1376 lines
37 KiB
C
Vendored
1376 lines
37 KiB
C
Vendored
/*
|
|
* MP3 huffman table selecting and bit counting
|
|
*
|
|
* Copyright (c) 1999-2005 Takehiro TOMINAGA
|
|
* Copyright (c) 2002-2005 Gabriel Bouvigne
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/* $Id: takehiro.c,v 1.80 2017/09/06 15:07:30 robert Exp $ */
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
|
|
#include "lame.h"
|
|
#include "machine.h"
|
|
#include "encoder.h"
|
|
#include "util.h"
|
|
#include "quantize_pvt.h"
|
|
#include "tables.h"
|
|
|
|
|
|
static const struct {
|
|
const int region0_count;
|
|
const int region1_count;
|
|
} subdv_table[23] = {
|
|
{
|
|
0, 0}, /* 0 bands */
|
|
{
|
|
0, 0}, /* 1 bands */
|
|
{
|
|
0, 0}, /* 2 bands */
|
|
{
|
|
0, 0}, /* 3 bands */
|
|
{
|
|
0, 0}, /* 4 bands */
|
|
{
|
|
0, 1}, /* 5 bands */
|
|
{
|
|
1, 1}, /* 6 bands */
|
|
{
|
|
1, 1}, /* 7 bands */
|
|
{
|
|
1, 2}, /* 8 bands */
|
|
{
|
|
2, 2}, /* 9 bands */
|
|
{
|
|
2, 3}, /* 10 bands */
|
|
{
|
|
2, 3}, /* 11 bands */
|
|
{
|
|
3, 4}, /* 12 bands */
|
|
{
|
|
3, 4}, /* 13 bands */
|
|
{
|
|
3, 4}, /* 14 bands */
|
|
{
|
|
4, 5}, /* 15 bands */
|
|
{
|
|
4, 5}, /* 16 bands */
|
|
{
|
|
4, 6}, /* 17 bands */
|
|
{
|
|
5, 6}, /* 18 bands */
|
|
{
|
|
5, 6}, /* 19 bands */
|
|
{
|
|
5, 7}, /* 20 bands */
|
|
{
|
|
6, 7}, /* 21 bands */
|
|
{
|
|
6, 7}, /* 22 bands */
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/*********************************************************************
|
|
* nonlinear quantization of xr
|
|
* More accurate formula than the ISO formula. Takes into account
|
|
* the fact that we are quantizing xr -> ix, but we want ix^4/3 to be
|
|
* as close as possible to x^4/3. (taking the nearest int would mean
|
|
* ix is as close as possible to xr, which is different.)
|
|
*
|
|
* From Segher Boessenkool <segher@eastsite.nl> 11/1999
|
|
*
|
|
* 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro
|
|
* Tominaga. If you need the ASM code, check CVS circa Aug 2000.
|
|
*
|
|
* 01/2004: Optimizations by Gabriel Bouvigne
|
|
*********************************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
quantize_lines_xrpow_01(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix)
|
|
{
|
|
const FLOAT compareval0 = (1.0f - 0.4054f) / istep;
|
|
unsigned int i;
|
|
|
|
assert(l > 0);
|
|
assert(l % 2 == 0);
|
|
for (i = 0; i < l; i += 2) {
|
|
FLOAT const xr_0 = xr[i+0];
|
|
FLOAT const xr_1 = xr[i+1];
|
|
int const ix_0 = (compareval0 > xr_0) ? 0 : 1;
|
|
int const ix_1 = (compareval0 > xr_1) ? 0 : 1;
|
|
ix[i+0] = ix_0;
|
|
ix[i+1] = ix_1;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#ifdef TAKEHIRO_IEEE754_HACK
|
|
|
|
typedef union {
|
|
float f;
|
|
int i;
|
|
} fi_union;
|
|
|
|
#define MAGIC_FLOAT (65536*(128))
|
|
#define MAGIC_INT 0x4b000000
|
|
|
|
|
|
static void
|
|
quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xp, int *pi)
|
|
{
|
|
fi_union *fi;
|
|
unsigned int remaining;
|
|
|
|
assert(l > 0);
|
|
|
|
fi = (fi_union *) pi;
|
|
|
|
l = l >> 1;
|
|
remaining = l % 2;
|
|
l = l >> 1;
|
|
while (l--) {
|
|
double x0 = istep * xp[0];
|
|
double x1 = istep * xp[1];
|
|
double x2 = istep * xp[2];
|
|
double x3 = istep * xp[3];
|
|
|
|
x0 += MAGIC_FLOAT;
|
|
fi[0].f = x0;
|
|
x1 += MAGIC_FLOAT;
|
|
fi[1].f = x1;
|
|
x2 += MAGIC_FLOAT;
|
|
fi[2].f = x2;
|
|
x3 += MAGIC_FLOAT;
|
|
fi[3].f = x3;
|
|
|
|
fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
|
|
fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
|
|
fi[2].f = x2 + adj43asm[fi[2].i - MAGIC_INT];
|
|
fi[3].f = x3 + adj43asm[fi[3].i - MAGIC_INT];
|
|
|
|
fi[0].i -= MAGIC_INT;
|
|
fi[1].i -= MAGIC_INT;
|
|
fi[2].i -= MAGIC_INT;
|
|
fi[3].i -= MAGIC_INT;
|
|
fi += 4;
|
|
xp += 4;
|
|
};
|
|
if (remaining) {
|
|
double x0 = istep * xp[0];
|
|
double x1 = istep * xp[1];
|
|
|
|
x0 += MAGIC_FLOAT;
|
|
fi[0].f = x0;
|
|
x1 += MAGIC_FLOAT;
|
|
fi[1].f = x1;
|
|
|
|
fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
|
|
fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
|
|
|
|
fi[0].i -= MAGIC_INT;
|
|
fi[1].i -= MAGIC_INT;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
#else
|
|
|
|
/*********************************************************************
|
|
* XRPOW_FTOI is a macro to convert floats to ints.
