winamp/Src/external_dependencies/openmpt-trunk/sounddsp/DSP.cpp
2024-09-24 14:54:57 +02:00

488 lines
11 KiB
C++

/*
* DSP.cpp
* -----------
* Purpose: Mixing code for various DSPs (EQ, Mega-Bass, ...)
* Notes : Ugh... This should really be removed at some point.
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "DSP.h"
#include "openmpt/soundbase/MixSample.hpp"
#include <math.h>
OPENMPT_NAMESPACE_BEGIN
#ifndef NO_DSP
// Bass Expansion
#define DEFAULT_XBASS_RANGE 14 // (x+2)*20 Hz (320Hz)
#define DEFAULT_XBASS_DEPTH 6 // 1+(3>>(x-4)) (+6dB)
////////////////////////////////////////////////////////////////////
// DSP Effects internal state
static void X86_StereoDCRemoval(int *, uint32 count, int32 &nDCRFlt_Y1l, int32 &nDCRFlt_X1l, int32 &nDCRFlt_Y1r, int32 &nDCRFlt_X1r);
static void X86_MonoDCRemoval(int *, uint32 count, int32 &nDCRFlt_Y1l, int32 &nDCRFlt_X1l);
///////////////////////////////////////////////////////////////////////////////////
//
// Biquad setup
//
#define PI 3.14159265358979323f
static inline float Sgn(float x) { return (x >= 0) ? 1.0f : -1.0f; }
static void ShelfEQ(int32 scale,
int32 &outA1, int32 &outB0, int32 &outB1,
int32 F_c, int32 F_s, float gainDC, float gainFT, float gainPI)
{
float a1, b0, b1;
float gainFT2, gainDC2, gainPI2;
float alpha, beta0, beta1, rho;
float wT, quad;
wT = PI * F_c / F_s;
gainPI2 = gainPI * gainPI;
gainFT2 = gainFT * gainFT;
gainDC2 = gainDC * gainDC;
quad = gainPI2 + gainDC2 - (gainFT2*2);
alpha = 0;
if (quad != 0)
{
float lambda = (gainPI2 - gainDC2) / quad;
alpha = (float)(lambda - Sgn(lambda)*sqrt(lambda*lambda - 1.0f));
}
beta0 = 0.5f * ((gainDC + gainPI) + (gainDC - gainPI) * alpha);
beta1 = 0.5f * ((gainDC - gainPI) + (gainDC + gainPI) * alpha);
rho = (float)((sin((wT*0.5f) - (PI/4.0f))) / (sin((wT*0.5f) + (PI/4.0f))));
quad = 1.0f / (1.0f + rho*alpha);
b0 = ((beta0 + rho*beta1) * quad);
b1 = ((beta1 + rho*beta0) * quad);
a1 = - ((rho + alpha) * quad);
outA1 = mpt::saturate_round<int32>(a1 * scale);
outB0 = mpt::saturate_round<int32>(b0 * scale);
outB1 = mpt::saturate_round<int32>(b1 * scale);
}
CSurroundSettings::CSurroundSettings() : m_nProLogicDepth(12), m_nProLogicDelay(20)
{
}
CMegaBassSettings::CMegaBassSettings() : m_nXBassDepth(DEFAULT_XBASS_DEPTH), m_nXBassRange(DEFAULT_XBASS_RANGE)
{
}
CSurround::CSurround()
{
// Surround Encoding: 1 delay line + low-pass filter + high-pass filter
nSurroundSize = 0;
nSurroundPos = 0;
nDolbyDepth = 0;
// Surround Biquads
nDolbyHP_Y1 = 0;
nDolbyHP_X1 = 0;
nDolbyLP_Y1 = 0;
nDolbyHP_B0 = 0;
nDolbyHP_B1 = 0;
nDolbyHP_A1 = 0;
nDolbyLP_B0 = 0;
nDolbyLP_B1 = 0;
nDolbyLP_A1 = 0;
MemsetZero(SurroundBuffer);
}
CMegaBass::CMegaBass()
{
// Bass Expansion: low-pass filter
nXBassFlt_Y1 = 0;
nXBassFlt_X1 = 0;
nXBassFlt_B0 = 0;
