winamp/Src/external_dependencies/openmpt-trunk/mptrack/Autotune.cpp

415 lines
11 KiB
C++
Raw Normal View History

2024-09-24 13:54:57 +01:00
/*
* Autotune.cpp
* ------------
* Purpose: Class for tuning a sample to a given base note automatically.
* Notes : (currently none)
* Authors: OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Autotune.h"
#include <math.h>
#include "../common/misc_util.h"
#include "../soundlib/Sndfile.h"
#include <algorithm>
#include <execution>
#include <numeric>
#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
#include <emmintrin.h>
#endif
OPENMPT_NAMESPACE_BEGIN
// The more bins, the more autocorrelations are done and the more precise the result is.
#define BINS_PER_NOTE 32
#define MIN_SAMPLE_LENGTH 2
#define START_NOTE (24 * BINS_PER_NOTE) // C-2
#define END_NOTE (96 * BINS_PER_NOTE) // C-8
#define HISTORY_BINS (12 * BINS_PER_NOTE) // One octave
static double FrequencyToNote(double freq, double pitchReference)
{
return ((12.0 * (log(freq / (pitchReference / 2.0)) / log(2.0))) + 57.0);
}
static double NoteToFrequency(double note, double pitchReference)
{
return pitchReference * pow(2.0, (note - 69.0) / 12.0);
}
// Calculate the amount of samples for autocorrelation shifting for a given note
static SmpLength NoteToShift(uint32 sampleFreq, int note, double pitchReference)
{
const double fundamentalFrequency = NoteToFrequency((double)note / BINS_PER_NOTE, pitchReference);
return std::max(mpt::saturate_round<SmpLength>((double)sampleFreq / fundamentalFrequency), SmpLength(1));
}
// Create an 8-Bit sample buffer with loop unrolling and mono conversion for autocorrelation.
template <class T>
void Autotune::CopySamples(const T* origSample, SmpLength sampleLoopStart, SmpLength sampleLoopEnd)
{
const uint8 channels = m_sample.GetNumChannels();
sampleLoopStart *= channels;
sampleLoopEnd *= channels;
for(SmpLength i = 0, pos = 0; i < m_sampleLength; i++, pos += channels)
{
if(pos >= sampleLoopEnd)
{
pos = sampleLoopStart;
}
const T* smp = origSample + pos;
int32 data = 0; // More than enough for 256 channels... :)
for(uint8 chn = 0; chn < channels; chn++)
{
// We only want the MSB.
data += static_cast<int32>(smp[chn] >> ((sizeof(T) - 1) * 8));
}
data /= channels;
m_sampleData[i] = static_cast<int16>(data);
}
}
// Prepare a sample buffer for autocorrelation
bool Autotune::PrepareSample(SmpLength maxShift)
{
// Determine which parts of the sample should be examined.
SmpLength sampleOffset = 0, sampleLoopStart = 0, sampleLoopEnd = m_sample.nLength;
if(m_selectionEnd >= sampleLoopStart + MIN_SAMPLE_LENGTH)
{
// A selection has been specified: Examine selection
sampleOffset = m_selectionStart;
sampleLoopStart = 0;
sampleLoopEnd = m_selectionEnd - m_selectionStart;
} else if(m_sample.uFlags[CHN_SUSTAINLOOP] && m_sample.nSustainEnd >= m_sample.nSustainStart + MIN_SAMPLE_LENGTH)
{
// A sustain loop is set: Examine sample up to sustain loop and, if necessary, execute the loop several times
sampleOffset = 0;
sampleLoopStart = m_sample.nSustainStart;
sampleLoopEnd = m_sample.nSustainEnd;
} else if(m_sample.uFlags[CHN_LOOP] && m_sample.nLoopEnd >= m_sample.nLoopStart + MIN_SAMPLE_LENGTH)
{
// A normal loop is set: Examine sample up to loop and, if necessary, execute the loop several times
sampleOffset = 0;
sampleLoopStart = m_sample.nLoopStart;
sampleLoopEnd = m_sample.nLoopEnd;
}
// We should analyse at least a one second (= GetSampleRate() samples) long sample.
m_sampleLength = std::max(sampleLoopEnd, static_cast<SmpLength>(m_sample.GetSampleRate(m_modType))) + maxShift;
m_sampleLength = (m_sampleLength + 7) & ~7;
if(m_sampleData != nullptr)
{
delete[] m_sampleData;
}
m_sampleData = new int16[m_sampleLength];
if(m_sampleData == nullptr)
{
return false;
}
// Copy sample over.