|
|
* if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]
|
|
* ROUNDFAC= -0.0946
|
|
*
|
|
* if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]
|
|
* ROUNDFAC=0.4054
|
|
*
|
|
* Note: using floor() or (int) is extremely slow. On machines where
|
|
* the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile
|
|
* to write some ASM for XRPOW_FTOI().
|
|
*********************************************************************/
|
|
#define XRPOW_FTOI(src,dest) ((dest) = (int)(src))
|
|
#define QUANTFAC(rx) adj43[rx]
|
|
#define ROUNDFAC 0.4054
|
|
|
|
|
|
static void
|
|
quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix)
|
|
{
|
|
unsigned int remaining;
|
|
|
|
assert(l > 0);
|
|
|
|
l = l >> 1;
|
|
remaining = l % 2;
|
|
l = l >> 1;
|
|
while (l--) {
|
|
FLOAT x0, x1, x2, x3;
|
|
int rx0, rx1, rx2, rx3;
|
|
|
|
x0 = *xr++ * istep;
|
|
x1 = *xr++ * istep;
|
|
XRPOW_FTOI(x0, rx0);
|
|
x2 = *xr++ * istep;
|
|
XRPOW_FTOI(x1, rx1);
|
|
x3 = *xr++ * istep;
|
|
XRPOW_FTOI(x2, rx2);
|
|
x0 += QUANTFAC(rx0);
|
|
XRPOW_FTOI(x3, rx3);
|
|
x1 += QUANTFAC(rx1);
|
|
XRPOW_FTOI(x0, *ix++);
|
|
x2 += QUANTFAC(rx2);
|
|
XRPOW_FTOI(x1, *ix++);
|
|
x3 += QUANTFAC(rx3);
|
|
XRPOW_FTOI(x2, *ix++);
|
|
XRPOW_FTOI(x3, *ix++);
|
|
};
|
|
if (remaining) {
|
|
FLOAT x0, x1;
|
|
int rx0, rx1;
|
|
|
|
x0 = *xr++ * istep;
|
|
x1 = *xr++ * istep;
|
|
XRPOW_FTOI(x0, rx0);
|
|
XRPOW_FTOI(x1, rx1);
|
|
x0 += QUANTFAC(rx0);
|
|
x1 += QUANTFAC(rx1);
|
|
XRPOW_FTOI(x0, *ix++);
|
|
XRPOW_FTOI(x1, *ix++);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*********************************************************************
|
|
* Quantization function
|
|
* This function will select which lines to quantize and call the
|
|
* proper quantization function
|
|
*********************************************************************/
|
|
|
|
static void
|
|
quantize_xrpow(const FLOAT * xp, int *pi, FLOAT istep, gr_info const *const cod_info,
|
|
calc_noise_data const *prev_noise)
|
|
{
|
|
/* quantize on xr^(3/4) instead of xr */
|
|
int sfb;
|
|
int sfbmax;
|
|
int j = 0;
|
|
int prev_data_use;
|
|
int *iData;
|
|
int accumulate = 0;
|
|
int accumulate01 = 0;
|
|
int *acc_iData;
|
|
const FLOAT *acc_xp;
|
|
|
|
iData = pi;
|
|
acc_xp = xp;
|
|
acc_iData = iData;
|
|
|
|
|
|
/* Reusing previously computed data does not seems to work if global gain
|
|
is changed. Finding why it behaves this way would allow to use a cache of
|
|
previously computed values (let's 10 cached values per sfb) that would
|
|
probably provide a noticeable speedup */
|
|
prev_data_use = (prev_noise && (cod_info->global_gain == prev_noise->global_gain));
|
|
|
|
if (cod_info->block_type == SHORT_TYPE)
|
|
sfbmax = 38;
|
|
else
|
|
sfbmax = 21;
|
|
|
|
for (sfb = 0; sfb <= sfbmax; sfb++) {
|
|
int step = -1;
|
|
|
|
if (prev_data_use || cod_info->block_type == NORM_TYPE) {
|
|
step =
|
|
cod_info->global_gain
|
|
- ((cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0))
|
|
<< (cod_info->scalefac_scale + 1))
|
|
- cod_info->subblock_gain[cod_info->window[sfb]] * 8;
|
|
}
|
|
assert(cod_info->width[sfb] >= 0);
|
|
if (prev_data_use && (prev_noise->step[sfb] == step)) {
|
|
/* do not recompute this part,
|
|
but compute accumulated lines */
|
|
if (accumulate) {
|
|
quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
|
|
accumulate = 0;
|
|
}
|
|
if (accumulate01) {
|
|
quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
|
|
accumulate01 = 0;
|
|
}
|
|
}
|
|
else { /*should compute this part */
|
|
int l;
|
|
l = cod_info->width[sfb];
|
|
|
|
if ((j + cod_info->width[sfb]) > cod_info->max_nonzero_coeff) {
|
|
/*do not compute upper zero part */
|
|
int usefullsize;
|
|
usefullsize = cod_info->max_nonzero_coeff - j + 1;
|
|
memset(&pi[cod_info->max_nonzero_coeff], 0,
|
|
sizeof(int) * (576 - cod_info->max_nonzero_coeff));
|
|
l = usefullsize;
|
|
|
|
if (l < 0) {
|
|
l = 0;
|
|
}
|
|
|
|
/* no need to compute higher sfb values */
|
|
sfb = sfbmax + 1;
|
|
}
|
|
|
|
/*accumulate lines to quantize */
|
|
if (!accumulate && !accumulate01) {
|
|
acc_iData = iData;
|
|
acc_xp = xp;
|
|
}
|
|
if (prev_noise &&
|
|
prev_noise->sfb_count1 > 0 &&
|
|
sfb >= prev_noise->sfb_count1 &&
|
|
prev_noise->step[sfb] > 0 && step >= prev_noise->step[sfb]) {
|
|
|
|
if (accumulate) {
|
|
quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
|
|
accumulate = 0;
|
|
acc_iData = iData;
