librw/src/ps2/ps2.cpp

1321 lines
32 KiB
C++
Raw Normal View History

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include "../rwbase.h"
#include "../rwerror.h"
#include "../rwplg.h"
#include "../rwpipeline.h"
#include "../rwobjects.h"
#include "../rwengine.h"
#include "../rwanim.h"
#include "../rwplugins.h"
#include "rwps2.h"
#include "rwps2plg.h"
#include "rwps2impl.h"
#define PLUGIN_ID 2
namespace rw {
namespace ps2 {
static void*
driverOpen(void *o, int32, int32)
{
2017-08-09 10:57:32 +02:00
engine->driver[PLATFORM_PS2]->defaultPipeline = makeDefaultPipeline();
2017-08-09 10:57:32 +02:00
engine->driver[PLATFORM_PS2]->rasterNativeOffset = nativeRasterOffset;
engine->driver[PLATFORM_PS2]->rasterCreate = rasterCreate;
engine->driver[PLATFORM_PS2]->rasterLock = rasterLock;
engine->driver[PLATFORM_PS2]->rasterUnlock = rasterUnlock;
engine->driver[PLATFORM_PS2]->rasterNumLevels = rasterNumLevels;
return o;
}
static void*
driverClose(void *o, int32, int32)
{
return o;
}
void
registerPlatformPlugins(void)
{
Driver::registerPlugin(PLATFORM_PS2, 0, PLATFORM_PS2,
driverOpen, driverClose);
2016-06-25 23:14:18 +02:00
registerNativeRaster();
}
ObjPipeline *defaultObjPipe;
MatPipeline *defaultMatPipe;
void*
destroyNativeData(void *object, int32, int32)
{
Geometry *geometry = (Geometry*)object;
if(geometry->instData == nil ||
geometry->instData->platform != PLATFORM_PS2)
return object;
InstanceDataHeader *header = (InstanceDataHeader*)geometry->instData;
for(uint32 i = 0; i < header->numMeshes; i++)
2017-08-25 14:06:53 +02:00
rwFree(header->instanceMeshes[i].data);
rwFree(header->instanceMeshes);
rwFree(header);
geometry->instData = nil;
return object;
}
Stream*
readNativeData(Stream *stream, int32, void *object, int32, int32)
{
Geometry *geometry = (Geometry*)object;
uint32 platform;
if(!findChunk(stream, ID_STRUCT, nil, nil)){
2017-08-09 10:57:32 +02:00
RWERROR((ERR_CHUNK, "STRUCT"));
return nil;
}
platform = stream->readU32();
if(platform != PLATFORM_PS2){
RWERROR((ERR_PLATFORM, platform));
return nil;
}
2017-08-25 14:06:53 +02:00
InstanceDataHeader *header = rwNewT(InstanceDataHeader, 1, MEMDUR_EVENT | ID_GEOMETRY);
geometry->instData = header;
header->platform = PLATFORM_PS2;
assert(geometry->meshHeader != nil);
header->numMeshes = geometry->meshHeader->numMeshes;
2017-08-25 14:06:53 +02:00
header->instanceMeshes = rwNewT(InstanceData, header->numMeshes, MEMDUR_EVENT | ID_GEOMETRY);
Mesh *m = geometry->meshHeader->getMeshes();
for(uint32 i = 0; i < header->numMeshes; i++){
InstanceData *instance = &header->instanceMeshes[i];
uint32 buf[2];
stream->read(buf, 8);
instance->dataSize = buf[0];
// TODO: force alignment
2017-08-25 14:06:53 +02:00
instance->data = rwNewT(uint8, instance->dataSize, MEMDUR_EVENT | ID_GEOMETRY);
#ifdef RW_PS2
uint32 a = (uint32)instance->data;
assert(a % 0x10 == 0);
#endif
stream->read(instance->data, instance->dataSize);
2017-08-12 10:25:25 +02:00
#ifdef RW_PS2
if(!buf[1])
fixDmaOffsets(instance);
#endif
2017-08-25 14:06:53 +02:00
instance->material = m->material;
// sizedebug(instance);
2017-08-25 14:06:53 +02:00
m++;
}
return stream;
}
Stream*
writeNativeData(Stream *stream, int32 len, void *object, int32, int32)
{
Geometry *geometry = (Geometry*)object;
writeChunkHeader(stream, ID_STRUCT, len-12);
if(geometry->instData == nil ||
geometry->instData->platform != PLATFORM_PS2)
return stream;
stream->writeU32(PLATFORM_PS2);
InstanceDataHeader *header = (InstanceDataHeader*)geometry->instData;
for(uint32 i = 0; i < header->numMeshes; i++){
InstanceData *instance = &header->instanceMeshes[i];
uint32 buf[2];
buf[0] = instance->dataSize;
2017-08-12 10:25:25 +02:00
buf[1] = unfixDmaOffsets(instance);
stream->write(buf, 8);
stream->write(instance->data, instance->dataSize);
2017-08-12 10:25:25 +02:00
#ifdef RW_PS2
if(!buf[1])
fixDmaOffsets(instance);
#endif
}
return stream;
}
int32
getSizeNativeData(void *object, int32, int32)
{
Geometry *geometry = (Geometry*)object;
int32 size = 16;
if(geometry->instData == nil ||
geometry->instData->platform != PLATFORM_PS2)
return 0;
InstanceDataHeader *header = (InstanceDataHeader*)geometry->instData;
for(uint32 i = 0; i < header->numMeshes; i++){
InstanceData *instance = &header->instanceMeshes[i];
size += 8;
size += instance->dataSize;
}
return size;
}
void
registerNativeDataPlugin(void)
{
Geometry::registerPlugin(0, ID_NATIVEDATA,
nil, destroyNativeData, nil);
Geometry::registerPluginStream(ID_NATIVEDATA,
readNativeData,
writeNativeData,
getSizeNativeData);
}
2017-08-12 10:25:25 +02:00
// Patch DMA ref ADDR fields to point to the actual data.