nXBassFlt_B1 = 0;
nXBassFlt_A1 = 0;
// DC Removal Biquad
nDCRFlt_Y1lf = 0;
nDCRFlt_X1lf = 0;
nDCRFlt_Y1rf = 0;
nDCRFlt_X1rf = 0;
nDCRFlt_Y1lb = 0;
nDCRFlt_X1lb = 0;
nDCRFlt_Y1rb = 0;
nDCRFlt_X1rb = 0;
}
void CSurround::Initialize(bool bReset, DWORD MixingFreq)
{
MPT_UNREFERENCED_PARAMETER(bReset);
if (!m_Settings.m_nProLogicDelay) m_Settings.m_nProLogicDelay = 20;
// Pro-Logic Surround
nSurroundPos = nSurroundSize = 0;
{
memset(SurroundBuffer, 0, sizeof(SurroundBuffer));
nSurroundSize = (MixingFreq * m_Settings.m_nProLogicDelay) / 1000;
if (nSurroundSize > SURROUNDBUFFERSIZE) nSurroundSize = SURROUNDBUFFERSIZE;
nDolbyDepth = m_Settings.m_nProLogicDepth;
if (nDolbyDepth < 1) nDolbyDepth = 1;
if (nDolbyDepth > 16) nDolbyDepth = 16;
// Setup biquad filters
ShelfEQ(1024, nDolbyHP_A1, nDolbyHP_B0, nDolbyHP_B1, 200, MixingFreq, 0, 0.5f, 1);
ShelfEQ(1024, nDolbyLP_A1, nDolbyLP_B0, nDolbyLP_B1, 7000, MixingFreq, 1, 0.75f, 0);
nDolbyHP_X1 = nDolbyHP_Y1 = 0;
nDolbyLP_Y1 = 0;
// Surround Level
nDolbyHP_B0 = (nDolbyHP_B0 * nDolbyDepth) >> 5;
nDolbyHP_B1 = (nDolbyHP_B1 * nDolbyDepth) >> 5;
// +6dB
nDolbyLP_B0 *= 2;
nDolbyLP_B1 *= 2;
}
}
void CMegaBass::Initialize(bool bReset, DWORD MixingFreq)
{
// Bass Expansion Reset
{
int32 a1 = 0, b0 = 1024, b1 = 0;
int nXBassCutOff = 50 + (m_Settings.m_nXBassRange+2) * 20;
int nXBassGain = m_Settings.m_nXBassDepth;
nXBassGain = std::clamp(nXBassGain, 2, 8);
nXBassCutOff = std::clamp(nXBassCutOff, 60, 600);
ShelfEQ(1024, a1, b0, b1, nXBassCutOff, MixingFreq,
1.0f + (1.0f/16.0f) * (0x300 >> nXBassGain),
1.0f,
0.0000001f);
if (nXBassGain > 5)
{
b0 >>= (nXBassGain-5);
b1 >>= (nXBassGain-5);
}
nXBassFlt_A1 = a1;
nXBassFlt_B0 = b0;
nXBassFlt_B1 = b1;
//Log("b0=%d b1=%d a1=%d\n", b0, b1, a1);
}
if (bReset)
{
nXBassFlt_X1 = 0;
nXBassFlt_Y1 = 0;
nDCRFlt_X1lf = 0;
nDCRFlt_X1rf = 0;
nDCRFlt_Y1lf = 0;
nDCRFlt_Y1rf = 0;
nDCRFlt_X1lb = 0;
nDCRFlt_X1rb = 0;
nDCRFlt_Y1lb = 0;
nDCRFlt_Y1rb = 0;
}
}
// 2-channel surround
void CSurround::ProcessStereoSurround(int * MixSoundBuffer, int count)
{
int *pr = MixSoundBuffer, hy1 = nDolbyHP_Y1;
for (int r=count; r; r--)
{
// Delay
int secho = SurroundBuffer[nSurroundPos];
SurroundBuffer[nSurroundPos] = (pr[0]+pr[1]+256) >> 9;
// High-pass
int v0 = (nDolbyHP_B0 * secho + nDolbyHP_B1 * nDolbyHP_X1 + nDolbyHP_A1 * hy1) >> 10;
nDolbyHP_X1 = secho;
// Low-pass
int v = (nDolbyLP_B0 * v0 + nDolbyLP_B1 * hy1 + nDolbyLP_A1 * nDolbyLP_Y1) >> (10-8);
hy1 = v0;
nDolbyLP_Y1 = v >> 8;
// Add echo
pr[0] += v;
pr[1] -= v;
if (++nSurroundPos >= nSurroundSize) nSurroundPos = 0;
pr += 2;
}
nDolbyHP_Y1 = hy1;
}
// 4-channels surround
void CSurround::ProcessQuadSurround(int * MixSoundBuffer, int * MixRearBuffer, int count)
{
int *pr = MixSoundBuffer, hy1 = nDolbyHP_Y1;
