winamp/Src/external_dependencies/openmpt-trunk/soundlib/Load_it.cpp
2024-09-24 14:54:57 +02:00

2532 lines
81 KiB
C++

/*
* Load_it.cpp
* -----------
* Purpose: IT (Impulse Tracker) module loader / saver
* Notes : Also handles MPTM loading / saving, as the formats are almost identical.
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#include "tuningcollection.h"
#include "mod_specifications.h"
#ifdef MODPLUG_TRACKER
#include "../mptrack/Moddoc.h"
#include "../mptrack/TrackerSettings.h"
#endif // MODPLUG_TRACKER
#ifdef MPT_EXTERNAL_SAMPLES
#include "../common/mptPathString.h"
#endif // MPT_EXTERNAL_SAMPLES
#include "../common/serialization_utils.h"
#ifndef MODPLUG_NO_FILESAVE
#include "../common/mptFileIO.h"
#endif // MODPLUG_NO_FILESAVE
#include "plugins/PlugInterface.h"
#include <sstream>
#include "../common/version.h"
#include "ITTools.h"
#include "mpt/io/base.hpp"
#include "mpt/io/io.hpp"
#include "mpt/io/io_stdstream.hpp"
OPENMPT_NAMESPACE_BEGIN
const uint16 verMptFileVer = 0x891;
const uint16 verMptFileVerLoadLimit = 0x1000; // If cwtv-field is greater or equal to this value,
// the MPTM file will not be loaded.
/*
MPTM version history for cwtv-field in "IT" header (only for MPTM files!):
0x890(1.18.02.00) -> 0x891(1.19.00.00): Pattern-specific time signatures
Fixed behaviour of Pattern Loop command for rows > 255 (r617)
0x88F(1.18.01.00) -> 0x890(1.18.02.00): Removed volume command velocity :xy, added delay-cut command :xy.
0x88E(1.17.02.50) -> 0x88F(1.18.01.00): Numerous changes
0x88D(1.17.02.49) -> 0x88E(1.17.02.50): Changed ID to that of IT and undone the orderlist change done in
0x88A->0x88B. Now extended orderlist is saved as extension.
0x88C(1.17.02.48) -> 0x88D(1.17.02.49): Some tuning related changes - that part fails to read on older versions.
0x88B -> 0x88C: Changed type in which tuning number is printed to file: size_t -> uint16.
0x88A -> 0x88B: Changed order-to-pattern-index table type from uint8-array to vector<uint32>.
*/
#ifndef MODPLUG_NO_FILESAVE
static bool AreNonDefaultTuningsUsed(const CSoundFile& sf)
{
const INSTRUMENTINDEX numIns = sf.GetNumInstruments();
for(INSTRUMENTINDEX i = 1; i <= numIns; i++)
{
if(sf.Instruments[i] != nullptr && sf.Instruments[i]->pTuning != nullptr)
return true;
}
return false;
}
static void WriteTuningCollection(std::ostream& oStrm, const CTuningCollection& tc)
{
tc.Serialize(oStrm, U_("Tune specific tunings"));
}
static void WriteTuningMap(std::ostream& oStrm, const CSoundFile& sf)
{
if(sf.GetNumInstruments() > 0)
{
//Writing instrument tuning data: first creating
//tuning name <-> tuning id number map,
//and then writing the tuning id for every instrument.
//For example if there are 6 instruments and
//first half use tuning 'T1', and the other half
//tuning 'T2', the output would be something like
//T1 1 T2 2 1 1 1 2 2 2
//Creating the tuning address <-> tuning id number map.
std::map<CTuning*, uint16> tNameToShort_Map;
unsigned short figMap = 0;
for(INSTRUMENTINDEX i = 1; i <= sf.GetNumInstruments(); i++)
{
CTuning *pTuning = nullptr;
if(sf.Instruments[i] != nullptr)
{
pTuning = sf.Instruments[i]->pTuning;
}
auto iter = tNameToShort_Map.find(pTuning);
if(iter != tNameToShort_Map.end())
continue; //Tuning already mapped.
tNameToShort_Map[pTuning] = figMap;
figMap++;
}
//...and write the map with tuning names replacing
//the addresses.
const uint16 tuningMapSize = static_cast<uint16>(tNameToShort_Map.size());
mpt::IO::WriteIntLE<uint16>(oStrm, tuningMapSize);
for(auto &iter : tNameToShort_Map)
{
if(iter.first)
mpt::IO::WriteSizedStringLE<uint8>(oStrm, mpt::ToCharset(mpt::Charset::UTF8, iter.first->GetName()));
else //Case: Using original IT tuning.
mpt::IO::WriteSizedStringLE<uint8>(oStrm, "->MPT_ORIGINAL_IT<-");
mpt::IO::WriteIntLE<uint16>(oStrm, iter.second);
}
//Writing tuning data for instruments.
for(INSTRUMENTINDEX i = 1; i <= sf.GetNumInstruments(); i++)
{
CTuning *pTuning = nullptr;
if(sf.Instruments[i] != nullptr)
{
pTuning = sf.Instruments[i]->pTuning;
}
auto iter = tNameToShort_Map.find(pTuning);
if(iter == tNameToShort_Map.end()) //Should never happen
{
sf.AddToLog(LogError, U_("Error: 210807_1"));
return;
}
mpt::IO::WriteIntLE<uint16>(oStrm, iter->second);
}
}
}
#endif // MODPLUG_NO_FILESAVE
static void ReadTuningCollection(std::istream &iStrm, CTuningCollection &tc, const std::size_t dummy, mpt::Charset defaultCharset)
{
MPT_UNREFERENCED_PARAMETER(dummy);
mpt::ustring name;
tc.Deserialize(iStrm, name, defaultCharset);
}
template<class TUNNUMTYPE, class STRSIZETYPE>
static bool ReadTuningMapTemplate(std::istream& iStrm, std::map<uint16, mpt::ustring> &shortToTNameMap, mpt::Charset charset, const size_t maxNum = 500)
{
TUNNUMTYPE numTuning = 0;
mpt::IO::ReadIntLE<TUNNUMTYPE>(iStrm, numTuning);
if(numTuning > maxNum)
return true;
for(size_t i = 0; i < numTuning; i++)
{
std::string temp;
uint16 ui = 0;
if(!mpt::IO::ReadSizedStringLE<STRSIZETYPE>(iStrm, temp, 255))
return true;
mpt::IO::ReadIntLE<uint16>(iStrm, ui);
shortToTNameMap[ui] = mpt::ToUnicode(charset, temp);
}
if(iStrm.good())
return false;
else
return true;
}
static void ReadTuningMapImpl(std::istream& iStrm, CSoundFile& csf, mpt::Charset charset, const size_t = 0, bool old = false)
{
std::map<uint16, mpt::ustring> shortToTNameMap;
if(old)
{
ReadTuningMapTemplate<uint32, uint32>(iStrm, shortToTNameMap, charset);
} else
{
ReadTuningMapTemplate<uint16, uint8>(iStrm, shortToTNameMap, charset);
}
// Read & set tunings for instruments
std::vector<mpt::ustring> notFoundTunings;
for(INSTRUMENTINDEX i = 1; i<=csf.GetNumInstruments(); i++)
{
uint16 ui = 0;
mpt::IO::ReadIntLE<uint16>(iStrm, ui);
auto iter = shortToTNameMap.find(ui);
if(csf.Instruments[i] && iter != shortToTNameMap.end())
{
const mpt::ustring str = iter->second;
if(str == U_("->MPT_ORIGINAL_IT<-"))
{
csf.Instruments[i]->pTuning = nullptr;
continue;
}
csf.Instruments[i]->pTuning = csf.GetTuneSpecificTunings().GetTuning(str);
if(csf.Instruments[i]->pTuning)
continue;
#ifdef MODPLUG_TRACKER
CTuning *localTuning = TrackerSettings::Instance().oldLocalTunings->GetTuning(str);
if(localTuning)
{
std::unique_ptr<CTuning> pNewTuning = std::unique_ptr<CTuning>(new CTuning(*localTuning));
CTuning *pT = csf.GetTuneSpecificTunings().AddTuning(std::move(pNewTuning));
if(pT)
{
csf.AddToLog(LogInformation, U_("Local tunings are deprecated and no longer supported. Tuning '") + str + U_("' found in Local tunings has been copied to Tune-specific tunings and will be saved in the module file."));
csf.Instruments[i]->pTuning = pT;
if(csf.GetpModDoc() != nullptr)
{
csf.GetpModDoc()->SetModified();
}
continue;
} else
{
csf.AddToLog(LogError, U_("Copying Local tuning '") + str + U_("' to Tune-specific tunings failed."));
}
}
#endif
if(str == U_("12TET [[fs15 1.17.02.49]]") || str == U_("12TET"))
{
std::unique_ptr<CTuning> pNewTuning = csf.CreateTuning12TET(str);
CTuning *pT = csf.GetTuneSpecificTunings().AddTuning(std::move(pNewTuning));
if(pT)
{
#ifdef MODPLUG_TRACKER
csf.AddToLog(LogInformation, U_("Built-in tunings will no longer be used. Tuning '") + str + U_("' has been copied to Tune-specific tunings and will be saved in the module file."));
csf.Instruments[i]->pTuning = pT;
if(csf.GetpModDoc() != nullptr)
{
csf.GetpModDoc()->SetModified();
}
#endif
continue;
} else
{
#ifdef MODPLUG_TRACKER
csf.AddToLog(LogError, U_("Copying Built-in tuning '") + str + U_("' to Tune-specific tunings failed."));
#endif
}
}
// Checking if not found tuning already noticed.
if(!mpt::contains(notFoundTunings, str))
{
notFoundTunings.push_back(str);
csf.AddToLog(LogWarning, U_("Tuning '") + str + U_("' used by the module was not found."));
#ifdef MODPLUG_TRACKER
if(csf.GetpModDoc() != nullptr)
{
csf.GetpModDoc()->SetModified(); // The tuning is changed so the modified flag is set.
}
#endif // MODPLUG_TRACKER
}
csf.Instruments[i]->pTuning = csf.GetDefaultTuning();
} else
{
//This 'else' happens probably only in case of corrupted file.
if(csf.Instruments[i])
csf.Instruments[i]->pTuning = csf.GetDefaultTuning();
}
}
//End read&set instrument tunings
}
static void ReadTuningMap(std::istream& iStrm, CSoundFile& csf, const size_t dummy, mpt::Charset charset)
{
ReadTuningMapImpl(iStrm, csf, charset, dummy, false);
}
//////////////////////////////////////////////////////////
// Impulse Tracker IT file support
size_t CSoundFile::ITInstrToMPT(FileReader &file, ModInstrument &ins, uint16 trkvers)
{
if(trkvers < 0x0200)
{
// Load old format (IT 1.xx) instrument (early IT 2.xx modules may have cmwt set to 1.00 for backwards compatibility)
ITOldInstrument instrumentHeader;
if(!file.ReadStruct(instrumentHeader))
{
return 0;
} else
{
instrumentHeader.ConvertToMPT(ins);
return sizeof(ITOldInstrument);
}
} else
{
const FileReader::off_t offset = file.GetPosition();
// Try loading extended instrument... instSize will differ between normal and extended instruments.
ITInstrumentEx instrumentHeader;
file.ReadStructPartial(instrumentHeader);
size_t instSize = instrumentHeader.ConvertToMPT(ins, GetType());
file.Seek(offset + instSize);
// Try reading modular instrument data.
// Yes, it is completely idiotic that we have both this and LoadExtendedInstrumentProperties.
// This is only required for files saved with *really* old OpenMPT versions (pre-1.17-RC1).
// This chunk was also written in later versions (probably to maintain compatibility with
// those ancient versions), but this also means that redundant information is stored in the file.