#ifdef RW_PS2
void
fixDmaOffsets(InstanceData *inst)
{
uint32 base = (uint32)inst->data;
uint32 *tag = (uint32*)inst->data;
for(;;){
switch(tag[0]&0x70000000){
// DMAcnt
case 0x10000000:
// no need to fix
tag += (1+(tag[0]&0xFFFF))*4;
break;
// DMAref
case 0x30000000:
// fix address and jump to next
tag[1] = base + tag[1]<<4;
tag += 4;
break;
// DMAret
case 0x60000000:
// we're done
return;
default:
fprintf(stderr, "error: unknown DMAtag %X\n", tag[0]);
return;
}
}
}
#endif
2017-08-12 10:25:25 +02:00
// Patch DMA ref ADDR fields to qword offsets and return whether
// no ref tags were found.
// Only under RW_PS2 are the addresses actually patched but we need
// the return value for streaming out.
bool32
unfixDmaOffsets(InstanceData *inst)
{
2017-08-12 10:25:25 +02:00
bool32 norefs = 1;
#ifdef RW_PS2
uint32 base = (uint32)inst->data;
2017-08-12 10:25:25 +02:00
#endif
uint32 *tag = (uint32*)inst->data;
for(;;){
switch(tag[0]&0x70000000){
// DMAcnt
case 0x10000000:
// no need to unfix
tag += (1+(tag[0]&0xFFFF))*4;
break;
// DMAref
case 0x30000000:
2017-08-12 10:25:25 +02:00
norefs = 0;
// unfix address and jump to next
2017-08-12 10:25:25 +02:00
#ifdef RW_PS2
tag[1] = (tag[1] - base)>>4;
2017-08-12 10:25:25 +02:00
#endif
tag += 4;
break;
// DMAret
case 0x60000000:
2017-08-12 10:25:25 +02:00
return norefs;
default:
fprintf(stderr, "error: unknown DMAtag %X\n", tag[0]);
2017-08-12 10:25:25 +02:00
return norefs;
}
}
}
// Pipeline
PipeAttribute attribXYZ = {
"XYZ",
AT_V3_32
};
PipeAttribute attribXYZW = {
"XYZW",
AT_V4_32
};
PipeAttribute attribUV = {
"UV",
AT_V2_32
};
PipeAttribute attribUV2 = {
"UV2",
AT_V4_32
};
PipeAttribute attribRGBA = {
"RGBA",
AT_V4_8 | AT_UNSGN
};
PipeAttribute attribNormal = {
"Normal",
AT_V3_8 // RW has V4_8 but uses V3_8, wtf?
};
PipeAttribute attribWeights = {
"Weights",
AT_V4_32 | AT_RW
};
static uint32
attribSize(uint32 unpack)
{
static uint32 size[] = { 32, 16, 8, 16 };
return ((unpack>>26 & 3)+1)*size[unpack>>24 & 3]/8;
}
#define QWC(x) (((x)+0xF)>>4)
static uint32
getBatchSize(MatPipeline *pipe, uint32 vertCount)
{
PipeAttribute *a;
if(vertCount == 0)
return 0;
uint32 size = 1; // ITOP &c. at the end
for(uint i = 0; i < nelem(pipe->attribs); i++)
if((a = pipe->attribs[i]) && (a->attrib & AT_RW) == 0){
size++; // UNPACK &c.
size += QWC(vertCount*attribSize(a->attrib));
}
return size;
}
uint32*
instanceXYZ(uint32 *p, Geometry *g, Mesh *m, uint32 idx, uint32 n)
{
uint16 j;
uint32 *d = (uint32*)g->morphTargets[0].vertices;
for(uint32 i = idx; i < idx+n; i++){
j = m->indices[i];
*p++ = d[j*3+0];
*p++ = d[j*3+1];
*p++ = d[j*3+2];
}
while((uintptr)p % 0x10)
*p++ = 0;
return p;
}
uint32*
instanceXYZW(uint32 *p, Geometry *g, Mesh *m, uint32 idx, uint32 n)
{
uint16 j;
uint32 *d = (uint32*)g->morphTargets[0].vertices;
int8 *adcbits = getADCbitsForMesh(g, m);
for(uint32 i = idx; i < idx+n; i++){
j = m->indices[i];
*p++ = d[j*3+0];
*p++ = d[j*3+1];
*p++ = d[j*3+2];
*p++ = adcbits && adcbits[i] ? 0x8000 : 0;
}
// don't need to pad
return p;
}
uint32*
instanceUV(uint32 *p, Geometry *g, Mesh *m, uint32 idx, uint32 n)
{
uint16 j;
uint32 *d = (uint32*)g->texCoords[0];
2017-03-16 11:42:59 +01:00
if((g->flags & Geometry::TEXTURED) ||
(g->flags & Geometry::TEXTURED2))
for(uint32 i = idx; i < idx+n; i++){
j = m->indices[i];
*p++ = d[j*2+0];
*p++ = d[j*2+1];
}
else
for(uint32 i = idx; i < idx+n; i++){
*p++ = 0;
*p++ = 0;
}
while((uintptr)p % 0x10)
*p++ = 0;
return p;
}
uint32*
instanceUV2(uint32 *p, Geometry *g, Mesh *m, uint32 idx, uint32 n)
{
uint16 j;
uint32 *d0 = (uint32*)g->texCoords[0];
uint32 *d1 = (uint32*)g->texCoords[1];
for(uint32 i = idx; i < idx+n; i++){
j = m->indices[i];
if(g->numTexCoordSets > 0){
*p++ = d0[j*2+0];
*p++ = d0[j*2+1];
}else{
*p++ = 0;
*p++ = 0;
}
if(g->numTexCoordSets > 1){
*p++ = d1[j*2+0];
*p++ = d1[j*2+1];
}else{
*p++ = 0;
*p++ = 0;
}
}
while((uintptr)p % 0x10)
*p++ = 0;
return p;
}
uint32*
instanceRGBA(uint32 *p, Geometry *g, Mesh *m, uint32 idx, uint32 n)