|
|
acc_xp = xp;
|
|
}
|
|
accumulate01 += l;
|
|
}
|
|
else {
|
|
if (accumulate01) {
|
|
quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
|
|
accumulate01 = 0;
|
|
acc_iData = iData;
|
|
acc_xp = xp;
|
|
}
|
|
accumulate += l;
|
|
}
|
|
|
|
if (l <= 0) {
|
|
/* rh: 20040215
|
|
* may happen due to "prev_data_use" optimization
|
|
*/
|
|
if (accumulate01) {
|
|
quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
|
|
accumulate01 = 0;
|
|
}
|
|
if (accumulate) {
|
|
quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
|
|
accumulate = 0;
|
|
}
|
|
|
|
break; /* ends for-loop */
|
|
}
|
|
}
|
|
if (sfb <= sfbmax) {
|
|
iData += cod_info->width[sfb];
|
|
xp += cod_info->width[sfb];
|
|
j += cod_info->width[sfb];
|
|
}
|
|
}
|
|
if (accumulate) { /*last data part */
|
|
quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
|
|
accumulate = 0;
|
|
}
|
|
if (accumulate01) { /*last data part */
|
|
quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
|
|
accumulate01 = 0;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************************************/
|
|
/* ix_max */
|
|
/*************************************************************************/
|
|
|
|
static int
|
|
ix_max(const int *ix, const int *end)
|
|
{
|
|
int max1 = 0, max2 = 0;
|
|
|
|
do {
|
|
int const x1 = *ix++;
|
|
int const x2 = *ix++;
|
|
if (max1 < x1)
|
|
max1 = x1;
|
|
|
|
if (max2 < x2)
|
|
max2 = x2;
|
|
} while (ix < end);
|
|
if (max1 < max2)
|
|
max1 = max2;
|
|
return max1;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int
|
|
count_bit_ESC(const int *ix, const int *const end, int t1, const int t2, unsigned int *const s)
|
|
{
|
|
/* ESC-table is used */
|
|
unsigned int const linbits = ht[t1].xlen * 65536u + ht[t2].xlen;
|
|
unsigned int sum = 0, sum2;
|
|
|
|
do {
|
|
unsigned int x = *ix++;
|
|
unsigned int y = *ix++;
|
|
|
|
if (x >= 15u) {
|
|
x = 15u;
|
|
sum += linbits;
|
|
}
|
|
if (y >= 15u) {
|
|
y = 15u;
|
|
sum += linbits;
|
|
}
|
|
x <<= 4u;
|
|
x += y;
|
|
sum += largetbl[x];
|
|
} while (ix < end);
|
|
|
|
sum2 = sum & 0xffffu;
|
|
sum >>= 16u;
|
|
|
|
if (sum > sum2) {
|
|
sum = sum2;
|
|
t1 = t2;
|
|
}
|
|
|
|
*s += sum;
|
|
return t1;
|
|
}
|
|
|
|
|
|
static int
|
|
count_bit_noESC(const int *ix, const int *end, int mx, unsigned int *s)
|
|
{
|
|
/* No ESC-words */
|
|
unsigned int sum1 = 0;
|
|
const uint8_t *const hlen1 = ht[1].hlen;
|
|
(void) mx;
|
|
|
|
do {
|
|
unsigned int const x0 = *ix++;
|
|
unsigned int const x1 = *ix++;
|
|
sum1 += hlen1[ x0+x0 + x1 ];
|
|
} while (ix < end);
|
|
|
|
*s += sum1;
|
|
return 1;
|
|
}
|
|
|
|
|
|
static const int huf_tbl_noESC[] = {
|
|
1, 2, 5, 7, 7, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13
|
|
};
|
|
|
|
|
|
static int
|
|
count_bit_noESC_from2(const int *ix, const int *end, int max, unsigned int *s)
|
|
{
|
|
int t1 = huf_tbl_noESC[max - 1];
|
|
/* No ESC-words */
|
|
const unsigned int xlen = ht[t1].xlen;
|
|
uint32_t const* table = (t1 == 2) ? &table23[0] : &table56[0];
|
|
unsigned int sum = 0, sum2;
|
|
|
|
do {
|
|
unsigned int const x0 = *ix++;
|
|
unsigned int const x1 = *ix++;
|
|
sum += table[ x0 * xlen + x1 ];
|
|
} while (ix < end);
|
|
|
|
sum2 = sum & 0xffffu;
|
|
sum >>= 16u;
|
|
|
|
if (sum > sum2) {
|
|
sum = sum2;
|
|
t1++;
|
|
}
|
|
|
|
*s += sum;
|
|
return t1;
|
|
}
|
|
|
|
|
|
inline static int
|
|
count_bit_noESC_from3(const int *ix, const int *end, int max, unsigned int * s)
|
|
{
|
|
int t1 = huf_tbl_noESC[max - 1];
|
|
/* No ESC-words */
|
|
unsigned int sum1 = 0;
|
|
unsigned int sum2 = 0;
|
|
unsigned int sum3 = 0;
|
|
const unsigned int xlen = ht[t1].xlen;
|
|
const uint8_t *const hlen1 = ht[t1].hlen;
|
|
const uint8_t *const hlen2 = ht[t1 + 1].hlen;
|
|
const uint8_t *const hlen3 = ht[t1 + 2].hlen;
|
|
int t;
|
|
|
|
do {
|
|
unsigned int x0 = *ix++;
|
|
unsigned int x1 = *ix++;
|
|
unsigned int x = x0 * xlen + x1;
|
|
sum1 += hlen1[x];
|
|
sum2 += hlen2[x];
|
|
sum3 += hlen3[x];
|
|
} while (ix < end);
|
|
|
|
t = t1;
|
|
if (sum1 > sum2) {
|
|
sum1 = sum2;
|
|
t++;
|
|
}
|
|
if (sum1 > sum3) {
|
|
sum1 = sum3;
|
|
t = t1 + 2;
|
|
}
|
|
*s += sum1;
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* choose table */
|
|
/*************************************************************************/
|
|
|
|
/*
|
|
Choose the Huffman table that will encode ix[begin..end] with
|
|
the fewest bits.