// Starting from OpenMPT 1.25.02.07, this chunk is no longer written.
if(file.ReadMagic("MSNI"))
{
//...the next piece of data must be the total size of the modular data
FileReader modularData = file.ReadChunk(file.ReadUint32LE());
instSize += 8 + modularData.GetLength();
if(modularData.ReadMagic("GULP"))
{
ins.nMixPlug = modularData.ReadUint8();
if(ins.nMixPlug > MAX_MIXPLUGINS) ins.nMixPlug = 0;
}
}
return instSize;
}
}
static void CopyPatternName(CPattern &pattern, FileReader &file)
{
char name[MAX_PATTERNNAME] = "";
file.ReadString<mpt::String::maybeNullTerminated>(name, MAX_PATTERNNAME);
pattern.SetName(name);
}
// Get version of Schism Tracker that was used to create an IT/S3M file.
mpt::ustring CSoundFile::GetSchismTrackerVersion(uint16 cwtv, uint32 reserved)
{
// Schism Tracker version information in a nutshell:
// < 0x020: a proper version (files saved by such versions are likely very rare)
// = 0x020: any version between the 0.2a release (2005-04-29?) and 2007-04-17
// = 0x050: anywhere from 2007-04-17 to 2009-10-31
// > 0x050: the number of days since 2009-10-31
// = 0xFFF: any version starting from 2020-10-28 (exact version stored in reserved value)
cwtv &= 0xFFF;
if(cwtv > 0x050)
{
int32 date = SchismTrackerEpoch + (cwtv < 0xFFF ? cwtv - 0x050 : reserved);
int32 y = static_cast<int32>((Util::mul32to64(10000, date) + 14780) / 3652425);
int32 ddd = date - (365 * y + y / 4 - y / 100 + y / 400);
if(ddd < 0)
{
y--;
ddd = date - (365 * y + y / 4 - y / 100 + y / 400);
}
int32 mi = (100 * ddd + 52) / 3060;
return MPT_UFORMAT("Schism Tracker {}-{}-{}")(
mpt::ufmt::dec0<4>(y + (mi + 2) / 12),
mpt::ufmt::dec0<2>((mi + 2) % 12 + 1),
mpt::ufmt::dec0<2>(ddd - (mi * 306 + 5) / 10 + 1));
} else
{
return MPT_UFORMAT("Schism Tracker 0.{}")(mpt::ufmt::hex0<2>(cwtv));
}
}
static bool ValidateHeader(const ITFileHeader &fileHeader)
{
if((std::memcmp(fileHeader.id, "IMPM", 4) && std::memcmp(fileHeader.id, "tpm.", 4))
|| fileHeader.insnum > 0xFF
|| fileHeader.smpnum >= MAX_SAMPLES
)
{
return false;
}
return true;
}
static uint64 GetHeaderMinimumAdditionalSize(const ITFileHeader &fileHeader)
{
return fileHeader.ordnum + (fileHeader.insnum + fileHeader.smpnum + fileHeader.patnum) * 4;
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderIT(MemoryFileReader file, const uint64 *pfilesize)
{
ITFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(fileHeader))
{
return ProbeFailure;
}
return ProbeAdditionalSize(file, pfilesize, GetHeaderMinimumAdditionalSize(fileHeader));
}
bool CSoundFile::ReadIT(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
ITFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return false;
}
if(!ValidateHeader(fileHeader))
{
return false;
}
if(!file.CanRead(mpt::saturate_cast<FileReader::off_t>(GetHeaderMinimumAdditionalSize(fileHeader))))
{
return false;
}
if(loadFlags == onlyVerifyHeader)
{
return true;
}
InitializeGlobals(MOD_TYPE_IT);
bool interpretModPlugMade = false;
mpt::ustring madeWithTracker;
// OpenMPT crap at the end of file
size_t mptStartPos = 0;
if(!memcmp(fileHeader.id, "tpm.", 4))
{
// Legacy MPTM files (old 1.17.02.4x releases)
SetType(MOD_TYPE_MPT);
file.Seek(file.GetLength() - 4);
mptStartPos = file.ReadUint32LE();
} else
{
if(fileHeader.cwtv > 0x888 && fileHeader.cwtv <= 0xFFF)
{
file.Seek(file.GetLength() - 4);
mptStartPos = file.ReadUint32LE();
if(mptStartPos >= 0x100 && mptStartPos < file.GetLength())
{
if(file.Seek(mptStartPos) && file.ReadMagic("228"))
{
SetType(MOD_TYPE_MPT);
if(fileHeader.cwtv >= verMptFileVerLoadLimit)
{
AddToLog(LogError, U_("The file informed that it is incompatible with this version of OpenMPT. Loading was terminated."));
return false;
} else if(fileHeader.cwtv > verMptFileVer)
{
AddToLog(LogInformation, U_("The loaded file was made with a more recent OpenMPT version and this version may not be able to load all the features or play the file correctly."));
}
}
}
}
if(GetType() == MOD_TYPE_IT)
{
// Which tracker was used to make this?
if((fileHeader.cwtv & 0xF000) == 0x5000)
{
// OpenMPT Version number (Major.Minor)
// This will only be interpreted as "made with ModPlug" (i.e. disable compatible playback etc) if the "reserved" field is set to "OMPT" - else, compatibility was used.
uint32 mptVersion = (fileHeader.cwtv & 0x0FFF) << 16;
if(!memcmp(&fileHeader.reserved, "OMPT", 4))
interpretModPlugMade = true;
else if(mptVersion >= 0x01'29'00'00)
mptVersion |= fileHeader.reserved & 0xFFFF;
m_dwLastSavedWithVersion = Version(mptVersion);
} else if(fileHeader.cmwt == 0x888 || fileHeader.cwtv == 0x888)
{
// OpenMPT 1.17.02.26 (r122) to 1.18 (raped IT format)
// Exact version number will be determined later.
interpretModPlugMade = true;
m_dwLastSavedWithVersion = MPT_V("1.17.00.00");
} else if(fileHeader.cwtv == 0x0217 && fileHeader.cmwt == 0x0200 && fileHeader.reserved == 0)
{
if(memchr(fileHeader.chnpan, 0xFF, sizeof(fileHeader.chnpan)) != nullptr)
{
// ModPlug Tracker 1.16 (semi-raped IT format) or BeRoTracker (will be determined later)
m_dwLastSavedWithVersion = MPT_V("1.16.00.00");
madeWithTracker = U_("ModPlug Tracker 1.09 - 1.16");
} else
{
// OpenMPT 1.17 disguised as this in compatible mode,
// but never writes 0xFF in the pan map for unused channels (which is an invalid value).
m_dwLastSavedWithVersion = MPT_V("1.17.00.00");
madeWithTracker = U_("OpenMPT 1.17 (compatibility export)");
}
interpretModPlugMade = true;
} else if(fileHeader.cwtv == 0x0214 && fileHeader.cmwt == 0x0202 && fileHeader.reserved == 0)
{
// ModPlug Tracker b3.3 - 1.09, instruments 557 bytes apart
m_dwLastSavedWithVersion = MPT_V("1.09.00.00");
madeWithTracker = U_("ModPlug Tracker b3.3 - 1.09");
interpretModPlugMade = true;
} else if(fileHeader.cwtv == 0x0300 && fileHeader.cmwt == 0x0300 && fileHeader.reserved == 0 && fileHeader.ordnum == 256 && fileHeader.sep == 128 && fileHeader.pwd == 0)
{
// A rare variant used from OpenMPT 1.17.02.20 (r113) to 1.17.02.25 (r121), found e.g. in xTr1m-SD.it
m_dwLastSavedWithVersion = MPT_V("1.17.02.20");
interpretModPlugMade = true;
}
}
}
m_SongFlags.set(SONG_LINEARSLIDES, (fileHeader.flags & ITFileHeader::linearSlides) != 0);
m_SongFlags.set(SONG_ITOLDEFFECTS, (fileHeader.flags & ITFileHeader::itOldEffects) != 0);
m_SongFlags.set(SONG_ITCOMPATGXX, (fileHeader.flags & ITFileHeader::itCompatGxx) != 0);
m_SongFlags.set(SONG_EXFILTERRANGE, (fileHeader.flags & ITFileHeader::extendedFilterRange) != 0);
m_songName = mpt::String::ReadBuf(mpt::String::spacePadded, fileHeader.songname);
// Read row highlights
if((fileHeader.special & ITFileHeader::embedPatternHighlights))
{
// MPT 1.09 and older (and maybe also newer) versions leave this blank (0/0), but have the "special" flag set.
// Newer versions of MPT and OpenMPT 1.17 *always* write 4/16 here.
// Thus, we will just ignore those old versions.
// Note: OpenMPT 1.17.03.02 was the first version to properly make use of the time signature in the IT header.
// This poses a small unsolvable problem:
// - In compatible mode, we cannot distinguish this version from earlier 1.17 releases.
// Thus we cannot know when to read this field or not (m_dwLastSavedWithVersion will always be 1.17.00.00).
// Luckily OpenMPT 1.17.03.02 should not be very wide-spread.
// - In normal mode the time signature is always present in the song extensions anyway. So it's okay if we read
// the signature here and maybe overwrite it later when parsing the song extensions.
if(!m_dwLastSavedWithVersion || m_dwLastSavedWithVersion >= MPT_V("1.17.03.02"))
{
m_nDefaultRowsPerBeat = fileHeader.highlight_minor;
m_nDefaultRowsPerMeasure = fileHeader.highlight_major;
}
}
// Global Volume
m_nDefaultGlobalVolume = fileHeader.globalvol << 1;
if(m_nDefaultGlobalVolume > MAX_GLOBAL_VOLUME)
m_nDefaultGlobalVolume = MAX_GLOBAL_VOLUME;
if(fileHeader.speed)
m_nDefaultSpeed = fileHeader.speed;
m_nDefaultTempo.Set(std::max(uint8(31), static_cast<uint8>(fileHeader.tempo)));
m_nSamplePreAmp = std::min(static_cast<uint8>(fileHeader.mv), uint8(128));
// Reading Channels Pan Positions
for(CHANNELINDEX i = 0; i < 64; i++) if(fileHeader.chnpan[i] != 0xFF)
{
ChnSettings[i].Reset();
ChnSettings[i].nVolume = Clamp<uint8, uint8>(fileHeader.chnvol[i], 0, 64);
if(fileHeader.chnpan[i] & 0x80) ChnSettings[i].dwFlags.set(CHN_MUTE);
uint8 n = fileHeader.chnpan[i] & 0x7F;
if(n <= 64) ChnSettings[i].nPan = n * 4;
if(n == 100) ChnSettings[i].dwFlags.set(CHN_SURROUND);
}
// Reading orders
file.Seek(sizeof(ITFileHeader));
if(GetType() == MOD_TYPE_MPT && fileHeader.cwtv > 0x88A && fileHeader.cwtv <= 0x88D)
{
// Deprecated format used for MPTm files created with OpenMPT 1.17.02.46 - 1.17.02.48.
uint16 version = file.ReadUint16LE();
if(version != 0)
return false;
uint32 numOrd = file.ReadUint32LE();
if(numOrd > ModSpecs::mptm.ordersMax || !ReadOrderFromFile<uint32le>(Order(), file, numOrd))
return false;
} else
{
ReadOrderFromFile<uint8>(Order(), file, fileHeader.ordnum, 0xFF, 0xFE);
}
// Reading instrument, sample and pattern offsets
std::vector<uint32le> insPos, smpPos, patPos;
if(!file.ReadVector(insPos, fileHeader.insnum)
|| !file.ReadVector(smpPos, fileHeader.smpnum)
|| !file.ReadVector(patPos, fileHeader.patnum))
{
return false;
}
// Find the first parapointer.
// This is used for finding out whether the edit history is actually stored in the file or not,
// as some early versions of Schism Tracker set the history flag, but didn't save anything.
// We will consider the history invalid if it ends after the first parapointer.
uint32 minPtr = std::numeric_limits<decltype(minPtr)>::max();
for(uint32 pos : insPos)
{
if(pos > 0 && pos < minPtr)
minPtr = pos;
}
for(uint32 pos : smpPos)
{
if(pos > 0 && pos < minPtr)
minPtr = pos;
}
for(uint32 pos : patPos)
{
if(pos > 0 && pos < minPtr)
minPtr = pos;
}
if(fileHeader.special & ITFileHeader::embedSongMessage)
{
minPtr = std::min(minPtr, fileHeader.msgoffset.get());
}
const bool possiblyUNMO3 = fileHeader.cmwt == 0x0214 && (fileHeader.cwtv == 0x0214 || fileHeader.cwtv == 0)
&& fileHeader.highlight_major == 0 && fileHeader.highlight_minor == 0
&& fileHeader.pwd == 0 && fileHeader.reserved == 0
&& (fileHeader.flags & (ITFileHeader::useMIDIPitchController | ITFileHeader::reqEmbeddedMIDIConfig)) == 0;
if(possiblyUNMO3 && fileHeader.insnum == 0 && fileHeader.smpnum > 0 && file.GetPosition() + 4 * smpPos.size() + 2 <= minPtr)
{
// UNMO3 < v2.4.0.1 reserves some space for instrument parapointers even in sample mode.
// This makes reading MIDI macros and plugin information impossible.