{
uint16 j;
uint32 *d = (uint32*)g->colors;
2017-03-16 11:42:59 +01:00
if((g->flags & Geometry::PRELIT))
for(uint32 i = idx; i < idx+n; i++){
j = m->indices[i];
*p++ = d[j];
}
else
for(uint32 i = idx; i < idx+n; i++)
*p++ = 0xFF000000;
while((uintptr)p % 0x10)
*p++ = 0;
return p;
}
uint32*
instanceNormal(uint32 *wp, Geometry *g, Mesh *m, uint32 idx, uint32 n)
{
uint16 j;
2017-08-05 01:44:37 +02:00
V3d *d = g->morphTargets[0].normals;
uint8 *p = (uint8*)wp;
2017-03-16 11:42:59 +01:00
if((g->flags & Geometry::NORMALS))
for(uint32 i = idx; i < idx+n; i++){
j = m->indices[i];
2017-08-05 01:44:37 +02:00
*p++ = d[j].x*127.0f;
*p++ = d[j].y*127.0f;
*p++ = d[j].z*127.0f;
}
else
for(uint32 i = idx; i < idx+n; i++){
*p++ = 0;
*p++ = 0;
*p++ = 0;
}
while((uintptr)p % 0x10)
*p++ = 0;
return (uint32*)p;
}
MatPipeline::MatPipeline(uint32 platform)
: rw::Pipeline(platform), instanceCB(nil), uninstanceCB(nil),
preUninstCB(nil), postUninstCB(nil)
{
for(int i = 0; i < 10; i++)
this->attribs[i] = nil;
}
void
MatPipeline::dump(void)
{
if(this->platform != PLATFORM_PS2)
return;
PipeAttribute *a;
printf("%x %x\n", this->pluginID, this->pluginData);
for(uint i = 0; i < nelem(this->attribs); i++){
a = this->attribs[i];
if(a)
printf("%d %s: %x\n", i, a->name, a->attrib);
}
printf("stride: %x\n", this->inputStride);
printf("vertcount: %x\n", this->vifOffset/this->inputStride);
printf("triSCount: %x\n", this->triStripCount);
printf("triLCount: %x\n", this->triListCount);
printf("vifOffset: %x\n", this->vifOffset);
printf("\n");
}
void
MatPipeline::setTriBufferSizes(uint32 inputStride, uint32 stripCount)
{
this->inputStride = inputStride;
this->triListCount = stripCount/12*12;
PipeAttribute *a;
for(uint i = 0; i < nelem(this->attribs); i++){
a = this->attribs[i];
if(a && a->attrib & AT_RW)
goto brokenout;
}
this->triStripCount = stripCount/4*4;
return;
brokenout:
this->triStripCount = (stripCount-2)/4*4+2;
}
// Instance format:
// no broken out clusters
// ======================
// DMAret [FLUSH; MSKPATH3 || FLUSH; FLUSH] {
// foreach batch {
// foreach cluster {
// MARK/0; STMOD; STCYCL; UNPACK
// unpack-data
// }
// ITOP; MSCALF/MSCNT; // if first/not-first
// 0/FLUSH; 0/MSKPATH3 || 0/FLUSH; 0/FLUSH // if not-last/last
// }
// }
//
// broken out clusters
// ===================
// foreach batch {
// foreach broken out cluster {
// DMAref [STCYCL; UNPACK] -> pointer into unpack-data
// DMAcnt (empty)
// }
// DMAcnt/ret {
// foreach cluster {
// MARK/0; STMOD; STCYCL; UNPACK
// unpack-data
// }
// ITOP; MSCALF/MSCNT; // if first/not-first
// 0/FLUSH; 0/MSKPATH3 || 0/FLUSH; 0/FLUSH // if not-last/last
// }
// }
// unpack-data for broken out clusters
uint32 markcnt = 0;
enum {
DMAcnt = 0x10000000,
DMAref = 0x30000000,
DMAret = 0x60000000,
VIF_NOP = 0,
VIF_STCYCL = 0x01000100, // WL = 1
VIF_ITOP = 0x04000000,
VIF_STMOD = 0x05000000,
VIF_MSKPATH3 = 0x06000000,
VIF_MARK = 0x07000000,
VIF_FLUSH = 0x11000000,
VIF_MSCALF = 0x15000000,
VIF_MSCNT = 0x17000000,
};
struct InstMeshInfo
{
uint32 numAttribs, numBrokenAttribs;
uint32 batchVertCount, lastBatchVertCount;
uint32 numBatches;
uint32 batchSize, lastBatchSize;
uint32 size; // size of DMA chain without broken out data
uint32 size2; // size of broken out data
uint32 vertexSize;
uint32 attribPos[10];
};
InstMeshInfo
getInstMeshInfo(MatPipeline *pipe, Geometry *g, Mesh *m)
{
PipeAttribute *a;
InstMeshInfo im;
im.numAttribs = 0;
im.numBrokenAttribs = 0;
im.vertexSize = 0;
for(uint i = 0; i < nelem(pipe->attribs); i++)
if(a = pipe->attribs[i])
if(a->attrib & AT_RW)
im.numBrokenAttribs++;
else{
im.vertexSize += attribSize(a->attrib);
im.numAttribs++;
}
if(g->meshHeader->flags == MeshHeader::TRISTRIP){
im.numBatches = (m->numIndices-2) / (pipe->triStripCount-2);
im.batchVertCount = pipe->triStripCount;
im.lastBatchVertCount = (m->numIndices-2) % (pipe->triStripCount-2);
if(im.lastBatchVertCount){
im.numBatches++;
im.lastBatchVertCount += 2;
}
}else{ // TRILIST; nothing else supported yet