|
|
|
|
Note: This code contains knowledge about the sizes and characteristics
|
|
of the Huffman tables as defined in the IS (Table B.7), and will not work
|
|
with any arbitrary tables.
|
|
*/
|
|
static int count_bit_null(const int* ix, const int* end, int max, unsigned int* s)
|
|
{
|
|
(void) ix;
|
|
(void) end;
|
|
(void) max;
|
|
(void) s;
|
|
return 0;
|
|
}
|
|
|
|
typedef int (*count_fnc)(const int* ix, const int* end, int max, unsigned int* s);
|
|
|
|
static const count_fnc count_fncs[] =
|
|
{ &count_bit_null
|
|
, &count_bit_noESC
|
|
, &count_bit_noESC_from2
|
|
, &count_bit_noESC_from2
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
, &count_bit_noESC_from3
|
|
};
|
|
|
|
static int
|
|
choose_table_nonMMX(const int *ix, const int *const end, int *const _s)
|
|
{
|
|
unsigned int* s = (unsigned int*)_s;
|
|
unsigned int max;
|
|
int choice, choice2;
|
|
max = ix_max(ix, end);
|
|
|
|
if (max <= 15) {
|
|
return count_fncs[max](ix, end, max, s);
|
|
}
|
|
/* try tables with linbits */
|
|
if (max > IXMAX_VAL) {
|
|
*s = LARGE_BITS;
|
|
return -1;
|
|
}
|
|
max -= 15u;
|
|
for (choice2 = 24; choice2 < 32; choice2++) {
|
|
if (ht[choice2].linmax >= max) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (choice = choice2 - 8; choice < 24; choice++) {
|
|
if (ht[choice].linmax >= max) {
|
|
break;
|
|
}
|
|
}
|
|
return count_bit_ESC(ix, end, choice, choice2, s);
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************************/
|
|
/* count_bit */
|
|
/*************************************************************************/
|
|
int
|
|
noquant_count_bits(lame_internal_flags const *const gfc,
|
|
gr_info * const gi, calc_noise_data * prev_noise)
|
|
{
|
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
|
int bits = 0;
|
|
int i, a1, a2;
|
|
int const *const ix = gi->l3_enc;
|
|
|
|
i = Min(576, ((gi->max_nonzero_coeff + 2) >> 1) << 1);
|
|
|
|
if (prev_noise)
|
|
prev_noise->sfb_count1 = 0;
|
|
|
|
/* Determine count1 region */
|
|
for (; i > 1; i -= 2)
|
|
if (ix[i - 1] | ix[i - 2])
|
|
break;
|
|
gi->count1 = i;
|
|
|
|
/* Determines the number of bits to encode the quadruples. */
|
|
a1 = a2 = 0;
|
|
for (; i > 3; i -= 4) {
|
|
int x4 = ix[i-4];
|
|
int x3 = ix[i-3];
|
|
int x2 = ix[i-2];
|
|
int x1 = ix[i-1];
|
|
int p;
|
|
/* hack to check if all values <= 1 */
|
|
if ((unsigned int) (x4 | x3 | x2 | x1) > 1)
|
|
break;
|
|
|
|
p = ((x4 * 2 + x3) * 2 + x2) * 2 + x1;
|
|
a1 += t32l[p];
|
|
a2 += t33l[p];
|
|
}
|
|
|
|
bits = a1;
|
|
gi->count1table_select = 0;
|
|
if (a1 > a2) {
|
|
bits = a2;
|
|
gi->count1table_select = 1;
|
|
}
|
|
|
|
gi->count1bits = bits;
|
|
gi->big_values = i;
|
|
if (i == 0)
|
|
return bits;
|
|
|
|
if (gi->block_type == SHORT_TYPE) {
|
|
a1 = 3 * gfc->scalefac_band.s[3];
|
|
if (a1 > gi->big_values)
|
|
a1 = gi->big_values;
|
|
a2 = gi->big_values;
|
|
|
|
}
|
|
else if (gi->block_type == NORM_TYPE) {
|
|
assert(i <= 576); /* bv_scf has 576 entries (0..575) */
|
|
a1 = gi->region0_count = gfc->sv_qnt.bv_scf[i - 2];
|
|
a2 = gi->region1_count = gfc->sv_qnt.bv_scf[i - 1];
|
|
|
|
assert(a1 + a2 + 2 < SBPSY_l);
|
|
a2 = gfc->scalefac_band.l[a1 + a2 + 2];
|
|
a1 = gfc->scalefac_band.l[a1 + 1];
|
|
if (a2 < i)
|
|
gi->table_select[2] = gfc->choose_table(ix + a2, ix + i, &bits);
|
|
|
|
}
|
|
else {
|
|
gi->region0_count = 7;
|
|
/*gi->region1_count = SBPSY_l - 7 - 1; */
|
|
gi->region1_count = SBMAX_l - 1 - 7 - 1;
|
|
a1 = gfc->scalefac_band.l[7 + 1];
|
|
a2 = i;
|
|
if (a1 > a2) {
|
|
a1 = a2;
|
|
}
|
|
}
|
|
|
|
|
|
/* have to allow for the case when bigvalues < region0 < region1 */
|
|
/* (and region0, region1 are ignored) */
|
|
a1 = Min(a1, i);
|
|
a2 = Min(a2, i);
|
|
|
|
assert(a1 >= 0);
|
|
assert(a2 >= 0);
|
|
|
|
/* Count the number of bits necessary to code the bigvalues region. */
|
|
if (0 < a1)
|
|
gi->table_select[0] = gfc->choose_table(ix, ix + a1, &bits);
|
|
if (a1 < a2)
|
|
gi->table_select[1] = gfc->choose_table(ix + a1, ix + a2, &bits);
|
|
if (cfg->use_best_huffman == 2) {
|
|
gi->part2_3_length = bits;
|
|
best_huffman_divide(gfc, gi);
|
|
bits = gi->part2_3_length;