// Note: While UNMO3 and CheeseTracker header fingerprints are almost identical, we cannot mis-detect CheeseTracker here,
// as it always sets the instrument mode flag and writes non-zero row highlights.
bool oldUNMO3 = true;
for(uint16 i = 0; i < fileHeader.smpnum; i++)
{
if(file.ReadUint32LE() != 0)
{
oldUNMO3 = false;
file.SkipBack(4 + i * 4);
break;
}
}
if(oldUNMO3)
{
madeWithTracker = U_("UNMO3 <= 2.4");
}
}
if(possiblyUNMO3 && fileHeader.cwtv == 0)
{
madeWithTracker = U_("UNMO3 v0/1");
}
// Reading IT Edit History Info
// This is only supposed to be present if bit 1 of the special flags is set.
// However, old versions of Schism and probably other trackers always set this bit
// even if they don't write the edit history count. So we have to filter this out...
// This is done by looking at the parapointers. If the history data ends after
// the first parapointer, we assume that it's actually no history data.
if(fileHeader.special & ITFileHeader::embedEditHistory)
{
const uint16 nflt = file.ReadUint16LE();
if(file.CanRead(nflt * sizeof(ITHistoryStruct)) && file.GetPosition() + nflt * sizeof(ITHistoryStruct) <= minPtr)
{
m_FileHistory.resize(nflt);
for(auto &mptHistory : m_FileHistory)
{
ITHistoryStruct itHistory;
file.ReadStruct(itHistory);
itHistory.ConvertToMPT(mptHistory);
}
if(possiblyUNMO3 && nflt == 0)
{
if(fileHeader.special & ITFileHeader::embedPatternHighlights)
madeWithTracker = U_("UNMO3 <= 2.4.0.1"); // Set together with MIDI macro embed flag
else
madeWithTracker = U_("UNMO3"); // Either 2.4.0.2+ or no MIDI macros embedded
}
} else
{
// Oops, we were not supposed to read this.
file.SkipBack(2);
}
} else if(possiblyUNMO3 && fileHeader.special <= 1)
{
// UNMO3 < v2.4.0.1 will set the edit history special bit iff the MIDI macro embed bit is also set,
// but it always writes the two extra bytes for the edit history length (zeroes).
// If MIDI macros are embedded, we are fine and end up in the first case of the if statement (read edit history).
// Otherwise we end up here and might have to read the edit history length.
if(file.ReadUint16LE() == 0)
{
madeWithTracker = U_("UNMO3 <= 2.4");
} else
{
// These were not zero bytes, but potentially belong to the upcoming MIDI config - need to skip back.
// I think the only application that could end up here is CheeseTracker, if it allows to write 0 for both row highlight values.
// IT 2.14 itself will always write the edit history.
file.SkipBack(2);
}
}
// Reading MIDI Output & Macros
bool hasMidiConfig = (fileHeader.flags & ITFileHeader::reqEmbeddedMIDIConfig) || (fileHeader.special & ITFileHeader::embedMIDIConfiguration);
if(hasMidiConfig && file.ReadStruct<MIDIMacroConfigData>(m_MidiCfg))
{
m_MidiCfg.Sanitize();
}
// Ignore MIDI data. Fixes some files like denonde.it that were made with old versions of Impulse Tracker (which didn't support Zxx filters) and have Zxx effects in the patterns.
if(fileHeader.cwtv < 0x0214)
{
m_MidiCfg.ClearZxxMacros();
}
// Read pattern names: "PNAM"
FileReader patNames;
if(file.ReadMagic("PNAM"))
{
patNames = file.ReadChunk(file.ReadUint32LE());
}
m_nChannels = 1;
// Read channel names: "CNAM"
if(file.ReadMagic("CNAM"))
{
FileReader chnNames = file.ReadChunk(file.ReadUint32LE());
const CHANNELINDEX readChns = std::min(MAX_BASECHANNELS, static_cast<CHANNELINDEX>(chnNames.GetLength() / MAX_CHANNELNAME));
m_nChannels = readChns;
for(CHANNELINDEX i = 0; i < readChns; i++)
{
chnNames.ReadString<mpt::String::maybeNullTerminated>(ChnSettings[i].szName, MAX_CHANNELNAME);
}
}
// Read mix plugins information
FileReader pluginChunk = file.ReadChunk((minPtr >= file.GetPosition()) ? minPtr - file.GetPosition() : file.BytesLeft());
const bool isBeRoTracker = LoadMixPlugins(pluginChunk);
// Read Song Message
if((fileHeader.special & ITFileHeader::embedSongMessage) && fileHeader.msglength > 0 && file.Seek(fileHeader.msgoffset))
{
// Generally, IT files should use CR for line endings. However, ChibiTracker uses LF. One could do...
// if(itHeader.cwtv == 0x0214 && itHeader.cmwt == 0x0214 && itHeader.reserved == ITFileHeader::chibiMagic) --> Chibi detected.
// But we'll just use autodetection here:
m_songMessage.Read(file, fileHeader.msglength, SongMessage::leAutodetect);
}
// Reading Instruments
m_nInstruments = 0;
if(fileHeader.flags & ITFileHeader::instrumentMode)
{
m_nInstruments = std::min(static_cast<INSTRUMENTINDEX>(fileHeader.insnum), static_cast<INSTRUMENTINDEX>(MAX_INSTRUMENTS - 1));
}
for(INSTRUMENTINDEX i = 0; i < GetNumInstruments(); i++)
{
if(insPos[i] > 0 && file.Seek(insPos[i]) && file.CanRead(fileHeader.cmwt < 0x200 ? sizeof(ITOldInstrument) : sizeof(ITInstrument)))
{
ModInstrument *instrument = AllocateInstrument(i + 1);
if(instrument != nullptr)
{
ITInstrToMPT(file, *instrument, fileHeader.cmwt);
// MIDI Pitch Wheel Depth is a global setting in IT. Apply it to all instruments.
instrument->midiPWD = fileHeader.pwd;
}
}
}
// In order to properly compute the position, in file, of eventual extended settings
// such as "attack" we need to keep the "real" size of the last sample as those extra
// setting will follow this sample in the file
FileReader::off_t lastSampleOffset = 0;
if(fileHeader.smpnum > 0)
{
lastSampleOffset = smpPos[fileHeader.smpnum - 1] + sizeof(ITSample);
}
bool possibleXMconversion = false;
// Reading Samples
m_nSamples = std::min(static_cast<SAMPLEINDEX>(fileHeader.smpnum), static_cast<SAMPLEINDEX>(MAX_SAMPLES - 1));
bool lastSampleCompressed = false;
for(SAMPLEINDEX i = 0; i < GetNumSamples(); i++)
{
ITSample sampleHeader;
if(smpPos[i] > 0 && file.Seek(smpPos[i]) && file.ReadStruct(sampleHeader))
{
// IT does not check for the IMPS magic, and some bad XM->IT converter out there doesn't write the magic bytes for empty sample slots.
ModSample &sample = Samples[i + 1];
size_t sampleOffset = sampleHeader.ConvertToMPT(sample);
m_szNames[i + 1] = mpt::String::ReadBuf(mpt::String::spacePadded, sampleHeader.name);
if(!file.Seek(sampleOffset))
continue;
lastSampleCompressed = false;
if(sample.uFlags[CHN_ADLIB])
{
// FM instrument in MPTM
OPLPatch patch;
if(file.ReadArray(patch))
{
sample.SetAdlib(true, patch);
}
} else if(!sample.uFlags[SMP_KEEPONDISK])
{
SampleIO sampleIO = sampleHeader.GetSampleFormat(fileHeader.cwtv);
if(loadFlags & loadSampleData)
{
sampleIO.ReadSample(sample, file);
} else
{
if(sampleIO.IsVariableLengthEncoded())
lastSampleCompressed = true;
else
file.Skip(sampleIO.CalculateEncodedSize(sample.nLength));
}
if(sampleIO.GetEncoding() == SampleIO::unsignedPCM && sample.nLength != 0)
{
// There is some XM to IT converter (don't know which one) and it identifies as IT 2.04.
// The only safe way to distinguish it from an IT-saved file are the unsigned samples.
possibleXMconversion = true;
}
} else
{
// External sample in MPTM file
size_t strLen;
file.ReadVarInt(strLen);
if((loadFlags & loadSampleData) && strLen)
{
std::string filenameU8;
file.ReadString<mpt::String::maybeNullTerminated>(filenameU8, strLen);
#if defined(MPT_EXTERNAL_SAMPLES)
SetSamplePath(i + 1, mpt::PathString::FromUTF8(filenameU8));
#elif !defined(LIBOPENMPT_BUILD_TEST)
AddToLog(LogWarning, MPT_UFORMAT("Loading external sample {} ('{}') failed: External samples are not supported.")(i + 1, mpt::ToUnicode(mpt::Charset::UTF8, filenameU8)));
#endif // MPT_EXTERNAL_SAMPLES
} else
{
file.Skip(strLen);
}
}
lastSampleOffset = std::max(lastSampleOffset, file.GetPosition());
}
}
m_nSamples = std::max(SAMPLEINDEX(1), GetNumSamples());
if(possibleXMconversion && fileHeader.cwtv == 0x0204 && fileHeader.cmwt == 0x0200 && fileHeader.special == 0 && fileHeader.reserved == 0
&& (fileHeader.flags & ~ITFileHeader::linearSlides) == (ITFileHeader::useStereoPlayback | ITFileHeader::instrumentMode | ITFileHeader::itOldEffects)
&& fileHeader.globalvol == 128 && fileHeader.mv == 48 && fileHeader.sep == 128 && fileHeader.pwd == 0 && fileHeader.msglength == 0)
{
for(uint8 pan : fileHeader.chnpan)
{
if(pan != 0x20 && pan != 0xA0)
possibleXMconversion = false;
}
for(uint8 vol : fileHeader.chnvol)
{
if(vol != 0x40)
possibleXMconversion = false;
}
for(size_t i = 20; i < std::size(fileHeader.songname); i++)
{
if(fileHeader.songname[i] != 0)
possibleXMconversion = false;
}
if(possibleXMconversion)
madeWithTracker = U_("XM Conversion");
}
m_nMinPeriod = 0;
m_nMaxPeriod = int32_max;
PATTERNINDEX numPats = std::min(static_cast<PATTERNINDEX>(patPos.size()), GetModSpecifications().patternsMax);
if(numPats != patPos.size())
{
// Hack: Notify user here if file contains more patterns than what can be read.
AddToLog(LogWarning, MPT_UFORMAT("The module contains {} patterns but only {} patterns can be loaded in this OpenMPT version.")(patPos.size(), numPats));
}
if(!(loadFlags & loadPatternData))
{
numPats = 0;
}
// Checking for number of used channels, which is not explicitely specified in the file.
for(PATTERNINDEX pat = 0; pat < numPats; pat++)
{
if(patPos[pat] == 0 || !file.Seek(patPos[pat]))
continue;
uint16 len = file.ReadUint16LE();
ROWINDEX numRows = file.ReadUint16LE();
if(numRows < 1
|| numRows > MAX_PATTERN_ROWS
|| !file.Skip(4))
continue;
FileReader patternData = file.ReadChunk(len);
ROWINDEX row = 0;
std::vector<uint8> chnMask(GetNumChannels());
while(row < numRows && patternData.CanRead(1))
{
uint8 b = patternData.ReadUint8();
if(!b)
{
row++;
continue;
}
CHANNELINDEX ch = (b & IT_bitmask_patternChanField_c); // 0x7f We have some data grab a byte keeping only 7 bits
if(ch)
{
ch = (ch - 1);// & IT_bitmask_patternChanMask_c; // 0x3f mask of the byte again, keeping only 6 bits
}
if(ch >= chnMask.size())
{
chnMask.resize(ch + 1, 0);
}
if(b & IT_bitmask_patternChanEnabled_c) // 0x80 check if the upper bit is enabled.
{
chnMask[ch] = patternData.ReadUint8(); // set the channel mask for this channel.
}
// Channel used
if(chnMask[ch] & 0x0F) // if this channel is used set m_nChannels
{
if(ch >= GetNumChannels() && ch < MAX_BASECHANNELS)
{
m_nChannels = ch + 1;
}
}
// Now we actually update the pattern-row entry the note,instrument etc.
// Note
if(chnMask[ch] & 1)
patternData.Skip(1);
// Instrument
if(chnMask[ch] & 2)
patternData.Skip(1);
// Volume
if(chnMask[ch] & 4)
patternData.Skip(1);
// Effect
if(chnMask[ch] & 8)
patternData.Skip(2);
}
lastSampleOffset = std::max(lastSampleOffset, file.GetPosition());
}
// Compute extra instruments settings position
if(lastSampleOffset > 0)
{
file.Seek(lastSampleOffset);
if(lastSampleCompressed)
{
// If the last sample was compressed, we do not know where it ends.