im.numBatches = (m->numIndices+pipe->triListCount-1) /
pipe->triListCount;
im.batchVertCount = pipe->triListCount;
im.lastBatchVertCount = m->numIndices % pipe->triListCount;
}
if(im.lastBatchVertCount == 0)
im.lastBatchVertCount = im.batchVertCount;
im.batchSize = getBatchSize(pipe, im.batchVertCount);
im.lastBatchSize = getBatchSize(pipe, im.lastBatchVertCount);
if(im.numBrokenAttribs == 0)
im.size = 1 + im.batchSize*(im.numBatches-1) + im.lastBatchSize;
else
im.size = 2*im.numBrokenAttribs*im.numBatches +
(1+im.batchSize)*(im.numBatches-1) + 1+im.lastBatchSize;
/* figure out size and addresses of broken out sections */
im.size2 = 0;
for(uint i = 0; i < nelem(im.attribPos); i++)
if((a = pipe->attribs[i]) && a->attrib & AT_RW){
im.attribPos[i] = im.size2 + im.size;
im.size2 += QWC(m->numIndices*attribSize(a->attrib));
}
return im;
}
void
MatPipeline::instance(Geometry *g, InstanceData *inst, Mesh *m)
{
PipeAttribute *a;
InstMeshInfo im = getInstMeshInfo(this, g, m);
inst->dataSize = (im.size+im.size2)<<4;
// TODO: force alignment
2017-08-25 14:06:53 +02:00
inst->data = rwNewT(uint8, inst->dataSize, MEMDUR_EVENT | ID_GEOMETRY);
/* make array of addresses of broken out sections */
uint8 *datap[nelem(this->attribs)];
uint8 **dp = datap;
for(uint i = 0; i < nelem(this->attribs); i++)
if((a = this->attribs[i]) && a->attrib & AT_RW)
dp[i] = inst->data + im.attribPos[i]*0x10;
// TODO: not sure if this is correct
uint32 msk_flush = rw::version >= 0x35000 ? VIF_FLUSH : VIF_MSKPATH3;
uint32 idx = 0;
uint32 *p = (uint32*)inst->data;
if(im.numBrokenAttribs == 0){
*p++ = DMAret | im.size-1;
*p++ = 0;
*p++ = VIF_FLUSH;
*p++ = msk_flush;
}
for(uint32 j = 0; j < im.numBatches; j++){
uint32 nverts, bsize;
if(j < im.numBatches-1){
bsize = im.batchSize;
nverts = im.batchVertCount;
}else{
bsize = im.lastBatchSize;
nverts = im.lastBatchVertCount;
}
for(uint i = 0; i < nelem(this->attribs); i++)
if((a = this->attribs[i]) && a->attrib & AT_RW){
uint32 atsz = attribSize(a->attrib);
*p++ = DMAref | QWC(nverts*atsz);
*p++ = im.attribPos[i];
*p++ = VIF_STCYCL | this->inputStride;
// Round up nverts so UNPACK will fit exactly into the DMA packet
// (can't pad with zeroes in broken out sections).
// TODO: check for clash with vifOffset somewhere
*p++ = (a->attrib&0xFF004000)
| 0x8000 | (QWC(nverts*atsz)<<4)/atsz << 16 | i; // UNPACK
*p++ = DMAcnt;
*p++ = 0x0;
*p++ = VIF_NOP;
*p++ = VIF_NOP;
im.attribPos[i] += g->meshHeader->flags == 1 ?
QWC((im.batchVertCount-2)*atsz) :
QWC(im.batchVertCount*atsz);
}
if(im.numBrokenAttribs){
*p++ = (j < im.numBatches-1 ? DMAcnt : DMAret) | bsize;
*p++ = 0x0;
*p++ = VIF_NOP;
*p++ = VIF_NOP;
}
for(uint i = 0; i < nelem(this->attribs); i++)
if((a = this->attribs[i]) && (a->attrib & AT_RW) == 0){
if(rw::version >= 0x35000)
*p++ = VIF_NOP;
else
*p++ = VIF_MARK | markcnt++;
*p++ = VIF_STMOD;
*p++ = VIF_STCYCL | this->inputStride;
*p++ = (a->attrib&0xFF004000)
| 0x8000 | nverts << 16 | i; // UNPACK
if(a == &attribXYZ)
p = instanceXYZ(p, g, m, idx, nverts);
else if(a == &attribXYZW)
p = instanceXYZW(p, g, m, idx, nverts);
else if(a == &attribUV)
p = instanceUV(p, g, m, idx, nverts);
else if(a == &attribUV2)
p = instanceUV2(p, g, m, idx, nverts);
else if(a == &attribRGBA)
p = instanceRGBA(p, g, m, idx, nverts);
else if(a == &attribNormal)
p = instanceNormal(p, g, m, idx, nverts);
}
idx += g->meshHeader->flags == 1
? im.batchVertCount-2 : im.batchVertCount;
*p++ = VIF_ITOP | nverts;
*p++ = j == 0 ? VIF_MSCALF : VIF_MSCNT;
if(j < im.numBatches-1){
*p++ = VIF_NOP;
*p++ = VIF_NOP;
}else{
*p++ = VIF_FLUSH;
*p++ = msk_flush;
}
}
if(this->instanceCB)
this->instanceCB(this, g, m, datap);
2017-08-18 19:28:01 +02:00
#ifdef RW_PS2
2017-08-12 10:25:25 +02:00
if(im.numBrokenAttribs)
fixDmaOffsets(inst);
2017-08-18 19:28:01 +02:00
#endif
}
uint8*
MatPipeline::collectData(Geometry *g, InstanceData *inst, Mesh *m, uint8 *data[])
{
PipeAttribute *a;
InstMeshInfo im = getInstMeshInfo(this, g, m);
