongsSeq)
{
subSongs.push_back({song.duration, song.startRow, song.endRow, song.lastRow, song.startOrder, song.endOrder, song.lastOrder, seq});
}
}
return subSongs;
}
// Calculate the length of a tick, depending on the tempo mode.
// This differs from GetTickDuration() by not accumulating errors
// because this is not called once per tick but in unrelated
// circumstances. So this should not update error accumulation.
void CSoundFile::RecalculateSamplesPerTick()
{
switch(m_nTempoMode)
{
case TempoMode::Classic:
default:
m_PlayState.m_nSamplesPerTick = Util::muldiv(m_MixerSettings.gdwMixingFreq, 5 * TEMPO::fractFact, std::max(TEMPO::store_t(1), m_PlayState.m_nMusicTempo.GetRaw() << 1));
break;
case TempoMode::Modern:
m_PlayState.m_nSamplesPerTick = static_cast<uint32>((Util::mul32to64_unsigned(m_MixerSettings.gdwMixingFreq, 60 * TEMPO::fractFact) / std::max(uint64(1), Util::mul32to64_unsigned(m_PlayState.m_nMusicSpeed, m_PlayState.m_nCurrentRowsPerBeat) * m_PlayState.m_nMusicTempo.GetRaw())));
break;
case TempoMode::Alternative:
m_PlayState.m_nSamplesPerTick = Util::muldiv(m_MixerSettings.gdwMixingFreq, TEMPO::fractFact, std::max(TEMPO::store_t(1), m_PlayState.m_nMusicTempo.GetRaw()));
break;
}
#ifndef MODPLUG_TRACKER
m_PlayState.m_nSamplesPerTick = Util::muldivr(m_PlayState.m_nSamplesPerTick, m_nTempoFactor, 65536);
#endif // !MODPLUG_TRACKER
if(!m_PlayState.m_nSamplesPerTick)
m_PlayState.m_nSamplesPerTick = 1;
}
// Get length of a tick in sample, with tick-to-tick tempo correction in modern tempo mode.
// This has to be called exactly once per tick because otherwise the error accumulation
// goes wrong.
uint32 CSoundFile::GetTickDuration(PlayState &playState) const
{
uint32 retval = 0;
switch(m_nTempoMode)
{
case TempoMode::Classic:
default:
retval = Util::muldiv(m_MixerSettings.gdwMixingFreq, 5 * TEMPO::fractFact, std::max(TEMPO::store_t(1), playState.m_nMusicTempo.GetRaw() << 1));
break;
case TempoMode::Alternative:
retval = Util::muldiv(m_MixerSettings.gdwMixingFreq, TEMPO::fractFact, std::max(TEMPO::store_t(1), playState.m_nMusicTempo.GetRaw()));
break;
case TempoMode::Modern:
{
double accurateBufferCount = static_cast<double>(m_MixerSettings.gdwMixingFreq) * (60.0 / (playState.m_nMusicTempo.ToDouble() * Util::mul32to64_unsigned(playState.m_nMusicSpeed, playState.m_nCurrentRowsPerBeat)));
const TempoSwing &swing = (Patterns.IsValidPat(playState.m_nPattern) && Patterns[playState.m_nPattern].HasTempoSwing())
? Patterns[playState.m_nPattern].GetTempoSwing()
: m_tempoSwing;
if(!swing.empty())
{
// Apply current row's tempo swing factor
TempoSwing::value_type swingFactor = swing[playState.m_nRow % swing.size()];
accurateBufferCount = accurateBufferCount * swingFactor / double(TempoSwing::Unity);
}
uint32 bufferCount = static_cast<int>(accurateBufferCount);
playState.m_dBufferDiff += accurateBufferCount - bufferCount;
//tick-to-tick tempo correction:
if(playState.m_dBufferDiff >= 1)
{
bufferCount++;
playState.m_dBufferDiff--;
} else if(m_PlayState.m_dBufferDiff <= -1)
{
bufferCount--;
playState.m_dBufferDiff++;
}
MPT_ASSERT(std::abs(playState.m_dBufferDiff) < 1.0);
retval = bufferCount;
}
break;
}
#ifndef MODPLUG_TRACKER
// when the user modifies the tempo, we do not really care about accurate tempo error accumulation
retval = Util::muldivr_unsigned(retval, m_nTempoFactor, 65536);
#endif // !MODPLUG_TRACKER
if(!retval)
retval = 1;
return retval;
}
// Get the duration of a row in milliseconds, based on the current rows per beat and given speed and tempo settings.
double CSoundFile::GetRowDuration(TEMPO tempo, uint32 speed) const
{
switch(m_nTempoMode)
{
case TempoMode::Classic:
default:
return static_cast<double>(2500 * speed) / tempo.ToDouble();
case TempoMode::Modern:
{
// If there are any row delay effects, the row length factor compensates for those.