// Hence, in case we decided not to decode the sample data, we now
// have to emulate this until we reach EOF or some instrument / song properties.
while(file.CanRead(4))
{
if(file.ReadMagic("XTPM") || file.ReadMagic("STPM"))
{
uint32 id = file.ReadUint32LE();
file.SkipBack(8);
// Our chunk IDs should only contain ASCII characters
if(!(id & 0x80808080) && (id & 0x60606060))
{
break;
}
}
file.Skip(file.ReadUint16LE());
}
}
}
// Load instrument and song extensions.
interpretModPlugMade |= LoadExtendedInstrumentProperties(file);
if(interpretModPlugMade && !isBeRoTracker)
{
m_playBehaviour.reset();
m_nMixLevels = MixLevels::Original;
}
// Need to do this before reading the patterns because m_nChannels might be modified by LoadExtendedSongProperties. *sigh*
LoadExtendedSongProperties(file, false, &interpretModPlugMade);
// Reading Patterns
Patterns.ResizeArray(numPats);
for(PATTERNINDEX pat = 0; pat < numPats; pat++)
{
if(patPos[pat] == 0 || !file.Seek(patPos[pat]))
{
// Empty 64-row pattern
if(!Patterns.Insert(pat, 64))
{
AddToLog(LogWarning, MPT_UFORMAT("Allocating patterns failed starting from pattern {}")(pat));
break;
}
// Now (after the Insert() call), we can read the pattern name.
CopyPatternName(Patterns[pat], patNames);
continue;
}
uint16 len = file.ReadUint16LE();
ROWINDEX numRows = file.ReadUint16LE();
if(!file.Skip(4)
|| !Patterns.Insert(pat, numRows))
continue;
FileReader patternData = file.ReadChunk(len);
// Now (after the Insert() call), we can read the pattern name.
CopyPatternName(Patterns[pat], patNames);
std::vector<uint8> chnMask(GetNumChannels());
std::vector<ModCommand> lastValue(GetNumChannels(), ModCommand::Empty());
auto patData = Patterns[pat].begin();
ROWINDEX row = 0;
while(row < numRows && patternData.CanRead(1))
{
uint8 b = patternData.ReadUint8();
if(!b)
{
row++;
patData += GetNumChannels();
continue;
}
CHANNELINDEX ch = b & IT_bitmask_patternChanField_c; // 0x7f
if(ch)
{
ch = (ch - 1); //& IT_bitmask_patternChanMask_c; // 0x3f
}
if(ch >= chnMask.size())
{
chnMask.resize(ch + 1, 0);
lastValue.resize(ch + 1, ModCommand::Empty());
MPT_ASSERT(chnMask.size() <= GetNumChannels());
}
if(b & IT_bitmask_patternChanEnabled_c) // 0x80
{
chnMask[ch] = patternData.ReadUint8();
}
// Now we grab the data for this particular row/channel.
ModCommand dummy = ModCommand::Empty();
ModCommand &m = ch < m_nChannels ? patData[ch] : dummy;
if(chnMask[ch] & 0x10)
{
m.note = lastValue[ch].note;
}
if(chnMask[ch] & 0x20)
{
m.instr = lastValue[ch].instr;
}
if(chnMask[ch] & 0x40)
{
m.volcmd = lastValue[ch].volcmd;
m.vol = lastValue[ch].vol;
}
if(chnMask[ch] & 0x80)
{
m.command = lastValue[ch].command;
m.param = lastValue[ch].param;
}
if(chnMask[ch] & 1) // Note
{
uint8 note = patternData.ReadUint8();
if(note < 0x80)
note += NOTE_MIN;
if(!(GetType() & MOD_TYPE_MPT))
{
if(note > NOTE_MAX && note < 0xFD) note = NOTE_FADE;
else if(note == 0xFD) note = NOTE_NONE;
}
m.note = note;
lastValue[ch].note = note;
}
if(chnMask[ch] & 2)
{
uint8 instr = patternData.ReadUint8();
m.instr = instr;
lastValue[ch].instr = instr;
}
if(chnMask[ch] & 4)
{
uint8 vol = patternData.ReadUint8();
// 0-64: Set Volume
if(vol <= 64) { m.volcmd = VOLCMD_VOLUME; m.vol = vol; } else
// 128-192: Set Panning
if(vol >= 128 && vol <= 192) { m.volcmd = VOLCMD_PANNING; m.vol = vol - 128; } else
// 65-74: Fine Volume Up
if(vol < 75) { m.volcmd = VOLCMD_FINEVOLUP; m.vol = vol - 65; } else
// 75-84: Fine Volume Down
if(vol < 85) { m.volcmd = VOLCMD_FINEVOLDOWN; m.vol = vol - 75; } else
// 85-94: Volume Slide Up
if(vol < 95) { m.volcmd = VOLCMD_VOLSLIDEUP; m.vol = vol - 85; } else
// 95-104: Volume Slide Down
if(vol < 105) { m.volcmd = VOLCMD_VOLSLIDEDOWN; m.vol = vol - 95; } else
// 105-114: Pitch Slide Up
if(vol < 115) { m.volcmd = VOLCMD_PORTADOWN; m.vol = vol - 105; } else
// 115-124: Pitch Slide Down
if(vol < 125) { m.volcmd = VOLCMD_PORTAUP; m.vol = vol - 115; } else
// 193-202: Portamento To
if(vol >= 193 && vol <= 202) { m.volcmd = VOLCMD_TONEPORTAMENTO; m.vol = vol - 193; } else
// 203-212: Vibrato depth
if(vol >= 203 && vol <= 212)
{
m.volcmd = VOLCMD_VIBRATODEPTH;
m.vol = vol - 203;
// Old versions of ModPlug saved this as vibrato speed instead, so let's fix that.
if(m.vol && m_dwLastSavedWithVersion && m_dwLastSavedWithVersion <= MPT_V("1.17.02.54"))
m.volcmd = VOLCMD_VIBRATOSPEED;
} else
// 213-222: Unused (was velocity)
// 223-232: Offset
if(vol >= 223 && vol <= 232) { m.volcmd = VOLCMD_OFFSET; m.vol = vol - 223; }
lastValue[ch].volcmd = m.volcmd;
lastValue[ch].vol = m.vol;
}
// Reading command/param
if(chnMask[ch] & 8)
{
const auto [command, param] = patternData.ReadArray<uint8, 2>();
m.command = command;
m.param = param;
S3MConvert(m, true);
// In some IT-compatible trackers, it is possible to input a parameter without a command.
// In this case, we still need to update the last value memory. OpenMPT didn't do this until v1.25.01.07.
// Example: ckbounce.it
lastValue[ch].command = m.command;
lastValue[ch].param = m.param;
}
}
}
if(!m_dwLastSavedWithVersion && fileHeader.cwtv == 0x0888)
{
// Up to OpenMPT 1.17.02.45 (r165), it was possible that the "last saved with" field was 0
// when saving a file in OpenMPT for the first time.
m_dwLastSavedWithVersion = MPT_V("1.17.00.00");
}
if(m_dwLastSavedWithVersion && madeWithTracker.empty())
{
madeWithTracker = U_("OpenMPT ") + mpt::ufmt::val(m_dwLastSavedWithVersion);
if(memcmp(&fileHeader.reserved, "OMPT", 4) && (fileHeader.cwtv & 0xF000) == 0x5000)
{
madeWithTracker += U_(" (compatibility export)");
} else if(m_dwLastSavedWithVersion.IsTestVersion())
{
madeWithTracker += U_(" (test build)");
}
} else
{
const int32 schismDateVersion = SchismTrackerEpoch + ((fileHeader.cwtv == 0x1FFF) ? fileHeader.reserved : (fileHeader.cwtv - 0x1050));
switch(fileHeader.cwtv >> 12)
{
case 0:
if(isBeRoTracker)
{
// Old versions
madeWithTracker = U_("BeRoTracker");
} else if(fileHeader.cwtv == 0x0214 && fileHeader.cmwt == 0x0200 && fileHeader.flags == 9 && fileHeader.special == 0
&& fileHeader.highlight_major == 0 && fileHeader.highlight_minor == 0
&& fileHeader.insnum == 0 && fileHeader.patnum + 1 == fileHeader.ordnum
&& fileHeader.globalvol == 128 && fileHeader.mv == 100 && fileHeader.speed == 1 && fileHeader.sep == 128 && fileHeader.pwd == 0
&& fileHeader.msglength == 0 && fileHeader.msgoffset == 0 && fileHeader.reserved == 0)
{
madeWithTracker = U_("OpenSPC conversion");
} else if(fileHeader.cwtv == 0x0214 && fileHeader.cmwt == 0x0200 && fileHeader.highlight_major == 0 && fileHeader.highlight_minor == 0 && fileHeader.reserved == 0)
{
// ModPlug Tracker 1.00a5, instruments 560 bytes apart
m_dwLastSavedWithVersion = MPT_V("1.00.00.A5");
madeWithTracker = U_("ModPlug Tracker 1.00a5");
interpretModPlugMade = true;
} else if(fileHeader.cwtv == 0x0214 && fileHeader.cmwt == 0x0214 && !memcmp(&fileHeader.reserved, "CHBI", 4))
{
madeWithTracker = U_("ChibiTracker");
m_playBehaviour.reset(kITShortSampleRetrig);
} else if(fileHeader.cwtv == 0x0214 && fileHeader.cmwt == 0x0214 && fileHeader.special <= 1 && fileHeader.pwd == 0 && fileHeader.reserved == 0
&& (fileHeader.flags & (ITFileHeader::vol0Optimisations | ITFileHeader::instrumentMode | ITFileHeader::useMIDIPitchController | ITFileHeader::reqEmbeddedMIDIConfig | ITFileHeader::extendedFilterRange)) == ITFileHeader::instrumentMode
&& m_nSamples > 0 && (Samples[1].filename == "XXXXXXXX.YYY"))
{
madeWithTracker = U_("CheeseTracker");
} else if(fileHeader.cwtv == 0 && madeWithTracker.empty())
{
madeWithTracker = U_("Unknown");
} else if(fileHeader.cmwt < 0x0300 && madeWithTracker.empty())
{
if(fileHeader.cmwt > 0x0214)
{
madeWithTracker = U_("Impulse Tracker 2.15");
} else if(fileHeader.cwtv > 0x0214)
{
// Patched update of IT 2.14 (0x0215 - 0x0217 == p1 - p3)
// p4 (as found on modland) adds the ITVSOUND driver, but doesn't seem to change
// anything as far as file saving is concerned.