|
|
}
|
|
|
|
|
|
if (prev_noise) {
|
|
if (gi->block_type == NORM_TYPE) {
|
|
int sfb = 0;
|
|
while (gfc->scalefac_band.l[sfb] < gi->big_values) {
|
|
sfb++;
|
|
}
|
|
prev_noise->sfb_count1 = sfb;
|
|
}
|
|
}
|
|
|
|
return bits;
|
|
}
|
|
|
|
int
|
|
count_bits(lame_internal_flags const *const gfc,
|
|
const FLOAT * const xr, gr_info * const gi, calc_noise_data * prev_noise)
|
|
{
|
|
int *const ix = gi->l3_enc;
|
|
|
|
/* since quantize_xrpow uses table lookup, we need to check this first: */
|
|
FLOAT const w = (IXMAX_VAL) / IPOW20(gi->global_gain);
|
|
|
|
if (gi->xrpow_max > w)
|
|
return LARGE_BITS;
|
|
|
|
quantize_xrpow(xr, ix, IPOW20(gi->global_gain), gi, prev_noise);
|
|
|
|
if (gfc->sv_qnt.substep_shaping & 2) {
|
|
int sfb, j = 0;
|
|
/* 0.634521682242439 = 0.5946*2**(.5*0.1875) */
|
|
int const gain = gi->global_gain + gi->scalefac_scale;
|
|
const FLOAT roundfac = 0.634521682242439 / IPOW20(gain);
|
|
for (sfb = 0; sfb < gi->sfbmax; sfb++) {
|
|
int const width = gi->width[sfb];
|
|
assert(width >= 0);
|
|
if (!gfc->sv_qnt.pseudohalf[sfb]) {
|
|
j += width;
|
|
}
|
|
else {
|
|
int k;
|
|
for (k = j, j += width; k < j; ++k) {
|
|
ix[k] = (xr[k] >= roundfac) ? ix[k] : 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return noquant_count_bits(gfc, gi, prev_noise);
|
|
}
|
|
|
|
/***********************************************************************
|
|
re-calculate the best scalefac_compress using scfsi
|
|
the saved bits are kept in the bit reservoir.
|
|
**********************************************************************/
|
|
|
|
|
|
inline static void
|
|
recalc_divide_init(const lame_internal_flags * const gfc,
|
|
gr_info const *cod_info,
|
|
int const *const ix, int r01_bits[], int r01_div[], int r0_tbl[], int r1_tbl[])
|
|
{
|
|
int r0, r1, bigv, r0t, r1t, bits;
|
|
|
|
bigv = cod_info->big_values;
|
|
|
|
for (r0 = 0; r0 <= 7 + 15; r0++) {
|
|
r01_bits[r0] = LARGE_BITS;
|
|
}
|
|
|
|
for (r0 = 0; r0 < 16; r0++) {
|
|
int const a1 = gfc->scalefac_band.l[r0 + 1];
|
|
int r0bits;
|
|
if (a1 >= bigv)
|
|
break;
|
|
r0bits = 0;
|
|
r0t = gfc->choose_table(ix, ix + a1, &r0bits);
|
|
|
|
for (r1 = 0; r1 < 8; r1++) {
|
|
int const a2 = gfc->scalefac_band.l[r0 + r1 + 2];
|
|
if (a2 >= bigv)
|
|
break;
|
|
|
|
bits = r0bits;
|
|
r1t = gfc->choose_table(ix + a1, ix + a2, &bits);
|
|
if (r01_bits[r0 + r1] > bits) {
|
|
r01_bits[r0 + r1] = bits;
|
|
r01_div[r0 + r1] = r0;
|
|
r0_tbl[r0 + r1] = r0t;
|
|
r1_tbl[r0 + r1] = r1t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline static void
|
|
recalc_divide_sub(const lame_internal_flags * const gfc,
|
|
const gr_info * cod_info2,
|
|
gr_info * const gi,
|
|
const int *const ix,
|
|
const int r01_bits[], const int r01_div[], const int r0_tbl[], const int r1_tbl[])
|
|
{
|
|
int bits, r2, a2, bigv, r2t;
|
|
|
|
bigv = cod_info2->big_values;
|
|
|
|
for (r2 = 2; r2 < SBMAX_l + 1; r2++) {
|
|
a2 = gfc->scalefac_band.l[r2];
|
|
if (a2 >= bigv)
|
|
break;
|
|
|
|
bits = r01_bits[r2 - 2] + cod_info2->count1bits;
|
|
if (gi->part2_3_length <= bits)
|
|
break;
|
|
|
|
r2t = gfc->choose_table(ix + a2, ix + bigv, &bits);
|
|
if (gi->part2_3_length <= bits)
|
|
continue;
|
|
|
|
memcpy(gi, cod_info2, sizeof(gr_info));
|
|
gi->part2_3_length = bits;
|
|
gi->region0_count = r01_div[r2 - 2];
|
|
gi->region1_count = r2 - 2 - r01_div[r2 - 2];
|
|
gi->table_select[0] = r0_tbl[r2 - 2];
|
|
gi->table_select[1] = r1_tbl[r2 - 2];
|
|
gi->table_select[2] = r2t;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
best_huffman_divide(const lame_internal_flags * const gfc, gr_info * const gi)
|
|
{
|
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
|
int i, a1, a2;
|
|
gr_info cod_info2;
|
|
int const *const ix = gi->l3_enc;
|
|
|
|
int r01_bits[7 + 15 + 1];
|
|
int r01_div[7 + 15 + 1];
|
|
int r0_tbl[7 + 15 + 1];
|
|
int r1_tbl[7 + 15 + 1];
|
|
|
|
|
|
/* SHORT BLOCK stuff fails for MPEG2 */
|
|
if (gi->block_type == SHORT_TYPE && cfg->mode_gr == 1)
|
|
return;
|
|
|
|
|
|
memcpy(&cod_info2, gi, sizeof(gr_info));
|
|
if (gi->block_type == NORM_TYPE) {
|
|
recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