for (int r=count; r; r--)
{
int vl = pr[0] >> 1;
int vr = pr[1] >> 1;
pr[(uint32)(MixRearBuffer-MixSoundBuffer)] += vl;
pr[((uint32)(MixRearBuffer-MixSoundBuffer))+1] += vr;
// Delay
int secho = SurroundBuffer[nSurroundPos];
SurroundBuffer[nSurroundPos] = (vr+vl+256) >> 9;
// High-pass
int v0 = (nDolbyHP_B0 * secho + nDolbyHP_B1 * nDolbyHP_X1 + nDolbyHP_A1 * hy1) >> 10;
nDolbyHP_X1 = secho;
// Low-pass
int v = (nDolbyLP_B0 * v0 + nDolbyLP_B1 * hy1 + nDolbyLP_A1 * nDolbyLP_Y1) >> (10-8);
hy1 = v0;
nDolbyLP_Y1 = v >> 8;
// Add echo
pr[(uint32)(MixRearBuffer-MixSoundBuffer)] += v;
pr[((uint32)(MixRearBuffer-MixSoundBuffer))+1] += v;
if (++nSurroundPos >= nSurroundSize) nSurroundPos = 0;
pr += 2;
}
nDolbyHP_Y1 = hy1;
}
void CSurround::Process(int * MixSoundBuffer, int * MixRearBuffer, int count, uint32 nChannels)
{
if(nChannels >= 2)
// Dolby Pro-Logic Surround
{
if (nChannels > 2) ProcessQuadSurround(MixSoundBuffer, MixRearBuffer, count); else
ProcessStereoSurround(MixSoundBuffer, count);
}
}
void CMegaBass::Process(int * MixSoundBuffer, int * MixRearBuffer, int count, uint32 nChannels)
{
if(nChannels >= 2)
{
X86_StereoDCRemoval(MixSoundBuffer, count, nDCRFlt_Y1lf, nDCRFlt_X1lf, nDCRFlt_Y1rf, nDCRFlt_X1rf);
if(nChannels > 2) X86_StereoDCRemoval(MixRearBuffer, count, nDCRFlt_Y1lb, nDCRFlt_X1lb, nDCRFlt_Y1rb, nDCRFlt_X1rb);
int *px = MixSoundBuffer;
int *py = MixRearBuffer;
int x1 = nXBassFlt_X1;
int y1 = nXBassFlt_Y1;
if(nChannels > 2) for (int x=count; x; x--)
{
int x_m = (px[0]+px[1]+py[0]+py[1]+0x100)>>9;
y1 = (nXBassFlt_B0 * x_m + nXBassFlt_B1 * x1 + nXBassFlt_A1 * y1) >> (10-8);
x1 = x_m;
px[0] += y1;
px[1] += y1;
py[0] += y1;
py[1] += y1;
y1 = (y1+0x80) >> 8;
px += 2;
py += 2;
} else for (int x=count; x; x--)
{
int x_m = (px[0]+px[1]+0x100)>>9;
y1 = (nXBassFlt_B0 * x_m + nXBassFlt_B1 * x1 + nXBassFlt_A1 * y1) >> (10-8);
x1 = x_m;
px[0] += y1;
px[1] += y1;
y1 = (y1+0x80) >> 8;
px += 2;
}
nXBassFlt_X1 = x1;
nXBassFlt_Y1 = y1;
} else
{
X86_MonoDCRemoval(MixSoundBuffer, count, nDCRFlt_Y1lf, nDCRFlt_X1lf);
int *px = MixSoundBuffer;
int x1 = nXBassFlt_X1;
int y1 = nXBassFlt_Y1;
for (int x=count; x; x--)
{
int x_m = (px[0]+0x80)>>8;
y1 = (nXBassFlt_B0 * x_m + nXBassFlt_B1 * x1 + nXBassFlt_A1 * y1) >> (10-8);
x1 = x_m;
px[0] += y1;
y1 = (y1+0x40) >> 8;
px++;
}
nXBassFlt_X1 = x1;
nXBassFlt_Y1 = y1;
}
}
//////////////////////////////////////////////////////////////////////////
//
// DC Removal
//
#define DCR_AMOUNT 9
static void X86_StereoDCRemoval(int *pBuffer, uint32 nSamples, int32 &nDCRFlt_Y1l, int32 &nDCRFlt_X1l, int32 &nDCRFlt_Y1r, int32 &nDCRFlt_X1r)
{
int y1l = nDCRFlt_Y1l, x1l = nDCRFlt_X1l;
int y1r = nDCRFlt_Y1r, x1r = nDCRFlt_X1r;
while(nSamples--)
{
int inL = pBuffer[0];
int inR = pBuffer[1];