madeWithTracker = MPT_UFORMAT("Impulse Tracker 2.14p{}")(fileHeader.cwtv - 0x0214);
} else
{
madeWithTracker = MPT_UFORMAT("Impulse Tracker {}.{}")((fileHeader.cwtv & 0x0F00) >> 8, mpt::ufmt::hex0<2>((fileHeader.cwtv & 0xFF)));
}
if(m_FileHistory.empty() && fileHeader.reserved != 0)
{
// Starting from version 2.07, IT stores the total edit time of a module in the "reserved" field
uint32 editTime = DecodeITEditTimer(fileHeader.cwtv, fileHeader.reserved);
FileHistory hist;
hist.openTime = static_cast<uint32>(editTime * (HISTORY_TIMER_PRECISION / 18.2));
m_FileHistory.push_back(hist);
}
}
break;
case 1:
madeWithTracker = GetSchismTrackerVersion(fileHeader.cwtv, fileHeader.reserved);
// Hertz in linear mode: Added 2015-01-29, https://github.com/schismtracker/schismtracker/commit/671b30311082a0e7df041fca25f989b5d2478f69
if(schismDateVersion < SchismVersionFromDate<2015, 01, 29>::date && m_SongFlags[SONG_LINEARSLIDES])
m_playBehaviour.reset(kPeriodsAreHertz);
// Hertz in Amiga mode: Added 2021-05-02, https://github.com/schismtracker/schismtracker/commit/c656a6cbd5aaf81198a7580faf81cb7960cb6afa
else if(schismDateVersion < SchismVersionFromDate<2021, 05, 02>::date && !m_SongFlags[SONG_LINEARSLIDES])
m_playBehaviour.reset(kPeriodsAreHertz);
// Qxx with short samples: Added 2016-05-13, https://github.com/schismtracker/schismtracker/commit/e7b1461fe751554309fd403713c2a1ef322105ca
if(schismDateVersion < SchismVersionFromDate<2016, 05, 13>::date)
m_playBehaviour.reset(kITShortSampleRetrig);
// Instrument pan doesn't override channel pan: Added 2021-05-02, https://github.com/schismtracker/schismtracker/commit/a34ec86dc819915debc9e06f4727b77bf2dd29ee
if(schismDateVersion < SchismVersionFromDate<2021, 05, 02>::date)
m_playBehaviour.reset(kITDoNotOverrideChannelPan);
// Notes set instrument panning, not instrument numbers: Added 2021-05-02, https://github.com/schismtracker/schismtracker/commit/648f5116f984815c69e11d018b32dfec53c6b97a
if(schismDateVersion < SchismVersionFromDate<2021, 05, 02>::date)
m_playBehaviour.reset(kITPanningReset);
// Imprecise calculation of ping-pong loop wraparound: Added 2021-11-01, https://github.com/schismtracker/schismtracker/commit/22cbb9b676e9c2c9feb7a6a17deca7a17ac138cc
if(schismDateVersion < SchismVersionFromDate<2021, 11, 01>::date)
m_playBehaviour.set(kImprecisePingPongLoops);
// Pitch/Pan Separation can be overridden by panning commands: Added 2021-11-01, https://github.com/schismtracker/schismtracker/commit/6e9f1207015cae0fe1b829fff7bb867e02ec6dea
if(schismDateVersion < SchismVersionFromDate<2021, 11, 01>::date)
m_playBehaviour.reset(kITPitchPanSeparation);
break;
case 4:
madeWithTracker = MPT_UFORMAT("pyIT {}.{}")((fileHeader.cwtv & 0x0F00) >> 8, mpt::ufmt::hex0<2>(fileHeader.cwtv & 0xFF));
break;
case 6:
madeWithTracker = U_("BeRoTracker");
break;
case 7:
if(fileHeader.cwtv == 0x7FFF && fileHeader.cmwt == 0x0215)
madeWithTracker = U_("munch.py");
else
madeWithTracker = MPT_UFORMAT("ITMCK {}.{}.{}")((fileHeader.cwtv >> 8) & 0x0F, (fileHeader.cwtv >> 4) & 0x0F, fileHeader.cwtv & 0x0F);
break;
case 0xD:
madeWithTracker = U_("spc2it");
break;
}
}
if(GetType() == MOD_TYPE_MPT)
{
// START - mpt specific:
if(fileHeader.cwtv > 0x0889 && file.Seek(mptStartPos))
{
LoadMPTMProperties(file, fileHeader.cwtv);
}
}
m_modFormat.formatName = (GetType() == MOD_TYPE_MPT) ? U_("OpenMPT MPTM") : MPT_UFORMAT("Impulse Tracker {}.{}")(fileHeader.cmwt >> 8, mpt::ufmt::hex0<2>(fileHeader.cmwt & 0xFF));
m_modFormat.type = (GetType() == MOD_TYPE_MPT) ? U_("mptm") : U_("it");
m_modFormat.madeWithTracker = std::move(madeWithTracker);
m_modFormat.charset = m_dwLastSavedWithVersion ? mpt::Charset::Windows1252 : mpt::Charset::CP437;
return true;
}
void CSoundFile::LoadMPTMProperties(FileReader &file, uint16 cwtv)
{
std::istringstream iStrm(mpt::buffer_cast<std::string>(file.GetRawDataAsByteVector()));
if(cwtv >= 0x88D)
{
srlztn::SsbRead ssb(iStrm);
ssb.BeginRead("mptm", Version::Current().GetRawVersion());
int8 useUTF8Tuning = 0;
ssb.ReadItem(useUTF8Tuning, "UTF8Tuning");
mpt::Charset TuningCharset = useUTF8Tuning ? mpt::Charset::UTF8 : GetCharsetInternal();
ssb.ReadItem(GetTuneSpecificTunings(), "0", [TuningCharset](std::istream &iStrm, CTuningCollection &tc, const std::size_t dummy){ return ReadTuningCollection(iStrm, tc, dummy, TuningCharset); });
ssb.ReadItem(*this, "1", [TuningCharset](std::istream& iStrm, CSoundFile& csf, const std::size_t dummy){ return ReadTuningMap(iStrm, csf, dummy, TuningCharset); });
ssb.ReadItem(Order, "2", &ReadModSequenceOld);
ssb.ReadItem(Patterns, FileIdPatterns, &ReadModPatterns);
mpt::Charset sequenceDefaultCharset = GetCharsetInternal();
ssb.ReadItem(Order, FileIdSequences, [sequenceDefaultCharset](std::istream &iStrm, ModSequenceSet &seq, std::size_t nSize){ return ReadModSequences(iStrm, seq, nSize, sequenceDefaultCharset); });
if(ssb.GetStatus() & srlztn::SNT_FAILURE)
{
AddToLog(LogError, U_("Unknown error occurred while deserializing file."));
}
} else
{
// Loading for older files.
mpt::ustring name;
if(GetTuneSpecificTunings().Deserialize(iStrm, name, GetCharsetInternal()) != Tuning::SerializationResult::Success)
{
AddToLog(LogError, U_("Loading tune specific tunings failed."));
} else
{
ReadTuningMapImpl(iStrm, *this, GetCharsetInternal(), 0, cwtv < 0x88C);
}
}
}
#ifndef MODPLUG_NO_FILESAVE
// Save edit history. Pass a null pointer for *f to retrieve the number of bytes that would be written.
static uint32 SaveITEditHistory(const CSoundFile &sndFile, std::ostream *file)
{
size_t num = sndFile.GetFileHistory().size();
#ifdef MODPLUG_TRACKER
const CModDoc *pModDoc = sndFile.GetpModDoc();
num += (pModDoc != nullptr) ? 1 : 0; // + 1 for this session
#endif // MODPLUG_TRACKER
uint16 fnum = mpt::saturate_cast<uint16>(num); // Number of entries that are actually going to be written
const uint32 bytesWritten = 2 + fnum * 8; // Number of bytes that are actually going to be written
if(!file)
{
return bytesWritten;
}
std::ostream & f = *file;
// Write number of history entries
mpt::IO::WriteIntLE(f, fnum);
// Write history data
const size_t start = (num > uint16_max) ? num - uint16_max : 0;
for(size_t n = start; n < num; n++)
{
FileHistory mptHistory;
#ifdef MODPLUG_TRACKER
if(n < sndFile.GetFileHistory().size())
#endif // MODPLUG_TRACKER
{
// Previous timestamps
mptHistory = sndFile.GetFileHistory()[n];
#ifdef MODPLUG_TRACKER
} else if(pModDoc != nullptr)
{
// Current ("new") timestamp
const time_t creationTime = pModDoc->GetCreationTime();
MemsetZero(mptHistory.loadDate);
//localtime_s(&loadDate, &creationTime);
const tm* const p = localtime(&creationTime);
if (p != nullptr)
mptHistory.loadDate = *p;
else
sndFile.AddToLog(LogError, U_("Unable to retrieve current time."));
mptHistory.openTime = (uint32)(difftime(time(nullptr), creationTime) * HISTORY_TIMER_PRECISION);
#endif // MODPLUG_TRACKER
}
ITHistoryStruct itHistory;
itHistory.ConvertToIT(mptHistory);
mpt::IO::Write(f, itHistory);
}
return bytesWritten;
}
bool CSoundFile::SaveIT(std::ostream &f, const mpt::PathString &filename, bool compatibilityExport)
{
const CModSpecifications &specs = (GetType() == MOD_TYPE_MPT ? ModSpecs::mptm : (compatibilityExport ? ModSpecs::it : ModSpecs::itEx));
uint32 dwChnNamLen;
ITFileHeader itHeader;
uint64 dwPos = 0;
uint32 dwHdrPos = 0, dwExtra = 0;
// Writing Header
MemsetZero(itHeader);
dwChnNamLen = 0;
memcpy(itHeader.id, "IMPM", 4);
mpt::String::WriteBuf(mpt::String::nullTerminated, itHeader.songname) = m_songName;
itHeader.highlight_minor = mpt::saturate_cast<uint8>(m_nDefaultRowsPerBeat);
itHeader.highlight_major = mpt::saturate_cast<uint8>(m_nDefaultRowsPerMeasure);
if(GetType() == MOD_TYPE_MPT)
{
itHeader.ordnum = Order().GetLengthTailTrimmed();
if(Order().NeedsExtraDatafield() && itHeader.ordnum > 256)
{
// If there are more order items, write them elsewhere.
itHeader.ordnum = 256;
}
} else
{
// An additional "---" pattern is appended so Impulse Tracker won't ignore the last order item.
// Interestingly, this can exceed IT's 256 order limit. Also, IT will always save at least two orders.
itHeader.ordnum = std::min(Order().GetLengthTailTrimmed(), specs.ordersMax) + 1;
if(itHeader.ordnum < 2)
itHeader.ordnum = 2;
}
itHeader.insnum = std::min(m_nInstruments, specs.instrumentsMax);
itHeader.smpnum = std::min(m_nSamples, specs.samplesMax);
itHeader.patnum = std::min(Patterns.GetNumPatterns(), specs.patternsMax);
// Parapointers
std::vector<uint32le> patpos(itHeader.patnum);
std::vector<uint32le> smppos(itHeader.smpnum);
std::vector<uint32le> inspos(itHeader.insnum);
//VERSION
if(GetType() == MOD_TYPE_MPT)
{
// MPTM
itHeader.cwtv = verMptFileVer; // Used in OMPT-hack versioning.
itHeader.cmwt = 0x888;
} else
{
// IT
const uint32 mptVersion = Version::Current().GetRawVersion();
itHeader.cwtv = 0x5000 | static_cast<uint16>((mptVersion >> 16) & 0x0FFF); // format: txyy (t = tracker ID, x = version major, yy = version minor), e.g. 0x5117 (OpenMPT = 5, 117 = v1.17)
itHeader.cmwt = 0x0214; // Common compatible tracker :)
// Hack from schism tracker:
for(INSTRUMENTINDEX nIns = 1; nIns <= GetNumInstruments(); nIns++)
{
if(Instruments[nIns] && Instruments[nIns]->PitchEnv.dwFlags[ENV_FILTER])
{
itHeader.cmwt = 0x0216;
break;
}
}
if(compatibilityExport)
itHeader.reserved = mptVersion & 0xFFFF;
else
memcpy(&itHeader.reserved, "OMPT", 4);
}
itHeader.flags = ITFileHeader::useStereoPlayback | ITFileHeader::useMIDIPitchController;
itHeader.special = ITFileHeader::embedEditHistory | ITFileHeader::embedPatternHighlights;
if(m_nInstruments) itHeader.flags |= ITFileHeader::instrumentMode;
if(m_SongFlags[SONG_LINEARSLIDES]) itHeader.flags |= ITFileHeader::linearSlides;
if(m_SongFlags[SONG_ITOLDEFFECTS]) itHeader.flags |= ITFileHeader::itOldEffects;
if(m_SongFlags[SONG_ITCOMPATGXX]) itHeader.flags |= ITFileHeader::itCompatGxx;
if(m_SongFlags[SONG_EXFILTERRANGE] && !compatibilityExport) itHeader.flags |= ITFileHeader::extendedFilterRange;
itHeader.globalvol = static_cast<uint8>(m_nDefaultGlobalVolume / 2u);
itHeader.mv = static_cast<uint8>(std::min(m_nSamplePreAmp, uint32(128)));
itHeader.speed = mpt::saturate_cast<uint8>(m_nDefaultSpeed);
itHeader.tempo = mpt::saturate_cast<uint8>(m_nDefaultTempo.GetInt()); // We save the real tempo in an extension below if it exceeds 255.
itHeader.sep = 128; // pan separation
// IT doesn't have a per-instrument Pitch Wheel Depth setting, so we just store the first non-zero PWD setting in the header.
for(INSTRUMENTINDEX ins = 1; ins <= GetNumInstruments(); ins++)
{
if(Instruments[ins] != nullptr && Instruments[ins]->midiPWD != 0)
{
itHeader.pwd = static_cast<uint8>(std::abs(Instruments[ins]->midiPWD));
break;
}
}
dwHdrPos = sizeof(itHeader) + itHeader.ordnum;
// Channel Pan and Volume
memset(itHeader.chnpan, 0xA0, 64);
memset(itHeader.chnvol, 64, 64);
for(CHANNELINDEX ich = 0; ich < std::min(m_nChannels, CHANNELINDEX(64)); ich++) // Header only has room for settings for 64 chans...