return 60000.0 / tempo.ToDouble() / static_cast<double>(m_PlayState.m_nCurrentRowsPerBeat);
}
case TempoMode::Alternative:
return static_cast<double>(1000 * speed) / tempo.ToDouble();
}
}
const CModSpecifications& CSoundFile::GetModSpecifications(const MODTYPE type)
{
const CModSpecifications* p = nullptr;
SetModSpecsPointer(p, type);
return *p;
}
ChannelFlags CSoundFile::GetChannelMuteFlag()
{
#ifdef MODPLUG_TRACKER
return (TrackerSettings::Instance().m_dwPatternSetup & PATTERN_SYNCMUTE) ? CHN_SYNCMUTE : CHN_MUTE;
#else
return CHN_SYNCMUTE;
#endif
}
// Resolve note/instrument combination to real sample index. Return value is guaranteed to be in [0, GetNumSamples()].
SAMPLEINDEX CSoundFile::GetSampleIndex(ModCommand::NOTE note, uint32 instr) const noexcept
{
SAMPLEINDEX smp = 0;
if(GetNumInstruments())
{
if(ModCommand::IsNote(note) && instr <= GetNumInstruments() && Instruments[instr] != nullptr)
smp = Instruments[instr]->Keyboard[note - NOTE_MIN];
} else
{
smp = static_cast<SAMPLEINDEX>(instr);
}
if(smp <= GetNumSamples())
return smp;
else
return 0;
}
// Find an unused sample slot. If it is going to be assigned to an instrument, targetInstrument should be specified.
// SAMPLEINDEX_INVLAID is returned if no free sample slot could be found.
SAMPLEINDEX CSoundFile::GetNextFreeSample(INSTRUMENTINDEX targetInstrument, SAMPLEINDEX start) const
{
// Find empty slot in two passes - in the first pass, we only search for samples with empty sample names,
// in the second pass we check all samples with non-empty sample names.
for(int passes = 0; passes < 2; passes++)
{
for(SAMPLEINDEX i = start; i <= GetModSpecifications().samplesMax; i++)
{
// Early exit for FM instruments
if(Samples[i].uFlags[CHN_ADLIB] && (targetInstrument == INSTRUMENTINDEX_INVALID || !IsSampleReferencedByInstrument(i, targetInstrument)))
continue;
// When loading into an instrument, ignore non-empty sample names. Else, only use this slot if the sample name is empty or we're in second pass.
if((i > GetNumSamples() && passes == 1)
|| (!Samples[i].HasSampleData() && (!m_szNames[i][0] || passes == 1 || targetInstrument != INSTRUMENTINDEX_INVALID))
|| (targetInstrument != INSTRUMENTINDEX_INVALID && IsSampleReferencedByInstrument(i, targetInstrument))) // Not empty, but already used by this instrument. XXX this should only be done when replacing an instrument with a single sample! Otherwise it will use an inconsistent sample map!
{
// Empty slot, so it's a good candidate already.
// In instrument mode, check whether any instrument references this sample slot. If that is the case, we won't use it as it could lead to unwanted conflicts.
// If we are loading the sample *into* an instrument, we should also not consider that instrument's sample map, since it might be inconsistent at this time.
bool isReferenced = false;
for(INSTRUMENTINDEX ins = 1; ins <= GetNumInstruments(); ins++)
{
if(ins == targetInstrument)
{
continue;
}
if(IsSampleReferencedByInstrument(i, ins))
{
isReferenced = true;
break;
}
}
if(!isReferenced)
{
return i;
}
}
}
}
return SAMPLEINDEX_INVALID;
}
// Find an unused instrument slot.
// INSTRUMENTINDEX_INVALID is returned if no free instrument slot could be found.
INSTRUMENTINDEX CSoundFile::GetNextFreeInstrument(INSTRUMENTINDEX start) const
{
for(INSTRUMENTINDEX i = start; i <= GetModSpecifications().instrumentsMax; i++)
{
if(Instruments[i] == nullptr)
{
return i;
}
}
return INSTRUMENTINDEX_INVALID;
}
// Check whether a given sample is used by a given instrument.
bool CSoundFile::IsSampleReferencedByInstrument(SAMPLEINDEX sample, INSTRUMENTINDEX instr) const
{
if(instr < 1 || instr > GetNumInstruments())
return false;
const ModInstrument *targetIns = Instruments[instr];
if(targetIns == nullptr)
return false;
return mpt::contains(mpt::as_span(targetIns->Keyboard).first(NOTE_MAX), sample);
}
ModInstrument *CSoundFile::AllocateInstrument(INSTRUMENTINDEX instr, SAMPLEINDEX assignedSample)
{
if(instr == 0 || instr >= MAX_INSTRUMENTS)
{
return nullptr;
}
ModInstrument *ins = Instruments[instr];
if(ins != nullptr)
{
// Re-initialize instrument
*ins = ModInstrument(assignedSample);
} else
{
// Create new instrument
Instruments[instr] = ins = new (std::nothrow) ModInstrument(assignedSample);
}
if(ins != nullptr)
{
m_nInstruments = std::max(m_nInstruments, instr);
}
return ins;
}
void CSoundFile::PrecomputeSampleLoops(bool updateChannels)
{
for(SAMPLEINDEX i = 1; i <= GetNumSamples(); i++)
{
Samples[i].PrecomputeLoops(*this, updateChannels);
}
}
#ifdef MPT_EXTERNAL_SAMPLES
// Load external waveform, but keep sample properties like frequency, panning, etc...