2017-08-25 14:06:53 +02:00
uint8 *raw = rwNewT(uint8, im.vertexSize*m->numIndices, MEMDUR_EVENT | ID_GEOMETRY);
uint8 *dp = raw;
for(uint i = 0; i < nelem(this->attribs); i++)
if(a = this->attribs[i])
if(a->attrib & AT_RW){
data[i] = inst->data + im.attribPos[i]*0x10;
}else{
data[i] = dp;
dp += m->numIndices*attribSize(a->attrib);
}
uint8 *datap[nelem(this->attribs)];
memcpy(datap, data, sizeof(datap));
uint32 overlap = g->meshHeader->flags == 1 ? 2 : 0;
uint32 *p = (uint32*)inst->data;
if(im.numBrokenAttribs == 0)
p += 4;
for(uint32 j = 0; j < im.numBatches; j++){
uint32 nverts = j < im.numBatches-1 ? im.batchVertCount :
im.lastBatchVertCount;
for(uint i = 0; i < nelem(this->attribs); i++)
if((a = this->attribs[i]) && a->attrib & AT_RW)
p += 8;
if(im.numBrokenAttribs)
p += 4;
for(uint i = 0; i < nelem(this->attribs); i++)
if((a = this->attribs[i]) && (a->attrib & AT_RW) == 0){
uint32 asz = attribSize(a->attrib);
p += 4;
if((p[-1] & 0xff004000) != a->attrib){
fprintf(stderr, "unexpected unpack: %08x %08x\n", p[-1], a->attrib);
assert(0 && "unexpected unpack\n");
}
memcpy(datap[i], p, asz*nverts);
datap[i] += asz*(nverts-overlap);
p += QWC(asz*nverts)*4;
}
p += 4;
}
return raw;
}
static void
objInstance(rw::ObjPipeline *rwpipe, Atomic *atomic)
{
ObjPipeline *pipe = (ObjPipeline*)rwpipe;
Geometry *geo = atomic->geometry;
2017-08-21 23:15:31 +02:00
// TODO: allow for REINSTANCE
if(geo->instData)
return;
2017-08-25 14:06:53 +02:00
InstanceDataHeader *header = rwNewT(InstanceDataHeader, 1, MEMDUR_EVENT | ID_GEOMETRY);
geo->instData = header;
header->platform = PLATFORM_PS2;
assert(geo->meshHeader != nil);
header->numMeshes = geo->meshHeader->numMeshes;
2017-08-25 14:06:53 +02:00
header->instanceMeshes = rwNewT(InstanceData, header->numMeshes, MEMDUR_EVENT | ID_GEOMETRY);
for(uint32 i = 0; i < header->numMeshes; i++){
2017-08-25 14:06:53 +02:00
Mesh *mesh = &geo->meshHeader->getMeshes()[i];
InstanceData *instance = &header->instanceMeshes[i];
MatPipeline *m;
m = pipe->groupPipeline ?
pipe->groupPipeline :
(MatPipeline*)mesh->material->pipeline;
if(m == nil)
m = defaultMatPipe;
m->instance(geo, instance, mesh);
instance->material = mesh->material;
}
}
2017-08-12 10:25:25 +02:00
/*
static void
printVertCounts(InstanceData *inst, int flag)
{
uint32 *d = (uint32*)inst->data;
uint32 id = 0;
if(inst->material->pipeline)
id = inst->material->pipeline->pluginData;
int stride;
if(inst->arePointersFixed){
d += 4;
while(d[3]&0x60000000){ // skip UNPACKs
stride = d[2]&0xFF;
d += 4 + 4*QWC(attribSize(d[3])*((d[3]>>16)&0xFF));
}
if(d[2] == 0)
printf("ITOP %x %d (%d) %x\n", *d, stride, flag, id);
}else{
while((*d&0x70000000) == 0x30000000){
stride = d[2]&0xFF;
printf("UNPACK %x %d (%d) %x\n", d[3], stride, flag, id);
d += 8;
}
if((*d&0x70000000) == 0x10000000){
d += (*d&0xFFFF)*4;
printf("ITOP %x %d (%d) %x\n", *d, stride, flag, id);
}
}
}
2017-08-12 10:25:25 +02:00
*/
static void
objUninstance(rw::ObjPipeline *rwpipe, Atomic *atomic)
{
ObjPipeline *pipe = (ObjPipeline*)rwpipe;
Geometry *geo = atomic->geometry;
2017-03-16 11:42:59 +01:00
if((geo->flags & Geometry::NATIVE) == 0)
return;
assert(geo->instData != nil);
assert(geo->instData->platform == PLATFORM_PS2);
InstanceDataHeader *header = (InstanceDataHeader*)geo->instData;
// highest possible number of vertices
geo->numVertices = geo->meshHeader->totalIndices;
2017-08-25 14:06:53 +02:00
geo->numTriangles = geo->meshHeader->guessNumTriangles();
geo->allocateData();
2017-08-25 14:06:53 +02:00
geo->allocateMeshes(geo->meshHeader->numMeshes, geo->meshHeader->totalIndices, 0);
uint32 *flags = rwNewT(uint32, geo->numVertices,
MEMDUR_FUNCTION | ID_GEOMETRY);
memset(flags, 0, 4*geo->numVertices);
2017-08-25 14:06:53 +02:00
memset(geo->meshHeader->getMeshes()->indices, 0, 2*geo->meshHeader->totalIndices);
for(uint32 i = 0; i < header->numMeshes; i++){
2017-08-25 14:06:53 +02:00
Mesh *mesh = &geo->meshHeader->getMeshes()[i];
MatPipeline *m;
m = pipe->groupPipeline ?