switch(m_sample.GetElementarySampleSize())
{
case 1:
CopySamples(m_sample.sample8() + sampleOffset * m_sample.GetNumChannels(), sampleLoopStart, sampleLoopEnd);
return true;
case 2:
CopySamples(m_sample.sample16() + sampleOffset * m_sample.GetNumChannels(), sampleLoopStart, sampleLoopEnd);
return true;
}
return false;
}
bool Autotune::CanApply() const
{
return (m_sample.HasSampleData() && m_sample.nLength >= MIN_SAMPLE_LENGTH) || m_sample.uFlags[CHN_ADLIB];
}
namespace
{
struct AutotuneHistogramEntry
{
int index;
uint64 sum;
};
struct AutotuneHistogram
{
std::array<uint64, HISTORY_BINS> histogram{};
};
struct AutotuneContext
{
const int16 *m_sampleData;
double pitchReference;
SmpLength processLength;
uint32 sampleFreq;
};
#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
static inline AutotuneHistogramEntry CalculateNoteHistogramSSE2(int note, AutotuneContext ctx)
{
const SmpLength autocorrShift = NoteToShift(ctx.sampleFreq, note, ctx.pitchReference);
uint64 autocorrSum = 0;
{
const __m128i *normalData = reinterpret_cast<const __m128i *>(ctx.m_sampleData);
const __m128i *shiftedData = reinterpret_cast<const __m128i *>(ctx.m_sampleData + autocorrShift);
for(SmpLength i = ctx.processLength / 8; i != 0; i--)
{
__m128i normal = _mm_loadu_si128(normalData++);
__m128i shifted = _mm_loadu_si128(shiftedData++);
__m128i diff = _mm_sub_epi16(normal, shifted); // 8 16-bit differences
__m128i squares = _mm_madd_epi16(diff, diff); // Multiply and add: 4 32-bit squares
__m128i sum1 = _mm_shuffle_epi32(squares, _MM_SHUFFLE(0, 1, 2, 3)); // Move upper two integers to lower
__m128i sum2 = _mm_add_epi32(squares, sum1); // Now we can add the (originally) upper two and lower two integers
__m128i sum3 = _mm_shuffle_epi32(sum2, _MM_SHUFFLE(1, 1, 1, 1)); // Move the second-lowest integer to lowest position
__m128i sum4 = _mm_add_epi32(sum2, sum3); // Add the two lowest positions
autocorrSum += _mm_cvtsi128_si32(sum4);
}
}
return {note % HISTORY_BINS, autocorrSum};
}
#endif
static inline AutotuneHistogramEntry CalculateNoteHistogram(int note, AutotuneContext ctx)
{
const SmpLength autocorrShift = NoteToShift(ctx.sampleFreq, note, ctx.pitchReference);
uint64 autocorrSum = 0;
{
const int16 *normalData = ctx.m_sampleData;
const int16 *shiftedData = ctx.m_sampleData + autocorrShift;
// Add up squared differences of all values
for(SmpLength i = ctx.processLength; i != 0; i--, normalData++, shiftedData++)
{
autocorrSum += (*normalData - *shiftedData) * (*normalData - *shiftedData);
}
}
return {note % HISTORY_BINS, autocorrSum};
}
static inline AutotuneHistogram operator+(AutotuneHistogram a, AutotuneHistogram b) noexcept
{
AutotuneHistogram result;
for(std::size_t i = 0; i < HISTORY_BINS; ++i)
{
result.histogram[i] = a.histogram[i] + b.histogram[i];
}
return result;
}
static inline AutotuneHistogram & operator+=(AutotuneHistogram &a, AutotuneHistogram b) noexcept
{
for(std::size_t i = 0; i < HISTORY_BINS; ++i)
{
a.histogram[i] += b.histogram[i];
}
return a;
}
static inline AutotuneHistogram &operator+=(AutotuneHistogram &a, AutotuneHistogramEntry b) noexcept
{
a.histogram[b.index] += b.sum;
return a;
}
struct AutotuneHistogramReduce
{
inline AutotuneHistogram operator()(AutotuneHistogram a, AutotuneHistogram b) noexcept
{
return a + b;
}
inline AutotuneHistogram operator()(AutotuneHistogramEntry a, AutotuneHistogramEntry b) noexcept
{
AutotuneHistogram result;
result += a;
result += b;
return result;
}
inline AutotuneHistogram operator()(AutotuneHistogramEntry a, AutotuneHistogram b) noexcept
{
b += a;
return b;
}
inline AutotuneHistogram operator()(AutotuneHistogram a, AutotuneHistogramEntry b) noexcept
{
a += b;
return a;
}
};
} // local
bool Autotune::Apply(double pitchReference, int targetNote)
{
if(!CanApply())
{
return false;
}
const uint32 sampleFreq = m_sample.GetSampleRate(m_modType);
// At the lowest frequency, we get the highest autocorrelation shift amount.