{
itHeader.chnpan[ich] = (uint8)(ChnSettings[ich].nPan >> 2);
if (ChnSettings[ich].dwFlags[CHN_SURROUND]) itHeader.chnpan[ich] = 100;
itHeader.chnvol[ich] = (uint8)(ChnSettings[ich].nVolume);
#ifdef MODPLUG_TRACKER
if(TrackerSettings::Instance().MiscSaveChannelMuteStatus)
#endif
if (ChnSettings[ich].dwFlags[CHN_MUTE]) itHeader.chnpan[ich] |= 0x80;
}
// Channel names
if(!compatibilityExport)
{
for(CHANNELINDEX i = 0; i < m_nChannels; i++)
{
if(ChnSettings[i].szName[0])
{
dwChnNamLen = (i + 1) * MAX_CHANNELNAME;
}
}
if(dwChnNamLen) dwExtra += dwChnNamLen + 8;
}
if(!m_MidiCfg.IsMacroDefaultSetupUsed())
{
itHeader.flags |= ITFileHeader::reqEmbeddedMIDIConfig;
itHeader.special |= ITFileHeader::embedMIDIConfiguration;
dwExtra += sizeof(MIDIMacroConfigData);
}
// Pattern Names
const PATTERNINDEX numNamedPats = compatibilityExport ? 0 : Patterns.GetNumNamedPatterns();
if(numNamedPats > 0)
{
dwExtra += (numNamedPats * MAX_PATTERNNAME) + 8;
}
// Mix Plugins. Just calculate the size of this extra block for now.
if(!compatibilityExport)
{
dwExtra += SaveMixPlugins(nullptr, true);
}
// Edit History. Just calculate the size of this extra block for now.
dwExtra += SaveITEditHistory(*this, nullptr);
// Comments
uint16 msglength = 0;
if(!m_songMessage.empty())
{
itHeader.special |= ITFileHeader::embedSongMessage;
itHeader.msglength = msglength = mpt::saturate_cast<uint16>(m_songMessage.length() + 1u);
itHeader.msgoffset = dwHdrPos + dwExtra + (itHeader.insnum + itHeader.smpnum + itHeader.patnum) * 4;
}
// Write file header
mpt::IO::Write(f, itHeader);
Order().WriteAsByte(f, itHeader.ordnum);
mpt::IO::Write(f, inspos);
mpt::IO::Write(f, smppos);
mpt::IO::Write(f, patpos);
// Writing edit history information
SaveITEditHistory(*this, &f);
// Writing midi cfg
if(itHeader.flags & ITFileHeader::reqEmbeddedMIDIConfig)
{
mpt::IO::Write(f, static_cast<MIDIMacroConfigData &>(m_MidiCfg));
}
// Writing pattern names
if(numNamedPats)
{
mpt::IO::WriteRaw(f, "PNAM", 4);
mpt::IO::WriteIntLE<uint32>(f, numNamedPats * MAX_PATTERNNAME);
for(PATTERNINDEX pat = 0; pat < numNamedPats; pat++)
{
char name[MAX_PATTERNNAME];
mpt::String::WriteBuf(mpt::String::maybeNullTerminated, name) = Patterns[pat].GetName();
mpt::IO::Write(f, name);
}
}
// Writing channel names
if(dwChnNamLen && !compatibilityExport)
{
mpt::IO::WriteRaw(f, "CNAM", 4);
mpt::IO::WriteIntLE<uint32>(f, dwChnNamLen);
uint32 nChnNames = dwChnNamLen / MAX_CHANNELNAME;
for(uint32 inam = 0; inam < nChnNames; inam++)
{
char name[MAX_CHANNELNAME];
mpt::String::WriteBuf(mpt::String::maybeNullTerminated, name) = ChnSettings[inam].szName;
mpt::IO::Write(f, name);
}
}
// Writing mix plugins info
if(!compatibilityExport)
{
SaveMixPlugins(&f, false);
}
// Writing song message
dwPos = dwHdrPos + dwExtra + (itHeader.insnum + itHeader.smpnum + itHeader.patnum) * 4;
if(itHeader.special & ITFileHeader::embedSongMessage)
{
dwPos += msglength;
mpt::IO::WriteRaw(f, m_songMessage.c_str(), msglength);
}
// Writing instruments
const ModInstrument dummyInstr;
for(INSTRUMENTINDEX nins = 1; nins <= itHeader.insnum; nins++)
{
ITInstrumentEx iti;
uint32 instSize;
const ModInstrument &instr = (Instruments[nins] != nullptr) ? *Instruments[nins] : dummyInstr;
instSize = iti.ConvertToIT(instr, compatibilityExport, *this);
// Writing instrument
inspos[nins - 1] = static_cast<uint32>(dwPos);
dwPos += instSize;
mpt::IO::WritePartial(f, iti, instSize);
}
// Writing dummy sample headers (until we know the correct sample data offset)
ITSample itss;
MemsetZero(itss);
for(SAMPLEINDEX smp = 0; smp < itHeader.smpnum; smp++)
{
smppos[smp] = static_cast<uint32>(dwPos);
dwPos += sizeof(ITSample);
mpt::IO::Write(f, itss);
}
// Writing Patterns
bool needsMptPatSave = false;
for(PATTERNINDEX pat = 0; pat < itHeader.patnum; pat++)
{
uint32 dwPatPos = static_cast<uint32>(dwPos);
if (!Patterns.IsValidPat(pat)) continue;
if(Patterns[pat].GetOverrideSignature())
needsMptPatSave = true;
// Check for empty pattern
if(Patterns[pat].GetNumRows() == 64 && Patterns.IsPatternEmpty(pat))
{
patpos[pat] = 0;
continue;
}
patpos[pat] = static_cast<uint32>(dwPos);
// Write pattern header
ROWINDEX writeRows = mpt::saturate_cast<uint16>(Patterns[pat].GetNumRows());
uint16 writeSize = 0;
uint16le patinfo[4];
patinfo[0] = 0;
patinfo[1] = static_cast<uint16>(writeRows);
patinfo[2] = 0;
patinfo[3] = 0;
mpt::IO::Write(f, patinfo);
dwPos += 8;
struct ChnState { ModCommand lastCmd; uint8 mask = 0xFF; };
const CHANNELINDEX maxChannels = std::min(specs.channelsMax, GetNumChannels());
std::vector<ChnState> chnStates(maxChannels);
// Maximum 7 bytes per cell, plus end of row marker, so this buffer is always large enough to cover one row.
std::vector<uint8> buf(7 * maxChannels + 1);
for(ROWINDEX row = 0; row < writeRows; row++)
{
uint32 len = 0;
const ModCommand *m = Patterns[pat].GetpModCommand(row, 0);
for(CHANNELINDEX ch = 0; ch < maxChannels; ch++, m++)
{
// Skip mptm-specific notes.
if(m->IsPcNote())
{
needsMptPatSave = true;
continue;
}
auto &chnState = chnStates[ch];
uint8 b = 0;
uint8 command = m->command;
uint8 param = m->param;
uint8 vol = 0xFF;
uint8 note = m->note;
if (note != NOTE_NONE) b |= 1;
if (m->IsNote()) note -= NOTE_MIN;
if (note == NOTE_FADE && GetType() != MOD_TYPE_MPT) note = 0xF6;
if (m->instr) b |= 2;
if (m->volcmd != VOLCMD_NONE)
{
vol = std::min(m->vol, uint8(9));
switch(m->volcmd)
{
case VOLCMD_VOLUME: vol = std::min(m->vol, uint8(64)); break;
case VOLCMD_PANNING: vol = std::min(m->vol, uint8(64)) + 128; break;
case VOLCMD_VOLSLIDEUP: vol += 85; break;
case VOLCMD_VOLSLIDEDOWN: vol += 95; break;
case VOLCMD_FINEVOLUP: vol += 65; break;
case VOLCMD_FINEVOLDOWN: vol += 75; break;
case VOLCMD_VIBRATODEPTH: vol += 203; break;
case VOLCMD_TONEPORTAMENTO: vol += 193; break;
case VOLCMD_PORTADOWN: vol += 105; break;
case VOLCMD_PORTAUP: vol += 115; break;
case VOLCMD_VIBRATOSPEED:
if(command == CMD_NONE)
{
// Move unsupported command if possible
command = CMD_VIBRATO;
param = std::min(m->vol, uint8(15)) << 4;
vol = 0xFF;
} else
{
vol = 203;
}
break;
case VOLCMD_OFFSET:
if(!compatibilityExport)
vol += 223;
else
vol = 0xFF;
break;
default: vol = 0xFF;
}
}
if (vol != 0xFF) b |= 4;
if (command != CMD_NONE)
{
S3MSaveConvert(command, param, true, compatibilityExport);
if (command) b |= 8;
}
// Packing information
if (b)
{
// Same note ?
if (b & 1)
{
if ((note == chnState.lastCmd.note) && (chnState.lastCmd.volcmd & 1))
{
b &= ~1;
b |= 0x10;
} else
{
chnState.lastCmd.note = note;
chnState.lastCmd.volcmd |= 1;
}
}
// Same instrument ?
if (b & 2)
{
if ((m->instr == chnState.lastCmd.instr) && (chnState.lastCmd.volcmd & 2))
{
b &= ~2;
b |= 0x20;
} else
{
chnState.lastCmd.instr = m->instr;
chnState.lastCmd.volcmd |= 2;
}
}
// Same volume column byte ?
if (b & 4)
{
if ((vol == chnState.lastCmd.vol) && (chnState.lastCmd.volcmd & 4))
{
b &= ~4;
b |= 0x40;
} else
{
chnState.lastCmd.vol = vol;
chnState.lastCmd.volcmd |= 4;
}
}
// Same command / param ?
if (b & 8)
{
if ((command == chnState.lastCmd.command) && (param == chnState.lastCmd.param) && (chnState.lastCmd.volcmd & 8))
{
b &= ~8;
b |= 0x80;
} else
{
chnState.lastCmd.command = command;
chnState.lastCmd.param = param;
chnState.lastCmd.volcmd |= 8;
}
}
if (b != chnState.mask)
{
chnState.mask = b;
buf[len++] = static_cast<uint8>((ch + 1) | IT_bitmask_patternChanEnabled_c);
buf[len++] = b;
} else
{
buf[len++] = static_cast<uint8>(ch + 1);
}
if (b & 1) buf[len++] = note;
if (b & 2) buf[len++] = m->instr;
if (b & 4) buf[len++] = vol;
if (b & 8)
{
buf[len++] = command;
buf[len++] = param;
}
}
}
buf[len++] = 0;
if(writeSize > uint16_max - len)
{
AddToLog(LogWarning, MPT_UFORMAT("Warning: File format limit was reached. Some pattern data may not get written to file. (pattern {})")(pat));
break;
} else
{
dwPos += len;
writeSize += (uint16)len;
mpt::IO::WriteRaw(f, buf.data(), len);
}
}
mpt::IO::SeekAbsolute(f, dwPatPos);
patinfo[0] = writeSize;
mpt::IO::Write(f, patinfo);
mpt::IO::SeekAbsolute(f, dwPos);
}
// Writing Sample Data
for(SAMPLEINDEX smp = 1; smp <= itHeader.smpnum; smp++)
{
const ModSample &sample = Samples[smp];
#ifdef MODPLUG_TRACKER
uint32 type = GetType() == MOD_TYPE_IT ? 1 : 4;
if(compatibilityExport) type = 2;
bool compress = ((((sample.GetNumChannels() > 1) ? TrackerSettings::Instance().MiscITCompressionStereo : TrackerSettings::Instance().MiscITCompressionMono) & type) != 0);
#else
bool compress = false;
#endif // MODPLUG_TRACKER
// Old MPT, DUMB and probably other libraries will only consider the IT2.15 compression flag if the header version also indicates IT2.15.
// MilkyTracker <= 0.90.85 assumes IT2.15 compression with cmwt == 0x215, ignoring the delta flag completely.
itss.ConvertToIT(sample, GetType(), compress, itHeader.cmwt >= 0x215, GetType() == MOD_TYPE_MPT);
const bool isExternal = itss.cvt == ITSample::cvtExternalSample;
mpt::String::WriteBuf(mpt::String::nullTerminated, itss.name) = m_szNames[smp];
itss.samplepointer = static_cast<uint32>(dwPos);
if(dwPos > uint32_max)
{
// Sample position does not fit into sample pointer!
AddToLog(LogWarning, MPT_UFORMAT("Cannot save sample {}: File size exceeds 4 GB.")(smp));
itss.samplepointer = 0;
itss.length = 0;
}
SmpLength smpLength = itss.length; // Possibly truncated to 2^32 samples
mpt::IO::SeekAbsolute(f, smppos[smp - 1]);
mpt::IO::Write(f, itss);
if(dwPos > uint32_max)
{
continue;
}
// TODO this actually wraps around at 2 GB, so we either need to use the 64-bit seek API or warn earlier!
mpt::IO::SeekAbsolute(f, dwPos);
if(!isExternal)
{
if(sample.nLength > smpLength && smpLength != 0)
{
// Sample length does not fit into IT header!