|
|
recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
|
|
}
|
|
|
|
i = cod_info2.big_values;
|
|
if (i == 0 || (unsigned int) (ix[i - 2] | ix[i - 1]) > 1)
|
|
return;
|
|
|
|
i = gi->count1 + 2;
|
|
if (i > 576)
|
|
return;
|
|
|
|
/* Determines the number of bits to encode the quadruples. */
|
|
memcpy(&cod_info2, gi, sizeof(gr_info));
|
|
cod_info2.count1 = i;
|
|
a1 = a2 = 0;
|
|
|
|
assert(i <= 576);
|
|
|
|
for (; i > cod_info2.big_values; i -= 4) {
|
|
int const p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1];
|
|
a1 += t32l[p];
|
|
a2 += t33l[p];
|
|
}
|
|
cod_info2.big_values = i;
|
|
|
|
cod_info2.count1table_select = 0;
|
|
if (a1 > a2) {
|
|
a1 = a2;
|
|
cod_info2.count1table_select = 1;
|
|
}
|
|
|
|
cod_info2.count1bits = a1;
|
|
|
|
if (cod_info2.block_type == NORM_TYPE)
|
|
recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
|
|
else {
|
|
/* Count the number of bits necessary to code the bigvalues region. */
|
|
cod_info2.part2_3_length = a1;
|
|
a1 = gfc->scalefac_band.l[7 + 1];
|
|
if (a1 > i) {
|
|
a1 = i;
|
|
}
|
|
if (a1 > 0)
|
|
cod_info2.table_select[0] =
|
|
gfc->choose_table(ix, ix + a1, (int *) &cod_info2.part2_3_length);
|
|
if (i > a1)
|
|
cod_info2.table_select[1] =
|
|
gfc->choose_table(ix + a1, ix + i, (int *) &cod_info2.part2_3_length);
|
|
if (gi->part2_3_length > cod_info2.part2_3_length)
|
|
memcpy(gi, &cod_info2, sizeof(gr_info));
|
|
}
|
|
}
|
|
|
|
static const int slen1_n[16] = { 1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16 };
|
|
static const int slen2_n[16] = { 1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8 };
|
|
const int slen1_tab[16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 };
|
|
const int slen2_tab[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 };
|
|
|
|
static void
|
|
scfsi_calc(int ch, III_side_info_t * l3_side)
|
|
{
|
|
unsigned int i;
|
|
int s1, s2, c1, c2;
|
|
int sfb;
|
|
gr_info *const gi = &l3_side->tt[1][ch];
|
|
gr_info const *const g0 = &l3_side->tt[0][ch];
|
|
|
|
for (i = 0; i < (sizeof(scfsi_band) / sizeof(int)) - 1; i++) {
|
|
for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
|
|
if (g0->scalefac[sfb] != gi->scalefac[sfb]
|
|
&& gi->scalefac[sfb] >= 0)
|
|
break;
|
|
}
|
|
if (sfb == scfsi_band[i + 1]) {
|
|
for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
|
|
gi->scalefac[sfb] = -1;
|
|
}
|
|
l3_side->scfsi[ch][i] = 1;
|
|
}
|
|
}
|
|
|
|
s1 = c1 = 0;
|
|
for (sfb = 0; sfb < 11; sfb++) {
|
|
if (gi->scalefac[sfb] == -1)
|
|
continue;
|
|
c1++;
|
|
if (s1 < gi->scalefac[sfb])
|
|
s1 = gi->scalefac[sfb];
|
|
}
|
|
|
|
s2 = c2 = 0;
|
|
for (; sfb < SBPSY_l; sfb++) {
|
|
if (gi->scalefac[sfb] == -1)
|
|
continue;
|
|
c2++;
|
|
if (s2 < gi->scalefac[sfb])
|
|
s2 = gi->scalefac[sfb];
|
|
}
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (s1 < slen1_n[i] && s2 < slen2_n[i]) {
|
|
int const c = slen1_tab[i] * c1 + slen2_tab[i] * c2;
|
|
if (gi->part2_length > c) {
|
|
gi->part2_length = c;
|
|
gi->scalefac_compress = (int)i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Find the optimal way to store the scalefactors.
|
|
Only call this routine after final scalefactors have been
|
|
chosen and the channel/granule will not be re-encoded.
|
|
*/
|
|
void
|
|
best_scalefac_store(const lame_internal_flags * gfc,
|
|
const int gr, const int ch, III_side_info_t * const l3_side)
|
|
{
|
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
|
/* use scalefac_scale if we can */
|
|
gr_info *const gi = &l3_side->tt[gr][ch];
|
|
int sfb, i, j, l;
|
|
int recalc = 0;
|
|
|
|
/* remove scalefacs from bands with ix=0. This idea comes
|
|
* from the AAC ISO docs. added mt 3/00 */
|
|
/* check if l3_enc=0 */
|
|
j = 0;
|
|
for (sfb = 0; sfb < gi->sfbmax; sfb++) {
|
|
int const width = gi->width[sfb];
|
|
assert(width >= 0);
|
|
for (l = j, j += width; l < j; ++l) {
|
|
if (gi->l3_enc[l] != 0)
|
|
break;
|
|
}
|
|
if (l == j)
|
|
gi->scalefac[sfb] = recalc = -2; /* anything goes. */
|
|
/* only best_scalefac_store and calc_scfsi
|
|
* know--and only they should know--about the magic number -2.