pipe->groupPipeline :
(MatPipeline*)mesh->material->pipeline;
if(m == nil) m = defaultMatPipe;
if(m->preUninstCB) m->preUninstCB(m, geo);
}
geo->numVertices = 0;
for(uint32 i = 0; i < header->numMeshes; i++){
2017-08-25 14:06:53 +02:00
Mesh *mesh = &geo->meshHeader->getMeshes()[i];
InstanceData *instance = &header->instanceMeshes[i];
MatPipeline *m;
m = pipe->groupPipeline ?
pipe->groupPipeline :
(MatPipeline*)mesh->material->pipeline;
if(m == nil) m = defaultMatPipe;
uint8 *data[nelem(m->attribs)] = { nil };
uint8 *raw = m->collectData(geo, instance, mesh, data);
assert(m->uninstanceCB);
m->uninstanceCB(m, geo, flags, mesh, data);
2017-08-25 14:06:53 +02:00
rwFree(raw);
}
for(uint32 i = 0; i < header->numMeshes; i++){
2017-08-25 14:06:53 +02:00
Mesh *mesh = &geo->meshHeader->getMeshes()[i];
MatPipeline *m;
m = pipe->groupPipeline ?
pipe->groupPipeline :
(MatPipeline*)mesh->material->pipeline;
if(m == nil) m = defaultMatPipe;
if(m->postUninstCB) m->postUninstCB(m, geo);
}
int8 *bits = getADCbits(geo);
geo->generateTriangles(bits);
2017-08-25 14:06:53 +02:00
rwFree(flags);
geo->flags &= ~Geometry::NATIVE;
destroyNativeData(geo, 0, 0);
/*
for(uint32 i = 0; i < header->numMeshes; i++){
Mesh *mesh = &geo->meshHeader->mesh[i];
InstanceData *instance = &header->instanceMeshes[i];
// printf("numIndices: %d\n", mesh->numIndices);
// printDMA(instance);
printVertCounts(instance, geo->meshHeader->flags);
}
*/
}
ObjPipeline::ObjPipeline(uint32 platform)
: rw::ObjPipeline(platform)
{
this->groupPipeline = nil;
this->impl.instance = objInstance;
this->impl.uninstance = objUninstance;
}
void
insertVertex(Geometry *geo, int32 i, uint32 mask, Vertex *v)
{
if(mask & 0x1)
2017-08-05 01:44:37 +02:00
geo->morphTargets[0].vertices[i] = v->p;
if(mask & 0x10)
2017-08-05 01:44:37 +02:00
geo->morphTargets[0].normals[i] = v->n;
if(mask & 0x100)
2017-08-05 01:44:37 +02:00
geo->colors[i] = v->c;
if(mask & 0x1000)
2017-08-05 01:44:37 +02:00
geo->texCoords[0][i] = v->t;
if(mask & 0x2000)
2017-08-05 01:44:37 +02:00
geo->texCoords[1][i] = v->t1;
}
void
genericPreCB(MatPipeline *pipe, Geometry *geo)
{
PipeAttribute *a;
for(int32 i = 0; i < nelem(pipe->attribs); i++)
if(a = pipe->attribs[i])
if(a == &attribXYZW){
allocateADC(geo);
break;
}
skinPreCB(pipe, geo);
}
void
genericUninstanceCB(MatPipeline *pipe, Geometry *geo, uint32 flags[], Mesh *mesh, uint8 *data[])
{
float32 *xyz = nil, *xyzw = nil;
float32 *uv = nil, *uv2 = nil;
uint8 *rgba = nil;
int8 *normals = nil;
uint32 *weights = nil;
int8 *adc = nil;
Skin *skin = nil;
if(skinGlobals.geoOffset)
skin = Skin::get(geo);
PipeAttribute *a;
for(int32 i = 0; i < nelem(pipe->attribs); i++)
if(a = pipe->attribs[i]){
if(a == &attribXYZ) xyz = (float32*)data[i];
else if(a == &attribXYZW) xyzw = (float32*)data[i];
else if(a == &attribUV) uv = (float32*)data[i];
else if(a == &attribUV2) uv2 = (float32*)data[i];
else if(a == &attribRGBA) rgba = data[i];
else if(a == &attribNormal) normals = (int8*)data[i];
else if(a == &attribWeights) weights = (uint32*)data[i];
}
uint32 mask = 0x1; // vertices
2017-03-16 11:42:59 +01:00
if(normals && geo->flags & Geometry::NORMALS)
mask |= 0x10;
2017-03-16 11:42:59 +01:00
if(rgba && geo->flags & Geometry::PRELIT)
mask |= 0x100;
if((uv || uv2) && geo->numTexCoordSets > 0)
mask |= 0x1000;
if(uv2 && geo->numTexCoordSets > 1)
mask |= 0x2000;
if(weights && skin)
mask |= 0x10000;
if(xyzw)
adc = getADCbitsForMesh(geo, mesh);
Vertex v;
for(uint32 i = 0; i < mesh->numIndices; i++){
if(mask & 0x1)
memcpy(&v.p, xyz ? xyz : xyzw, 12);
if(mask & 0x10){
// TODO: figure out scaling :/
2017-08-05 01:44:37 +02:00
v.n.x = normals[0]/128.0f;
v.n.y = normals[1]/128.0f;
v.n.z = normals[2]/128.0f;
}
if(mask & 0x100)
memcpy(&v.c, rgba, 4);
if(mask & 0x1000)
memcpy(&v.t, uv ? uv : uv2, 8);
if(mask & 0x2000)
memcpy(&v.t1, uv2 + 2, 8);
if(mask & 0x10000)
for(int j = 0; j < 4; j++){
((uint32*)v.w)[j] = weights[j] & ~0x3FF;