AddToLog(LogWarning, MPT_UFORMAT("Truncating sample {}: Length exceeds exceeds 4 gigasamples.")(smp));
}
dwPos += itss.GetSampleFormat().WriteSample(f, sample, smpLength);
} else
{
#ifdef MPT_EXTERNAL_SAMPLES
const std::string filenameU8 = GetSamplePath(smp).AbsolutePathToRelative(filename.GetPath()).ToUTF8();
const size_t strSize = filenameU8.size();
size_t intBytes = 0;
if(mpt::IO::WriteVarInt(f, strSize, &intBytes))
{
dwPos += intBytes + strSize;
mpt::IO::WriteRaw(f, filenameU8.data(), strSize);
}
#else
MPT_UNREFERENCED_PARAMETER(filename);
#endif // MPT_EXTERNAL_SAMPLES
}
}
//Save hacked-on extra info
if(!compatibilityExport)
{
if(GetNumInstruments())
{
SaveExtendedInstrumentProperties(itHeader.insnum, f);
}
SaveExtendedSongProperties(f);
}
// Updating offsets
mpt::IO::SeekAbsolute(f, dwHdrPos);
mpt::IO::Write(f, inspos);
mpt::IO::Write(f, smppos);
mpt::IO::Write(f, patpos);
if(GetType() == MOD_TYPE_IT)
{
return true;
}
//hack
//BEGIN: MPT SPECIFIC:
bool success = true;
mpt::IO::SeekEnd(f);
const mpt::IO::Offset MPTStartPos = mpt::IO::TellWrite(f);
srlztn::SsbWrite ssb(f);
ssb.BeginWrite("mptm", Version::Current().GetRawVersion());
if(GetTuneSpecificTunings().GetNumTunings() > 0 || AreNonDefaultTuningsUsed(*this))
ssb.WriteItem(int8(1), "UTF8Tuning");
if(GetTuneSpecificTunings().GetNumTunings() > 0)
ssb.WriteItem(GetTuneSpecificTunings(), "0", &WriteTuningCollection);
if(AreNonDefaultTuningsUsed(*this))
ssb.WriteItem(*this, "1", &WriteTuningMap);
if(Order().NeedsExtraDatafield())
ssb.WriteItem(Order, "2", &WriteModSequenceOld);
if(needsMptPatSave)
ssb.WriteItem(Patterns, FileIdPatterns, &WriteModPatterns);
ssb.WriteItem(Order, FileIdSequences, &WriteModSequences);
ssb.FinishWrite();
if(ssb.GetStatus() & srlztn::SNT_FAILURE)
{
AddToLog(LogError, U_("Error occurred in writing MPTM extensions."));
}
//Last 4 bytes should tell where the hack mpt things begin.
if(!f.good())
{
f.clear();
success = false;
}
mpt::IO::WriteIntLE<uint32>(f, static_cast<uint32>(MPTStartPos));
mpt::IO::SeekEnd(f);
//END : MPT SPECIFIC
//NO WRITING HERE ANYMORE.
return success;
}
#endif // MODPLUG_NO_FILESAVE
#ifndef MODPLUG_NO_FILESAVE
uint32 CSoundFile::SaveMixPlugins(std::ostream *file, bool updatePlugData)
{
#ifndef NO_PLUGINS
uint32 totalSize = 0;
for(PLUGINDEX i = 0; i < MAX_MIXPLUGINS; i++)
{
const SNDMIXPLUGIN &plugin = m_MixPlugins[i];
if(plugin.IsValidPlugin())
{
uint32 chunkSize = sizeof(SNDMIXPLUGININFO) + 4; // plugininfo+4 (datalen)
if(plugin.pMixPlugin && updatePlugData)
{
plugin.pMixPlugin->SaveAllParameters();
}
const uint32 extraDataSize =
4 + sizeof(float32) + // 4 for ID and size of dryRatio
4 + sizeof(int32); // Default Program
// For each extra entity, add 4 for ID, plus 4 for size of entity, plus size of entity
chunkSize += extraDataSize + 4; // +4 is for size field itself
const uint32 plugDataSize = std::min(mpt::saturate_cast<uint32>(plugin.pluginData.size()), uint32_max - chunkSize);
chunkSize += plugDataSize;
if(file)
{
std::ostream &f = *file;
// Chunk ID (= plugin ID)
char id[4] = { 'F', 'X', '0', '0' };
if(i >= 100) id[1] = '0' + (i / 100u);
id[2] += (i / 10u) % 10u;
id[3] += (i % 10u);
mpt::IO::WriteRaw(f, id, 4);
// Write chunk size, plugin info and plugin data chunk
mpt::IO::WriteIntLE<uint32>(f, chunkSize);
mpt::IO::Write(f, m_MixPlugins[i].Info);
mpt::IO::WriteIntLE<uint32>(f, plugDataSize);
if(plugDataSize)
{
mpt::IO::WriteRaw(f, m_MixPlugins[i].pluginData.data(), plugDataSize);
}
mpt::IO::WriteIntLE<uint32>(f, extraDataSize);
// Dry/Wet ratio
mpt::IO::WriteRaw(f, "DWRT", 4);
// DWRT chunk does not include a size, so better make sure we always write 4 bytes here.
static_assert(sizeof(IEEE754binary32LE) == 4);
mpt::IO::Write(f, IEEE754binary32LE(m_MixPlugins[i].fDryRatio));
// Default program
mpt::IO::WriteRaw(f, "PROG", 4);
// PROG chunk does not include a size, so better make sure we always write 4 bytes here.
static_assert(sizeof(m_MixPlugins[i].defaultProgram) == sizeof(int32));
mpt::IO::WriteIntLE<int32>(f, m_MixPlugins[i].defaultProgram);
// Please, if you add any more chunks here, don't repeat history (see above) and *do* add a size field for your chunk, mmmkay?
}
totalSize += chunkSize + 8;
}
}
std::vector<uint32le> chinfo(GetNumChannels());
uint32 numChInfo = 0;
for(CHANNELINDEX j = 0; j < GetNumChannels(); j++)
{
if((chinfo[j] = ChnSettings[j].nMixPlugin) != 0)
{
numChInfo = j + 1;
}
}
if(numChInfo)
{
if(file)
{
std::ostream &f = *file;
mpt::IO::WriteRaw(f, "CHFX", 4);
mpt::IO::WriteIntLE<uint32>(f, numChInfo * 4);
chinfo.resize(numChInfo);
mpt::IO::Write(f, chinfo);
}
totalSize += numChInfo * 4 + 8;
}
return totalSize;
#else
MPT_UNREFERENCED_PARAMETER(file);
MPT_UNREFERENCED_PARAMETER(updatePlugData);
return 0;
#endif // NO_PLUGINS
}
#endif // MODPLUG_NO_FILESAVE
bool CSoundFile::LoadMixPlugins(FileReader &file)
{
bool isBeRoTracker = false;
while(file.CanRead(9))
{
char code[4];
file.ReadArray(code);
const uint32 chunkSize = file.ReadUint32LE();
if(!memcmp(code, "IMPI", 4) // IT instrument, we definitely read too far
|| !memcmp(code, "IMPS", 4) // IT sample, ditto
|| !memcmp(code, "XTPM", 4) // Instrument extensions, ditto
|| !memcmp(code, "STPM", 4) // Song extensions, ditto
|| !file.CanRead(chunkSize))
{
file.SkipBack(8);
return isBeRoTracker;
}
FileReader chunk = file.ReadChunk(chunkSize);
// Channel FX
if(!memcmp(code, "CHFX", 4))
{
for(auto &chn : ChnSettings)
{
chn.nMixPlugin = static_cast<PLUGINDEX>(chunk.ReadUint32LE());
}
#ifndef NO_PLUGINS
}
// Plugin Data FX00, ... FX99, F100, ... F255
#define MPT_ISDIGIT(x) (code[(x)] >= '0' && code[(x)] <= '9')
else if(code[0] == 'F' && (code[1] == 'X' || MPT_ISDIGIT(1)) && MPT_ISDIGIT(2) && MPT_ISDIGIT(3))
#undef MPT_ISDIGIT
{
PLUGINDEX plug = (code[2] - '0') * 10 + (code[3] - '0'); //calculate plug-in number.
if(code[1] != 'X') plug += (code[1] - '0') * 100;
if(plug < MAX_MIXPLUGINS)
{
ReadMixPluginChunk(chunk, m_MixPlugins[plug]);
}
#endif // NO_PLUGINS
} else if(!memcmp(code, "MODU", 4))
{
isBeRoTracker = true;
m_dwLastSavedWithVersion = Version(); // Reset MPT detection for old files that have a similar fingerprint
}
}
return isBeRoTracker;
}
#ifndef NO_PLUGINS
void CSoundFile::ReadMixPluginChunk(FileReader &file, SNDMIXPLUGIN &plugin)
{
// MPT's standard plugin data. Size not specified in file.. grrr..
file.ReadStruct(plugin.Info);
mpt::String::SetNullTerminator(plugin.Info.szName.buf);
mpt::String::SetNullTerminator(plugin.Info.szLibraryName.buf);
plugin.editorX = plugin.editorY = int32_min;
// Plugin user data
FileReader pluginDataChunk = file.ReadChunk(file.ReadUint32LE());
plugin.pluginData.resize(mpt::saturate_cast<size_t>(pluginDataChunk.BytesLeft()));
pluginDataChunk.ReadRaw(mpt::as_span(plugin.pluginData));
if(FileReader modularData = file.ReadChunk(file.ReadUint32LE()); modularData.IsValid())
{
while(modularData.CanRead(5))
{
// do we recognize this chunk?
char code[4];
modularData.ReadArray(code);
uint32 dataSize = 0;
if(!memcmp(code, "DWRT", 4) || !memcmp(code, "PROG", 4))
{
// Legacy system with fixed size chunks
dataSize = 4;
} else
{
dataSize = modularData.ReadUint32LE();
}
FileReader dataChunk = modularData.ReadChunk(dataSize);
if(!memcmp(code, "DWRT", 4))
{
plugin.fDryRatio = std::clamp(dataChunk.ReadFloatLE(), 0.0f, 1.0f);
if(!std::isnormal(plugin.fDryRatio))
plugin.fDryRatio = 0.0f;
} else if(!memcmp(code, "PROG", 4))
{
plugin.defaultProgram = dataChunk.ReadUint32LE();
} else if(!memcmp(code, "MCRO", 4))
{
// Read plugin-specific macros
//dataChunk.ReadStructPartial(plugin.macros, dataChunk.GetLength());
}
}
}
}
#endif // NO_PLUGINS
#ifndef MODPLUG_NO_FILESAVE
void CSoundFile::SaveExtendedSongProperties(std::ostream &f) const
{
const CModSpecifications &specs = GetModSpecifications();
// Extra song data - Yet Another Hack.
mpt::IO::WriteIntLE<uint32>(f, MagicBE("MPTS"));
#define WRITEMODULARHEADER(code, fsize) \
{ \
mpt::IO::WriteIntLE<uint32>(f, code); \
MPT_ASSERT(mpt::in_range<uint16>(fsize)); \
const uint16 _size = fsize; \
mpt::IO::WriteIntLE<uint16>(f, _size); \
}
#define WRITEMODULAR(code, field) \
{ \
WRITEMODULARHEADER(code, sizeof(field)) \
mpt::IO::WriteIntLE(f, field); \
}
if(m_nDefaultTempo.GetInt() > 255)
{
uint32 tempo = m_nDefaultTempo.GetInt();
WRITEMODULAR(MagicBE("DT.."), tempo);
}
if(m_nDefaultTempo.GetFract() != 0 && specs.hasFractionalTempo)
{
uint32 tempo = m_nDefaultTempo.GetFract();
WRITEMODULAR(MagicLE("DTFR"), tempo);
}
if(m_nDefaultRowsPerBeat > 255 || m_nDefaultRowsPerMeasure > 255 || GetType() == MOD_TYPE_XM)
{
WRITEMODULAR(MagicBE("RPB."), m_nDefaultRowsPerBeat);
WRITEMODULAR(MagicBE("RPM."), m_nDefaultRowsPerMeasure);
}
if(GetType() != MOD_TYPE_XM)
{
WRITEMODULAR(MagicBE("C..."), m_nChannels);
}
if((GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT)) && GetNumChannels() > 64)
{
// IT header has only room for 64 channels. Save the settings that do not fit to the header here as an extension.