|
|
*/
|
|
}
|
|
|
|
if (!gi->scalefac_scale && !gi->preflag) {
|
|
int s = 0;
|
|
for (sfb = 0; sfb < gi->sfbmax; sfb++)
|
|
if (gi->scalefac[sfb] > 0)
|
|
s |= gi->scalefac[sfb];
|
|
|
|
if (!(s & 1) && s != 0) {
|
|
for (sfb = 0; sfb < gi->sfbmax; sfb++)
|
|
if (gi->scalefac[sfb] > 0)
|
|
gi->scalefac[sfb] >>= 1;
|
|
|
|
gi->scalefac_scale = recalc = 1;
|
|
}
|
|
}
|
|
|
|
if (!gi->preflag && gi->block_type != SHORT_TYPE && cfg->mode_gr == 2) {
|
|
for (sfb = 11; sfb < SBPSY_l; sfb++)
|
|
if (gi->scalefac[sfb] < pretab[sfb] && gi->scalefac[sfb] != -2)
|
|
break;
|
|
if (sfb == SBPSY_l) {
|
|
for (sfb = 11; sfb < SBPSY_l; sfb++)
|
|
if (gi->scalefac[sfb] > 0)
|
|
gi->scalefac[sfb] -= pretab[sfb];
|
|
|
|
gi->preflag = recalc = 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 4; i++)
|
|
l3_side->scfsi[ch][i] = 0;
|
|
|
|
if (cfg->mode_gr == 2 && gr == 1
|
|
&& l3_side->tt[0][ch].block_type != SHORT_TYPE
|
|
&& l3_side->tt[1][ch].block_type != SHORT_TYPE) {
|
|
scfsi_calc(ch, l3_side);
|
|
recalc = 0;
|
|
}
|
|
for (sfb = 0; sfb < gi->sfbmax; sfb++) {
|
|
if (gi->scalefac[sfb] == -2) {
|
|
gi->scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */
|
|
}
|
|
}
|
|
if (recalc) {
|
|
(void) scale_bitcount(gfc, gi);
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef NDEBUG
|
|
static int
|
|
all_scalefactors_not_negative(int const *scalefac, int n)
|
|
{
|
|
int i;
|
|
for (i = 0; i < n; ++i) {
|
|
if (scalefac[i] < 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* number of bits used to encode scalefacs */
|
|
|
|
/* 18*slen1_tab[i] + 18*slen2_tab[i] */
|
|
static const int scale_short[16] = {
|
|
0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126
|
|
};
|
|
|
|
/* 17*slen1_tab[i] + 18*slen2_tab[i] */
|
|
static const int scale_mixed[16] = {
|
|
0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122
|
|
};
|
|
|
|
/* 11*slen1_tab[i] + 10*slen2_tab[i] */
|
|
static const int scale_long[16] = {
|
|
0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74
|
|
};
|
|
|
|
|
|
/*************************************************************************/
|
|
/* scale_bitcount */
|
|
/*************************************************************************/
|
|
|
|
/* Also calculates the number of bits necessary to code the scalefactors. */
|
|
|
|
static int
|
|
mpeg1_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info)
|
|
{
|
|
int k, sfb, max_slen1 = 0, max_slen2 = 0;
|
|
|
|
/* maximum values */
|
|
const int *tab;
|
|
int *const scalefac = cod_info->scalefac;
|
|
|
|
(void) gfc;
|
|
assert(all_scalefactors_not_negative(scalefac, cod_info->sfbmax));
|
|
|
|
if (cod_info->block_type == SHORT_TYPE) {
|
|
tab = scale_short;
|
|
if (cod_info->mixed_block_flag)
|
|
tab = scale_mixed;
|
|
}
|
|
else { /* block_type == 1,2,or 3 */
|
|
tab = scale_long;
|
|
if (!cod_info->preflag) {
|
|
for (sfb = 11; sfb < SBPSY_l; sfb++)
|
|
if (scalefac[sfb] < pretab[sfb])
|
|
break;
|
|
|
|
if (sfb == SBPSY_l) {
|
|
cod_info->preflag = 1;
|
|
for (sfb = 11; sfb < SBPSY_l; sfb++)
|
|
scalefac[sfb] -= pretab[sfb];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (sfb = 0; sfb < cod_info->sfbdivide; sfb++)
|
|
if (max_slen1 < scalefac[sfb])
|
|
max_slen1 = scalefac[sfb];
|
|
|
|
for (; sfb < cod_info->sfbmax; sfb++)
|
|
if (max_slen2 < scalefac[sfb])
|
|
max_slen2 = scalefac[sfb];
|
|
|
|
/* from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99
|
|
* loop over *all* posible values of scalefac_compress to find the
|
|
* one which uses the smallest number of bits. ISO would stop
|
|
* at first valid index */
|
|
cod_info->part2_length = LARGE_BITS;
|
|
for (k = 0; k < 16; k++) {
|
|
if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k]
|
|
&& cod_info->part2_length > tab[k]) {
|
|
cod_info->part2_length = tab[k];
|
|
cod_info->scalefac_compress = k;
|
|
}
|
|
}
|
|
return cod_info->part2_length == LARGE_BITS;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
table of largest scalefactor values for MPEG2
|
|
*/
|
|
static const int max_range_sfac_tab[6][4] = {
|
|
{15, 15, 7, 7},
|
|
{15, 15, 7, 0},
|
|
{7, 3, 0, 0},
|
|
{15, 31, 31, 0},
|
|
{7, 7, 7, 0},
|
|
{3, 3, 0, 0}
|
|
};
|
|
|
|
|
|
|
|
|
|
/*************************************************************************/
|
|
/* scale_bitcount_lsf */
|
|
/*************************************************************************/
|
|
|
|
/* Also counts the number of bits to encode the scalefacs but for MPEG 2 */
|
|
/* Lower sampling frequencies (24, 22.05 and 16 kHz.) */
|
|
|
|
/* This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS, */
|
|
/* "Audio Decoding Layer III" */
|
|
|
|
static int
|
|
mpeg2_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info)
|
|
{
|
|
int table_number, row_in_table, partition, nr_sfb, window, over;
|
|
int i, sfb, max_sfac[4];
|
|
const int *partition_table;
|
|
int const *const scalefac = cod_info->scalefac;
|
|
|
|
/*
|
|
Set partition table. Note that should try to use table one,
|
|
but do not yet...