// Returns true if the file could be loaded.
bool CSoundFile::LoadExternalSample(SAMPLEINDEX smp, const mpt::PathString &filename)
{
bool ok = false;
InputFile f(filename, SettingCacheCompleteFileBeforeLoading());
if(f.IsValid())
{
const ModSample origSample = Samples[smp];
mpt::charbuf<MAX_SAMPLENAME> origName;
origName = m_szNames[smp];
FileReader file = GetFileReader(f);
ok = ReadSampleFromFile(smp, file, false);
if(ok)
{
// Copy over old attributes, but keep new sample data
ModSample &sample = GetSample(smp);
SmpLength newLength = sample.nLength;
void *newData = sample.samplev();
SampleFlags newFlags = sample.uFlags;
sample = origSample;
sample.nLength = newLength;
sample.pData.pSample = newData;
sample.uFlags.set(CHN_16BIT, newFlags[CHN_16BIT]);
sample.uFlags.set(CHN_STEREO, newFlags[CHN_STEREO]);
sample.uFlags.reset(SMP_MODIFIED);
sample.SanitizeLoops();
}
m_szNames[smp] = origName;
}
SetSamplePath(smp, filename);
return ok;
}
#endif // MPT_EXTERNAL_SAMPLES
// Set up channel panning and volume suitable for MOD + similar files. If the current mod type is not MOD, bForceSetup has to be set to true.
void CSoundFile::SetupMODPanning(bool bForceSetup)
{
// Setup LRRL panning, max channel volume
if(!(GetType() & MOD_TYPE_MOD) && bForceSetup == false) return;
for(CHANNELINDEX nChn = 0; nChn < MAX_BASECHANNELS; nChn++)
{
ChnSettings[nChn].nVolume = 64;
ChnSettings[nChn].dwFlags.reset(CHN_SURROUND);
if(m_MixerSettings.MixerFlags & SNDMIX_MAXDEFAULTPAN)
ChnSettings[nChn].nPan = (((nChn & 3) == 1) || ((nChn & 3) == 2)) ? 256 : 0;
else
ChnSettings[nChn].nPan = (((nChn & 3) == 1) || ((nChn & 3) == 2)) ? 0xC0 : 0x40;
}
}
void CSoundFile::PropagateXMAutoVibrato(INSTRUMENTINDEX ins, VibratoType type, uint8 sweep, uint8 depth, uint8 rate)
{
if(ins > m_nInstruments || Instruments[ins] == nullptr)
return;
const std::set<SAMPLEINDEX> referencedSamples = Instruments[ins]->GetSamples();
// Propagate changes to all samples that belong to this instrument.
for(auto sample : referencedSamples)
{
if(sample <= m_nSamples)
{
Samples[sample].nVibDepth = depth;
Samples[sample].nVibType = type;
Samples[sample].nVibRate = rate;
Samples[sample].nVibSweep = sweep;
}
}
}
// Normalize the tempo swing coefficients so that they add up to exactly the specified tempo again
void TempoSwing::Normalize()
{
if(empty()) return;
uint64 sum = 0;
for(auto &i : *this)
{
Limit(i, Unity / 4u, Unity * 4u);
sum += i;
}
sum /= size();
MPT_ASSERT(sum > 0); // clang-analyzer false-positive
int64 remain = Unity * size();
for(auto &i : *this)
{
i = Util::muldivr_unsigned(i, Unity, static_cast<int32>(sum));
remain -= i;
}
//MPT_ASSERT(static_cast<uint32>(std::abs(static_cast<int32>(remain))) <= size());
at(0) += static_cast<int32>(remain);
}
void TempoSwing::Serialize(std::ostream &oStrm, const TempoSwing &swing)
{
mpt::IO::WriteIntLE<uint16>(oStrm, static_cast<uint16>(swing.size()));
for(std::size_t i = 0; i < swing.size(); i++)
{
mpt::IO::WriteIntLE<uint32>(oStrm, swing[i]);
}
}
void TempoSwing::Deserialize(std::istream &iStrm, TempoSwing &swing, const size_t)
{
uint16 numEntries;
mpt::IO::ReadIntLE<uint16>(iStrm, numEntries);
swing.resize(numEntries);
for(uint16 i = 0; i < numEntries; i++)
{
mpt::IO::ReadIntLE<uint32>(iStrm, swing[i]);
}
swing.Normalize();
}
OPENMPT_NAMESPACE_END