WRITEMODULARHEADER(MagicBE("ChnS"), (GetNumChannels() - 64) * 2);
for(CHANNELINDEX chn = 64; chn < GetNumChannels(); chn++)
{
uint8 panvol[2];
panvol[0] = (uint8)(ChnSettings[chn].nPan >> 2);
if (ChnSettings[chn].dwFlags[CHN_SURROUND]) panvol[0] = 100;
if (ChnSettings[chn].dwFlags[CHN_MUTE]) panvol[0] |= 0x80;
panvol[1] = (uint8)ChnSettings[chn].nVolume;
mpt::IO::Write(f, panvol);
}
}
{
WRITEMODULARHEADER(MagicBE("TM.."), 1);
uint8 mode = static_cast<uint8>(m_nTempoMode);
mpt::IO::WriteIntLE(f, mode);
}
const int32 tmpMixLevels = static_cast<int32>(m_nMixLevels);
WRITEMODULAR(MagicBE("PMM."), tmpMixLevels);
if(m_dwCreatedWithVersion)
{
WRITEMODULAR(MagicBE("CWV."), m_dwCreatedWithVersion.GetRawVersion());
}
WRITEMODULAR(MagicBE("LSWV"), Version::Current().GetRawVersion());
WRITEMODULAR(MagicBE("SPA."), m_nSamplePreAmp);
WRITEMODULAR(MagicBE("VSTV"), m_nVSTiVolume);
if(GetType() == MOD_TYPE_XM && m_nDefaultGlobalVolume != MAX_GLOBAL_VOLUME)
{
WRITEMODULAR(MagicBE("DGV."), m_nDefaultGlobalVolume);
}
if(GetType() != MOD_TYPE_XM && Order().GetRestartPos() != 0)
{
WRITEMODULAR(MagicBE("RP.."), Order().GetRestartPos());
}
if(m_nResampling != SRCMODE_DEFAULT && specs.hasDefaultResampling)
{
WRITEMODULAR(MagicLE("RSMP"), static_cast<uint32>(m_nResampling));
}
// Sample cues
if(GetType() == MOD_TYPE_MPT)
{
for(SAMPLEINDEX smp = 1; smp <= GetNumSamples(); smp++)
{
const ModSample &sample = Samples[smp];
if(sample.nLength && sample.HasCustomCuePoints())
{
// Write one chunk for every sample.
// Rationale: chunks are limited to 65536 bytes, which can easily be reached
// with the amount of samples that OpenMPT supports.
WRITEMODULARHEADER(MagicLE("CUES"), static_cast<uint16>(2 + std::size(sample.cues) * 4));
mpt::IO::WriteIntLE<uint16>(f, smp);
for(auto cue : sample.cues)
{
mpt::IO::WriteIntLE<uint32>(f, cue);
}
}
}
}
// Tempo Swing Factors
if(!m_tempoSwing.empty())
{
std::ostringstream oStrm;
TempoSwing::Serialize(oStrm, m_tempoSwing);
std::string data = oStrm.str();
uint16 length = mpt::saturate_cast<uint16>(data.size());
WRITEMODULARHEADER(MagicLE("SWNG"), length);
mpt::IO::WriteRaw(f, data.data(), length);
}
// Playback compatibility flags
{
uint8 bits[(kMaxPlayBehaviours + 7) / 8u];
MemsetZero(bits);
size_t maxBit = 0;
for(size_t i = 0; i < kMaxPlayBehaviours; i++)
{
if(m_playBehaviour[i])
{
bits[i >> 3] |= 1 << (i & 0x07);
maxBit = i + 8;
}
}
uint16 numBytes = static_cast<uint16>(maxBit / 8u);
WRITEMODULARHEADER(MagicBE("MSF."), numBytes);
mpt::IO::WriteRaw(f, bits, numBytes);
}
if(!m_songArtist.empty() && specs.hasArtistName)
{
std::string songArtistU8 = mpt::ToCharset(mpt::Charset::UTF8, m_songArtist);
uint16 length = mpt::saturate_cast<uint16>(songArtistU8.length());
WRITEMODULARHEADER(MagicLE("AUTH"), length);
mpt::IO::WriteRaw(f, songArtistU8.c_str(), length);
}
#ifdef MODPLUG_TRACKER
// MIDI mapping directives
if(GetMIDIMapper().GetCount() > 0)
{
const size_t objectsize = GetMIDIMapper().Serialize();
if(!mpt::in_range<uint16>(objectsize))
{
AddToLog(LogWarning, U_("Too many MIDI Mapping directives to save; data won't be written."));
} else
{
WRITEMODULARHEADER(MagicBE("MIMA"), static_cast<uint16>(objectsize));
GetMIDIMapper().Serialize(&f);
}
}
// Channel colors
{
CHANNELINDEX numChannels = 0;
for(CHANNELINDEX i = 0; i < m_nChannels; i++)
{
if(ChnSettings[i].color != ModChannelSettings::INVALID_COLOR)
{
numChannels = i + 1;
}
}
if(numChannels > 0)
{
WRITEMODULARHEADER(MagicLE("CCOL"), numChannels * 4);
for(CHANNELINDEX i = 0; i < numChannels; i++)
{
uint32 color = ChnSettings[i].color;
if(color != ModChannelSettings::INVALID_COLOR)
color &= 0x00FFFFFF;
std::array<uint8, 4> rgb{static_cast<uint8>(color), static_cast<uint8>(color >> 8), static_cast<uint8>(color >> 16), static_cast<uint8>(color >> 24)};
mpt::IO::Write(f, rgb);
}
}
}
#endif
#undef WRITEMODULAR
#undef WRITEMODULARHEADER
return;
}
#endif // MODPLUG_NO_FILESAVE
template<typename T>
void ReadField(FileReader &chunk, std::size_t size, T &field)
{
field = chunk.ReadSizedIntLE<T>(size);
}
template<typename T>
void ReadFieldCast(FileReader &chunk, std::size_t size, T &field)
{
static_assert(sizeof(T) <= sizeof(int32));
field = static_cast<T>(chunk.ReadSizedIntLE<int32>(size));
}
void CSoundFile::LoadExtendedSongProperties(FileReader &file, bool ignoreChannelCount, bool *pInterpretMptMade)
{
if(!file.ReadMagic("STPM")) // 'MPTS'
{
return;
}
// Found MPTS, interpret the file MPT made.
if(pInterpretMptMade != nullptr)
*pInterpretMptMade = true;
// HACK: Reset mod flags to default values here, as they are not always written.
m_playBehaviour.reset();
while(file.CanRead(7))
{
const uint32 code = file.ReadUint32LE();
const uint16 size = file.ReadUint16LE();
// Start of MPTM extensions, non-ASCII ID or truncated field
if(code == MagicLE("228\x04"))
{
file.SkipBack(6);
break;
} else if((code & 0x80808080) || !(code & 0x60606060) || !file.CanRead(size))
{
break;
}
FileReader chunk = file.ReadChunk(size);
switch (code) // interpret field code
{
case MagicBE("DT.."): { uint32 tempo; ReadField(chunk, size, tempo); m_nDefaultTempo.Set(tempo, m_nDefaultTempo.GetFract()); break; }
case MagicLE("DTFR"): { uint32 tempoFract; ReadField(chunk, size, tempoFract); m_nDefaultTempo.Set(m_nDefaultTempo.GetInt(), tempoFract); break; }
case MagicBE("RPB."): ReadField(chunk, size, m_nDefaultRowsPerBeat); break;
case MagicBE("RPM."): ReadField(chunk, size, m_nDefaultRowsPerMeasure); break;
// FIXME: If there are only PC events on the last few channels in an MPTM MO3, they won't be imported!
case MagicBE("C..."): if(!ignoreChannelCount) { CHANNELINDEX chn = 0; ReadField(chunk, size, chn); m_nChannels = Clamp(chn, m_nChannels, MAX_BASECHANNELS); } break;
case MagicBE("TM.."): ReadFieldCast(chunk, size, m_nTempoMode); break;
case MagicBE("PMM."): ReadFieldCast(chunk, size, m_nMixLevels); break;
case MagicBE("CWV."): { uint32 ver = 0; ReadField(chunk, size, ver); m_dwCreatedWithVersion = Version(ver); break; }
case MagicBE("LSWV"): { uint32 ver = 0; ReadField(chunk, size, ver); if(ver != 0) { m_dwLastSavedWithVersion = Version(ver); } break; }
case MagicBE("SPA."): ReadField(chunk, size, m_nSamplePreAmp); break;
case MagicBE("VSTV"): ReadField(chunk, size, m_nVSTiVolume); break;
case MagicBE("DGV."): ReadField(chunk, size, m_nDefaultGlobalVolume); break;
case MagicBE("RP.."): if(GetType() != MOD_TYPE_XM) { ORDERINDEX restartPos; ReadField(chunk, size, restartPos); Order().SetRestartPos(restartPos); } break;
case MagicLE("RSMP"):
ReadFieldCast(chunk, size, m_nResampling);
if(!Resampling::IsKnownMode(m_nResampling)) m_nResampling = SRCMODE_DEFAULT;
break;
#ifdef MODPLUG_TRACKER
case MagicBE("MIMA"): GetMIDIMapper().Deserialize(chunk); break;
case MagicLE("CCOL"):
// Channel colors
{
const CHANNELINDEX numChannels = std::min(MAX_BASECHANNELS, static_cast<CHANNELINDEX>(size / 4u));
for(CHANNELINDEX i = 0; i < numChannels; i++)
{
auto rgb = chunk.ReadArray<uint8, 4>();
if(rgb[3])
ChnSettings[i].color = ModChannelSettings::INVALID_COLOR;
else
ChnSettings[i].color = rgb[0] | (rgb[1] << 8) | (rgb[2] << 16);
}
}
break;
#endif
case MagicLE("AUTH"):
{
std::string artist;
chunk.ReadString<mpt::String::spacePadded>(artist, chunk.GetLength());
m_songArtist = mpt::ToUnicode(mpt::Charset::UTF8, artist);
}
break;
case MagicBE("ChnS"):
// Channel settings for channels 65+
if(size <= (MAX_BASECHANNELS - 64) * 2 && (size % 2u) == 0)
{
static_assert(mpt::array_size<decltype(ChnSettings)>::size >= 64);
const CHANNELINDEX loopLimit = std::min(uint16(64 + size / 2), uint16(std::size(ChnSettings)));
for(CHANNELINDEX chn = 64; chn < loopLimit; chn++)
{
auto [pan, vol] = chunk.ReadArray<uint8, 2>();
if(pan != 0xFF)
{
ChnSettings[chn].nVolume = vol;
ChnSettings[chn].nPan = 128;
ChnSettings[chn].dwFlags.reset();
if(pan & 0x80) ChnSettings[chn].dwFlags.set(CHN_MUTE);
pan &= 0x7F;
if(pan <= 64) ChnSettings[chn].nPan = pan << 2;
if(pan == 100) ChnSettings[chn].dwFlags.set(CHN_SURROUND);
}
}
}
break;
case MagicLE("CUES"):
// Sample cues
if(size > 2)
{
SAMPLEINDEX smp = chunk.ReadUint16LE();
if(smp > 0 && smp <= GetNumSamples())
{
ModSample &sample = Samples[smp];
for(auto &cue : sample.cues)
{
if(chunk.CanRead(4))
cue = chunk.ReadUint32LE();
else
cue = MAX_SAMPLE_LENGTH;
}
}
}
break;
case MagicLE("SWNG"):
// Tempo Swing Factors
if(size > 2)
{
std::istringstream iStrm(mpt::buffer_cast<std::string>(chunk.ReadRawDataAsByteVector()));
TempoSwing::Deserialize(iStrm, m_tempoSwing, chunk.GetLength());
}
break;
case MagicBE("MSF."):
// Playback compatibility flags
{
size_t bit = 0;
m_playBehaviour.reset();
while(chunk.CanRead(1) && bit < m_playBehaviour.size())
{
uint8 b = chunk.ReadUint8();
for(uint8 i = 0; i < 8; i++, bit++)
{
if((b & (1 << i)) && bit < m_playBehaviour.size())
{
m_playBehaviour.set(bit);
}
}
}
}
break;
}
}
// Validate read values.
Limit(m_nDefaultTempo, GetModSpecifications().GetTempoMin(), GetModSpecifications().GetTempoMax());
if(m_nTempoMode >= TempoMode::NumModes)
m_nTempoMode = TempoMode::Classic;
if(m_nMixLevels >= MixLevels::NumMixLevels)
m_nMixLevels = MixLevels::Original;
//m_dwCreatedWithVersion
//m_dwLastSavedWithVersion
//m_nSamplePreAmp
//m_nVSTiVolume
//m_nDefaultGlobalVolume
LimitMax(m_nDefaultGlobalVolume, MAX_GLOBAL_VOLUME);
//m_nRestartPos
//m_ModFlags
LimitMax(m_nDefaultRowsPerBeat, MAX_ROWS_PER_BEAT);
LimitMax(m_nDefaultRowsPerMeasure, MAX_ROWS_PER_BEAT);
}
OPENMPT_NAMESPACE_END