|
|
*/
|
|
if (cod_info->preflag)
|
|
table_number = 2;
|
|
else
|
|
table_number = 0;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
max_sfac[i] = 0;
|
|
|
|
if (cod_info->block_type == SHORT_TYPE) {
|
|
row_in_table = 1;
|
|
partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
|
|
for (sfb = 0, partition = 0; partition < 4; partition++) {
|
|
nr_sfb = partition_table[partition] / 3;
|
|
for (i = 0; i < nr_sfb; i++, sfb++)
|
|
for (window = 0; window < 3; window++)
|
|
if (scalefac[sfb * 3 + window] > max_sfac[partition])
|
|
max_sfac[partition] = scalefac[sfb * 3 + window];
|
|
}
|
|
}
|
|
else {
|
|
row_in_table = 0;
|
|
partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
|
|
for (sfb = 0, partition = 0; partition < 4; partition++) {
|
|
nr_sfb = partition_table[partition];
|
|
for (i = 0; i < nr_sfb; i++, sfb++)
|
|
if (scalefac[sfb] > max_sfac[partition])
|
|
max_sfac[partition] = scalefac[sfb];
|
|
}
|
|
}
|
|
|
|
for (over = 0, partition = 0; partition < 4; partition++) {
|
|
if (max_sfac[partition] > max_range_sfac_tab[table_number][partition])
|
|
over++;
|
|
}
|
|
if (!over) {
|
|
/*
|
|
Since no bands have been over-amplified, we can set scalefac_compress
|
|
and slen[] for the formatter
|
|
*/
|
|
static const int log2tab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 };
|
|
|
|
int slen1, slen2, slen3, slen4;
|
|
|
|
cod_info->sfb_partition_table = nr_of_sfb_block[table_number][row_in_table];
|
|
for (partition = 0; partition < 4; partition++)
|
|
cod_info->slen[partition] = log2tab[max_sfac[partition]];
|
|
|
|
/* set scalefac_compress */
|
|
slen1 = cod_info->slen[0];
|
|
slen2 = cod_info->slen[1];
|
|
slen3 = cod_info->slen[2];
|
|
slen4 = cod_info->slen[3];
|
|
|
|
switch (table_number) {
|
|
case 0:
|
|
cod_info->scalefac_compress = (((slen1 * 5) + slen2) << 4)
|
|
+ (slen3 << 2)
|
|
+ slen4;
|
|
break;
|
|
|
|
case 1:
|
|
cod_info->scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2)
|
|
+ slen3;
|
|
break;
|
|
|
|
case 2:
|
|
cod_info->scalefac_compress = 500 + (slen1 * 3) + slen2;
|
|
break;
|
|
|
|
default:
|
|
ERRORF(gfc, "intensity stereo not implemented yet\n");
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (over)
|
|
ERRORF(gfc, "---WARNING !! Amplification of some bands over limits\n");
|
|
#endif
|
|
if (!over) {
|
|
assert(cod_info->sfb_partition_table);
|
|
cod_info->part2_length = 0;
|
|
for (partition = 0; partition < 4; partition++)
|
|
cod_info->part2_length +=
|
|
cod_info->slen[partition] * cod_info->sfb_partition_table[partition];
|
|
}
|
|
return over;
|
|
}
|
|
|
|
|
|
int
|
|
scale_bitcount(const lame_internal_flags * gfc, gr_info * cod_info)
|
|
{
|
|
if (gfc->cfg.mode_gr == 2) {
|
|
return mpeg1_scale_bitcount(gfc, cod_info);
|
|
}
|
|
else {
|
|
return mpeg2_scale_bitcount(gfc, cod_info);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef MMX_choose_table
|
|
extern int choose_table_MMX(const int *ix, const int *const end, int *const s);
|
|
#endif
|
|
|
|
void
|
|
huffman_init(lame_internal_flags * const gfc)
|
|
{
|
|
int i;
|
|
|
|
gfc->choose_table = choose_table_nonMMX;
|
|
|
|
#ifdef MMX_choose_table
|
|
if (gfc->CPU_features.MMX) {
|
|
gfc->choose_table = choose_table_MMX;
|
|
}
|
|
#endif
|
|
|
|
for (i = 2; i <= 576; i += 2) {
|
|
int scfb_anz = 0, bv_index;
|
|
while (gfc->scalefac_band.l[++scfb_anz] < i);
|
|
|
|
bv_index = subdv_table[scfb_anz].region0_count;
|
|
while (gfc->scalefac_band.l[bv_index + 1] > i)
|
|
bv_index--;
|
|
|
|
if (bv_index < 0) {
|
|
/* this is an indication that everything is going to
|
|
be encoded as region0: bigvalues < region0 < region1
|
|
so lets set region0, region1 to some value larger
|
|
than bigvalues */
|
|
bv_index = subdv_table[scfb_anz].region0_count;
|
|
}
|
|
|
|
gfc->sv_qnt.bv_scf[i - 2] = bv_index;
|
|
|
|
bv_index = subdv_table[scfb_anz].region1_count;
|
|
while (gfc->scalefac_band.l[bv_index + gfc->sv_qnt.bv_scf[i - 2] + 2] > i)
|
|
bv_index--;
|
|
|
|
if (bv_index < 0) {
|
|
bv_index = subdv_table[scfb_anz].region1_count;
|
|
}
|
|
|
|
gfc->sv_qnt.bv_scf[i - 1] = bv_index;
|
|
}
|
|
}
|