v.i[j] = (weights[j] & 0x3FF) >> 2;
if(v.i[j]) v.i[j]--;
if(v.w[j] == 0.0f) v.i[j] = 0;
}
int32 idx = findVertexSkin(geo, flags, mask, &v);
if(idx < 0)
idx = geo->numVertices++;
mesh->indices[i] = idx;
if(adc)
adc[i] = xyzw[3] != 0.0f;
flags[idx] = mask;
insertVertexSkin(geo, idx, mask, &v);
if(xyz) xyz += 3;
if(xyzw) xyzw += 4;
if(uv) uv += 2;
if(uv2) uv2 += 4;
rgba += 4;
normals += 3;
weights += 4;
}
}
/*
void
defaultUninstanceCB(MatPipeline *pipe, Geometry *geo, uint32 flags[], Mesh *mesh, uint8 *data[])
{
float32 *verts = (float32*)data[AT_XYZ];
float32 *texcoords = (float32*)data[AT_UV];
uint8 *colors = (uint8*)data[AT_RGBA];
int8 *norms = (int8*)data[AT_NORMAL];
uint32 mask = 0x1; // vertices
2017-03-16 11:42:59 +01:00
if(geo->flags & Geometry::NORMALS)
mask |= 0x10;
2017-03-16 11:42:59 +01:00
if(geo->flags & Geometry::PRELIT)
mask |= 0x100;
for(int32 i = 0; i < geo->numTexCoordSets; i++)
mask |= 0x1000 << i;
int numUV = pipe->attribs[AT_UV] == &attribUV2 ? 2 : 1;
Vertex v;
for(uint32 i = 0; i < mesh->numIndices; i++){
if(mask & 0x1)
memcpy(&v.p, verts, 12);
if(mask & 0x10){
v.n[0] = norms[0]/127.0f;
v.n[1] = norms[1]/127.0f;
v.n[2] = norms[2]/127.0f;
}
if(mask & 0x100){
memcpy(&v.c, colors, 4);
//v.c[3] = 0xFF;
}
if(mask & 0x1000)
memcpy(&v.t, texcoords, 8);
if(mask & 0x2000)
memcpy(&v.t1, texcoords+2, 8);
int32 idx = findVertex(geo, flags, mask, &v);
if(idx < 0)
idx = geo->numVertices++;
mesh->indices[i] = idx;
flags[idx] = mask;
insertVertex(geo, idx, mask, &v);
verts += 3;
texcoords += 2*numUV;
colors += 4;
norms += 3;
}
}
*/
#undef QWC
ObjPipeline*
makeDefaultPipeline(void)
{
if(defaultMatPipe == nil){
MatPipeline *pipe = new MatPipeline(PLATFORM_PS2);
pipe->attribs[AT_XYZ] = &attribXYZ;
pipe->attribs[AT_UV] = &attribUV;
pipe->attribs[AT_RGBA] = &attribRGBA;
pipe->attribs[AT_NORMAL] = &attribNormal;
uint32 vertCount = MatPipeline::getVertCount(VU_Lights,4,3,2);
pipe->setTriBufferSizes(4, vertCount);
pipe->vifOffset = pipe->inputStride*vertCount;
pipe->uninstanceCB = genericUninstanceCB;
defaultMatPipe = pipe;
}
if(defaultObjPipe == nil){
ObjPipeline *opipe = new ObjPipeline(PLATFORM_PS2);
defaultObjPipe = opipe;
}
return defaultObjPipe;
}
// ADC
int32 adcOffset;
int8*
getADCbits(Geometry *geo)
{
int8 *bits = nil;
if(adcOffset){
ADCData *adc = PLUGINOFFSET(ADCData, geo, adcOffset);
if(adc->adcFormatted)
bits = adc->adcBits;
}
return bits;
}
int8*
getADCbitsForMesh(Geometry *geo, Mesh *mesh)
{
int8 *bits = getADCbits(geo);
if(bits == nil)
return nil;
2017-08-25 14:06:53 +02:00
int32 n = mesh - geo->meshHeader->getMeshes();
for(int32 i = 0; i < n; i++)
2017-08-25 14:06:53 +02:00
bits += geo->meshHeader->getMeshes()[i].numIndices;
return bits;
}
// TODO
void
convertADC(Geometry*)
{
}
// Not optimal but works
void
unconvertADC(Geometry *g)
{
ADCData *adc = PLUGINOFFSET(ADCData, g, adcOffset);
if(!adc->adcFormatted)
return;
int8 *b = adc->adcBits;
2017-08-25 14:06:53 +02:00
MeshHeader *oldmh = g->meshHeader;
g->meshHeader = nil;
// Don't allocate indices for now
MeshHeader *newmh = g->allocateMeshes(oldmh->numMeshes, 0, 1);
newmh->flags = oldmh->flags; // should be tristrip
Mesh *oldm = oldmh->getMeshes();
Mesh *newm = newmh->getMeshes();
for(int32 i = 0; i < newmh->numMeshes; i++){
newm->material = oldm->material;
newm->numIndices = oldm->numIndices;
for(uint32 j = 0; j < oldm->numIndices; j++)
if(*b++)
newm->numIndices += 2;
2017-08-25 14:06:53 +02:00
newmh->totalIndices += newm->numIndices;
newm++;
oldm++;
}
2017-08-25 14:06:53 +02:00
// Now re-allocate with indices
newmh = g->allocateMeshes(newmh->numMeshes, newmh->totalIndices, 0);
b = adc->adcBits;
2017-08-25 14:06:53 +02:00
oldm = oldmh->getMeshes();
newm = newmh->getMeshes();
for(int32 i = 0; i < newmh->numMeshes; i++){
int32 n = 0;
for(uint32 j = 0; j < oldm->numIndices; j++){
if(*b++){
newm->indices[n++] = oldm->indices[j-1];