int diffL = x1l - inL;
int diffR = x1r - inR;
x1l = inL;
x1r = inR;
int outL = diffL / (1 << (DCR_AMOUNT + 1)) - diffL + y1l;
int outR = diffR / (1 << (DCR_AMOUNT + 1)) - diffR + y1r;
pBuffer[0] = outL;
pBuffer[1] = outR;
pBuffer += 2;
y1l = outL - outL / (1 << DCR_AMOUNT);
y1r = outR - outR / (1 << DCR_AMOUNT);
}
nDCRFlt_Y1l = y1l;
nDCRFlt_X1l = x1l;
nDCRFlt_Y1r = y1r;
nDCRFlt_X1r = x1r;
}
static void X86_MonoDCRemoval(int *pBuffer, uint32 nSamples, int32 &nDCRFlt_Y1l, int32 &nDCRFlt_X1l)
{
int y1l = nDCRFlt_Y1l, x1l = nDCRFlt_X1l;
while(nSamples--)
{
int inM = pBuffer[0];
int diff = x1l - inM;
x1l = inM;
pBuffer[0] = inM = diff / (1 << (DCR_AMOUNT + 1)) - diff + y1l;
pBuffer++;
y1l = inM - inM / (1 << DCR_AMOUNT);
}
nDCRFlt_Y1l = y1l;
nDCRFlt_X1l = x1l;
}
/////////////////////////////////////////////////////////////////
// Clean DSP Effects interface
// [XBass level 0(quiet)-100(loud)], [cutoff in Hz 20-100]
void CMegaBass::SetXBassParameters(uint32 nDepth, uint32 nRange)
{
if (nDepth > 100) nDepth = 100;
uint32 gain = nDepth / 20;
if (gain > 4) gain = 4;
m_Settings.m_nXBassDepth = 8 - gain; // filter attenuation 1/256 .. 1/16
uint32 range = nRange / 5;
if (range > 5) range -= 5; else range = 0;
if (nRange > 16) nRange = 16;
m_Settings.m_nXBassRange = 21 - range; // filter average on 0.5-1.6ms
}
// [Surround level 0(quiet)-100(heavy)] [delay in ms, usually 5-50ms]
void CSurround::SetSurroundParameters(uint32 nDepth, uint32 nDelay)
{
uint32 gain = (nDepth * 16) / 100;
if (gain > 16) gain = 16;
if (gain < 1) gain = 1;
m_Settings.m_nProLogicDepth = gain;
if (nDelay < 4) nDelay = 4;
if (nDelay > 50) nDelay = 50;
m_Settings.m_nProLogicDelay = nDelay;
}
BitCrushSettings::BitCrushSettings()
: m_Bits(8)
{
return;
}
BitCrush::BitCrush()
{
}
void BitCrush::Initialize(bool bReset, DWORD MixingFreq)
{
MPT_UNREFERENCED_PARAMETER(bReset);
MPT_UNREFERENCED_PARAMETER(MixingFreq);
}
void BitCrush::Process(int * MixSoundBuffer, int * MixRearBuffer, int count, uint32 nChannels)
{
if(m_Settings.m_Bits <= 0)
{
return;
}
if(m_Settings.m_Bits > MixSampleIntTraits::mix_precision_bits)
{
return;
}
unsigned int mask = ~((1u << (MixSampleIntTraits::mix_precision_bits - m_Settings.m_Bits)) - 1u);
if(nChannels == 4)
{
for(int frame = 0; frame < count; ++frame)
{
MixSoundBuffer[frame*2 + 0] &= mask;
MixSoundBuffer[frame*2 + 1] &= mask;
MixRearBuffer[frame*2 + 0] &= mask;
MixRearBuffer[frame*2 + 1] &= mask;
}
} else if(nChannels == 2)
{
for(int frame = 0; frame < count; ++frame)
{
MixSoundBuffer[frame*2 + 0] &= mask;
MixSoundBuffer[frame*2 + 1] &= mask;
}
} else if(nChannels == 1)
{
for(int frame = 0; frame < count; ++frame)
{
MixSoundBuffer[frame] &= mask;
}
}
}
#else
MPT_MSVC_WORKAROUND_LNK4221(DSP)
#endif // NO_DSP
OPENMPT_NAMESPACE_END