const SmpLength maxShift = NoteToShift(sampleFreq, START_NOTE, pitchReference);
if(!PrepareSample(maxShift))
{
return false;
}
// We don't process the autocorrelation overhead.
const SmpLength processLength = m_sampleLength - maxShift;
AutotuneContext ctx;
ctx.m_sampleData = m_sampleData;
ctx.pitchReference = pitchReference;
ctx.processLength = processLength;
ctx.sampleFreq = sampleFreq;
// Note that we cannot use a fake integer iterator here because of the requirement on ForwardIterator to return a reference to the elements.
std::array<int, END_NOTE - START_NOTE> notes;
std::iota(notes.begin(), notes.end(), START_NOTE);
AutotuneHistogram autocorr =
#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
(CPU::HasFeatureSet(CPU::feature::sse2)) ? std::transform_reduce(std::execution::par_unseq, std::begin(notes), std::end(notes), AutotuneHistogram{}, AutotuneHistogramReduce{}, [ctx](int note) { return CalculateNoteHistogramSSE2(note, ctx); } ) :
#endif
std::transform_reduce(std::execution::par_unseq, std::begin(notes), std::end(notes), AutotuneHistogram{}, AutotuneHistogramReduce{}, [ctx](int note) { return CalculateNoteHistogram(note, ctx); } );
// Interpolate the histogram...
AutotuneHistogram interpolated;
for(int i = 0; i < HISTORY_BINS; i++)
{
interpolated.histogram[i] = autocorr.histogram[i];
const int kernelWidth = 4;
for(int ki = kernelWidth; ki >= 0; ki--)
{
// Choose bins to interpolate with
int left = i - ki;
if(left < 0) left += HISTORY_BINS;
int right = i + ki;
if(right >= HISTORY_BINS) right -= HISTORY_BINS;
interpolated.histogram[i] = interpolated.histogram[i] / 2 + (autocorr.histogram[left] + autocorr.histogram[right]) / 2;
}
}
// ...and find global minimum
int minimumBin = static_cast<int>(std::min_element(std::begin(interpolated.histogram), std::end(interpolated.histogram)) - std::begin(interpolated.histogram));
// Center target notes around C
if(targetNote >= 6)
{
targetNote -= 12;
}
// Center bins around target note
minimumBin -= targetNote * BINS_PER_NOTE;
if(minimumBin >= 6 * BINS_PER_NOTE)
{
minimumBin -= 12 * BINS_PER_NOTE;
}
minimumBin += targetNote * BINS_PER_NOTE;
const double newFundamentalFreq = NoteToFrequency(static_cast<double>(69 - targetNote) + static_cast<double>(minimumBin) / BINS_PER_NOTE, pitchReference);
if(const auto newFreq = mpt::saturate_round<uint32>(sampleFreq * pitchReference / newFundamentalFreq); newFreq != sampleFreq)
m_sample.nC5Speed = newFreq;
else
return false;
if((m_modType & (MOD_TYPE_XM | MOD_TYPE_MOD)))
{
m_sample.FrequencyToTranspose();
if((m_modType & MOD_TYPE_MOD))
{
m_sample.RelativeTone = 0;
}
}
return true;
}
/////////////////////////////////////////////////////////////
// CAutotuneDlg
int CAutotuneDlg::m_pitchReference = 440; // Pitch reference in Hz
int CAutotuneDlg::m_targetNote = 0; // Target note (C- = 0, C# = 1, etc...)
void CAutotuneDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAutotuneDlg)
DDX_Control(pDX, IDC_COMBO1, m_CbnNoteBox);
//}}AFX_DATA_MAP
}
BOOL CAutotuneDlg::OnInitDialog()
{
CDialog::OnInitDialog();
m_CbnNoteBox.ResetContent();
for(int note = 0; note < 12; note++)
{
const int item = m_CbnNoteBox.AddString(mpt::ToCString(CSoundFile::GetDefaultNoteName(note)));
m_CbnNoteBox.SetItemData(item, note);
if(note == m_targetNote)
{
m_CbnNoteBox.SetCurSel(item);
}
}
SetDlgItemInt(IDC_EDIT1, m_pitchReference, FALSE);
return TRUE;
}
void CAutotuneDlg::OnOK()
{
int pitch = GetDlgItemInt(IDC_EDIT1);
if(pitch <= 0)
{
MessageBeep(MB_ICONWARNING);
return;
}
CDialog::OnOK();
m_targetNote = (int)m_CbnNoteBox.GetItemData(m_CbnNoteBox.GetCurSel());
m_pitchReference = pitch;
}
OPENMPT_NAMESPACE_END