newm->indices[n++] = oldm->indices[j-1];
}
newm->indices[n++] = oldm->indices[j];
}
newm++;
oldm++;
}
2017-08-25 14:06:53 +02:00
rwFree(oldmh);
adc->adcFormatted = 0;
2017-08-25 14:06:53 +02:00
rwFree(adc->adcBits);
adc->adcBits = nil;
adc->numBits = 0;
}
void
allocateADC(Geometry *geo)
{
ADCData *adc = PLUGINOFFSET(ADCData, geo, adcOffset);
adc->adcFormatted = 1;
adc->numBits = geo->meshHeader->totalIndices;
int32 size = adc->numBits+3 & ~3;
2017-08-25 14:06:53 +02:00
adc->adcBits = rwNewT(int8, size, MEMDUR_EVENT | ID_ADC);
memset(adc->adcBits, 0, size);
}
static void*
createADC(void *object, int32 offset, int32)
{
ADCData *adc = PLUGINOFFSET(ADCData, object, offset);
adc->adcFormatted = 0;
return object;
}
static void*
copyADC(void *dst, void *src, int32 offset, int32)
{
ADCData *dstadc = PLUGINOFFSET(ADCData, dst, offset);
ADCData *srcadc = PLUGINOFFSET(ADCData, src, offset);
dstadc->adcFormatted = srcadc->adcFormatted;
if(!dstadc->adcFormatted)
return dst;
dstadc->numBits = srcadc->numBits;
int32 size = dstadc->numBits+3 & ~3;
2017-08-25 14:06:53 +02:00
dstadc->adcBits = rwNewT(int8, size, MEMDUR_EVENT | ID_ADC);
memcpy(dstadc->adcBits, srcadc->adcBits, size);
return dst;
}
static void*
destroyADC(void *object, int32 offset, int32)
{
ADCData *adc = PLUGINOFFSET(ADCData, object, offset);
if(adc->adcFormatted)
2017-08-25 14:06:53 +02:00
rwFree(adc->adcBits);
return object;
}
static Stream*
readADC(Stream *stream, int32, void *object, int32 offset, int32)
{
ADCData *adc = PLUGINOFFSET(ADCData, object, offset);
if(!findChunk(stream, ID_ADC, nil, nil)){
RWERROR((ERR_CHUNK, "ADC"));
return nil;
}
adc->numBits = stream->readI32();
adc->adcFormatted = 1;
if(adc->numBits == 0){
adc->adcBits = nil;
adc->numBits = 0;
return stream;
}
int32 size = adc->numBits+3 & ~3;
2017-08-25 14:06:53 +02:00
adc->adcBits = rwNewT(int8, size, MEMDUR_EVENT | ID_ADC);
stream->read(adc->adcBits, size);
return stream;
}
static Stream*
writeADC(Stream *stream, int32 len, void *object, int32 offset, int32)
{
ADCData *adc = PLUGINOFFSET(ADCData, object, offset);
Geometry *geometry = (Geometry*)object;
writeChunkHeader(stream, ID_ADC, len-12);
2017-03-16 11:42:59 +01:00
if(geometry->flags & Geometry::NATIVE){
stream->writeI32(0);
return stream;
}
stream->writeI32(adc->numBits);
int32 size = adc->numBits+3 & ~3;
stream->write(adc->adcBits, size);
return stream;
}
static int32
getSizeADC(void *object, int32 offset, int32)
{
Geometry *geometry = (Geometry*)object;
ADCData *adc = PLUGINOFFSET(ADCData, object, offset);
if(!adc->adcFormatted)
return 0;
2017-03-16 11:42:59 +01:00
if(geometry->flags & Geometry::NATIVE)
return 16;
return 16 + (adc->numBits+3 & ~3);
}
void
registerADCPlugin(void)
{
adcOffset = Geometry::registerPlugin(sizeof(ADCData), ID_ADC,
createADC, destroyADC, copyADC);
Geometry::registerPluginStream(ID_ADC,
readADC,
writeADC,
getSizeADC);
}
// misc stuff
2017-08-12 10:25:25 +02:00
/*
void
printDMA(InstanceData *inst)
{
uint32 *tag = (uint32*)inst->data;
for(;;){
switch(tag[0]&0x70000000){
case DMAcnt:
printf("%08x %08x\n", tag[0], tag[1]);
tag += (1+(tag[0]&0xFFFF))*4;
break;
case DMAref:
printf("%08x %08x\n", tag[0], tag[1]);
tag += 4;
break;
case DMAret:
printf("%08x %08x\n", tag[0], tag[1]);
return;
}
}
}
void
sizedebug(InstanceData *inst)
{
if(inst->arePointersFixed == 2)
return;
uint32 *base = (uint32*)inst->data;
uint32 *tag = (uint32*)inst->data;
uint32 *last = nil;
for(;;){
switch(tag[0]&0x70000000){
case DMAcnt:
tag += (1+(tag[0]&0xFFFF))*4;
break;
case DMAref:
last = base + tag[1]*4 + (tag[0]&0xFFFF)*4;
tag += 4;
break;
case DMAret:
tag += (1+(tag[0]&0xFFFF))*4;
uint32 diff;
if(!last)
diff = (uint8*)tag - (uint8*)base;
else
diff = (uint8*)last - (uint8*)base;
printf("%x %x %x\n", inst->dataSize-diff, diff, inst->dataSize);
return;
default:
printf("unkown DMAtag: %X %X\n", tag[0], tag[1]);
break;
}
}
}
2017-08-12 10:25:25 +02:00
*/
}
}